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Abstract 

We discuss Noether’s theorem from a new perspective and show that the spa-
tial continuous symmetries of a system are on one hand symmetries of the 
space and on the other hand are dictated by the system’s potential energy. The 
Noether’s charges arising from an infinitesimal motion, or a Killing vector 
field, of the space, are conserved if the Lie derivative of the potential energy by 
this vector field vanishes. The possible spatial symmetries of a mechanical 
system are listed according to the potential energy of the external forces. 
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1. Introduction 

The Noether’s theorem [1]-[6], proved by Emmy Noether in 1915, relates con-
served physical quantities of a system to its corresponding symmetries and vice 
versa. The theorem is utilized in quantum field theory, quantum mechanics, and 
classical mechanics. In what follows 
- We give a brief account of necessary background to Noether’s theorem, 

namely, the Lagrange and Hamilton formulation of mechanics [7] [8] [9]. 
- Derive the theorem in its simplest form which describes discrete mechanical 

systems. 
- Brief the concepts of space’s symmetries and its connection to the Lie algebra 

spanned by the set of infinitesimal generators of the group of symmetries [10] 
[11] [12] [13]. We shall consider only continuous spatial symmetries.  

- Show that the system’s continuous symmetries occur when its kinetic and 
potential energies are invariant under the corresponding transformations; 
and as a consequence, the systems’ symmetries are already symmetries of the 
space. 

- Link conserved momenta to the system’s potential energy and show that a 
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system is invariant under a group of transformations if the Lie derivative of 
the potential energy by the infinitesimal generator of the group is identically 
zero. 

- Apply the new theorem to examples of mechanical systems and specify the 
possible conserved momenta according to the form of potential energy. 

The current work forms a new insight in Noether’s theorem by which the 
continuous spatial symmetries of all systems are limited to a few types, which are 
determined by the potential energy out of the symmetries of the space. Noether’s 
theorem links systems’ symmetry to the invariance of the corresponding La-
grangian. Because different systems have in general different Lagrangians, one 
may expect that systems may possess symmetries that are not included in the 
symmetries of the space. However, the current work dismisses utterly such ex-
pectations and it sets clear the method by which systems’ symmetries, when exist, 
are determined. It is shown that only systems, that have one of a few specific 
forms of potential energy, do exhibit symmetries.  

2. Essentials of Analytic Mechanics 

The Lagrangian function ℒ of a system of N particles is the difference between its 
kinetic and potential energies: 

( )1 1, , , , , , ;s sT V x x x x t− = 



                 (2.1) 

It is a function in the generalized coordinates ix , generalized velocities 
d di ix x t= , and possibly time t. The index s is the number of the system’s de-

grees of freedom. 
The Hamilton principle states that: Out of the curves connecting the initial 

position ( )1ix t  and the final position ( )2ix t , the system follows the path 
( )i ix x t=  along which the action 

2

1
d

t

t
S t= ∫                             (2.2) 

is stationary. This implies that the action does not change if the actual path 
( )ix t  is replaced by an infinitesimally adjacent curve ( ) ( )i ix t x tδ+ . Mathe-

matically, 

2 2 2

1 1 1
0 d d d ,

t t t
i it t t

i i

S t t x x t
x q

δ δ δ δ δ
 ∂ ∂

= = = = + 
∂ ∂ 

∫ ∫ ∫ 



 
        (2.3) 

where the summation convention is used. We appeal here to a basic rule in the 
calculus of variation: 

dd .
d d

i
i i

xx x
t t
δ δ δ= =                     (2.4) 

and integrate the second term in the integrand by parts: 
2

2

1
1

d d 0.
d

t
t

i it
i i it

S x x t
x x t x

δ δ δ
   ∂ ∂ ∂

= + − =  ∂ ∂ ∂   
∫

 

  
          (2.5) 

The first term on the right hand-side vanishes on the account of 
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( ) ( )1 2 0i ix t x tδ δ= = . Focusing now on the integral which vanishes for arbitrary 

ixδ  and taking all ixδ , except one at a time, equal to zero, yields Lagrange’s 
equations 

( )d 0 1,2, , .
di i

i s
x t x
∂ ∂

− = =
∂ ∂



                  (2.6) 

The solution of Lagrange’s Equations (2.6) gives the path of motion 
( )i ix x t= . 

The generalized momenta are defined by 

( ) ( ), , 1, 2, , ,i i
i

p p x x t i s
x
∂

≡ = =
∂






              (2.7) 

where x and x  stand collectively for the generalized coordinates and genera-
lized velocities respectively. In terms of the generalized momenta we write (2.6) 
in the form 

( )1, ,i i
i

p f i s
x
∂

= = =
∂




                   (2.8) 

The quantities i if x= ∂ ∂  are called the generalized forces in the directions 
of the generalized coordinates ix . 

The Hamiltonian function is defined by 

( ), , i iH x p t p x= −                      (2.9) 

Taking the differential of both sides and benefiting from (2.7) we get 

d d d

d d d d d d

i i
i i

i i i i i i
i

H H Hx p t
x p t

x p x t x p p x t
x t t

∂ ∂ ∂
+ +

∂ ∂ ∂

∂ ∂ ∂
= − − = − −

∂ ∂ ∂
  

  
 

Equating the coefficients of the differentials on both sides yields 

( ), , 1, 2, ,i i
i i

H H Hx p i s
p x t t
∂ ∂ ∂ ∂

= = − = − =
∂ ∂ ∂ ∂

 


            (2.10) 

The first two equations in (2.10) are Hamilton’s equations of motion. We shall 
assume throughout this work that the potential energy is a function of the gene-
ralized coordinates and possibly of time, ( ),V V x t= , and that the kinetic ener-
gy is a quadratic form in the generalized velocities, 

1
2 ij i jT mg x x=   , where 

( )ijg x  is the covariant space’s metric tensor. The first term on the right 
hand-side of (2.9) is 

1 2
2i i i i kj k j kj k j

i i

x p x x mg x x mg x x T
x x
∂ ∂  = = = = ∂ ∂  

      

 

 .       (2.11) 

Substituting in (2.9) yields 

2H T T V= − = + .                     (2.12) 

To obtain H as function in x and p we express the kinetic energy in terms of 
the generalized momenta ip  through expressing the generalized velocities ix  
in terms of ip : 
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1
2i kj k j ij j

i i

p mg x x mg x
x x
∂ ∂  = = = ∂ ∂  

  

 

  

( )ki ki
i ij j kg p g mg x mx→ = =                   (2.13) 

Substituting in the expression of the kinetic energy we get 

1 1 1 1
2 2

ki rj rk
ij k r r kT mg g p g p g p p

m m m
  = =  
  

          (2.14) 

where rkg  is the contravariant metric tensor. 
A physical observable is any function (differentiable) of the form ( ), ,F x p t . 

The rate of change of F, or its equation of motion, is 

{ }d ,
d i i

i i i i i i

F F F F F H F H F Fx p F H
t x p t x p p x t t

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + = − + ≡ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

     (2.15) 

The quantity { },F H  is called the Poisson bracket of the observables F and  

H. If F does not depend on time explicitly then { }d ,
d
F F H
t
= , and F is a  

constant of motion if and only if its Poisson bracket with the Hamiltonian H va-
nishes. If F depends explicitly on time then it is a constant of motion if  

{ }, 0FF H
t

∂
+ =
∂

. Taking in particular F H= , we have by (2.15) 

d
d
H H V
t t t

∂ ∂
= =
∂ ∂

                      (2.16) 

It follows that the total energy H T V= +  is a constant of motion if and only 
if the potential energy does not depend on time explicitly. 

3. Noether’s Theorem 

A coordinate ix  that does not appear in ℒ is called ignorable (or cyclic); it sig-
nifies the absence of the generalized force i if x= ∂ ∂  in its direction [7] [8] 
[9], and by Lagrange equation (2.6), the conjugate momentum ip  is conserved. 
The absence of a coordinate ix  from ℒ indicates symmetry in the system with 
respect to this coordinate. Noether’s theorem generalizes the latter observation 
to include a broader type of symmetries. In Noether theorem, a symmetry means 
a transformation of the generalized coordinates, generalized velocities, and pos-
sibly of the time, that leaves the Lagrangian unchanged. 

Noether’s theorem states that [1]-[6]: If the transformations 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1, ,i i i i i ix t x t t x t x t t t t i sη η→ + → + → = 
       (3.1) 

where   is a small number, is a symmetry transformations for some functions 
( )i tη , then the quantity 

( )i ip tη  (sum on i)                      (3.2) 

is a constant of motion, i.e., it is conserved. 
Proof: We will not assume here that ixδ  vanishes at the extremes, and hence 

0Sδ ≠  in (2.5). However, the change of the action resulting from the variation 
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(3.1) is still given by the right-hand side of (2.5). Since the motion obeys La-
grange Equation (2.6), the second term in (2.5) vanishes, giving 

( )
1

t

i
i t

S x t
x

δ δ
 ∂

=  ∂ 


,                        (3.3) 

where we took the end point at an arbitrary instant of time t. If however, the 
transformation (3.1) is a symmetry transformation then ℒ does not change by 
the transformation and 0Sδ = , which combined with ( )( )i ix t tδ η=  , proves 
Noether theorem. 

Noether’s theorem is often stated as follows: Whenever we have a continuous 
symmetry of the Lagrangian ℒ there will be an associated conservation law. 

4. Continuous Space’s Symmetries 

We view the physical space E3 as possessing a Euclidean geometry structure, 
which allows for erecting a rectangular Cartesian frame S oxyz≡  whose origin 
o can be chosen at any point of space, and whose axes’ directions are at our dis-
posal. The distance between each two points in E3 is the Euclidean norm of the 
displacement vector, and the angle between two vectors is determined through 
the inner product as naturally defined in E3. The freedom in choosing the origin 
and the directions of the coordinate axes, which manifests space’s homogeneity 
and isotropy, is equivalent to say that the hypothetical process of translating the 
space by an arbitrary vector as well as the process of rotating it about an arbi-
trary axis by an arbitrary angle preserve the length of the displacement vector 
between each two points and the angle between two vectors. The latter two facts 
are expressed by the equivalent statement: lengths and angles (“lengths” is suffi-
cient) are invariant under translations and rotations. Because the space looks 
geometrically equivalent to itself after a translation or a rotation, the latter im-
aginary processes are symmetry transformations of the space. 

A symmetry transformation, or a motion, of a space (or manifold) is a coor-
dinate transformation that preserves the metric of the space (manifold); it maps 
the space isometrically on itself [10] [11] [12] [13] with the distance between 
each two points is unchanged. The most general continuous symmetry trans-
formations of the Euclidean space E3, 

( ) ( )1 2 3 1 6, , ; , , , 1, 2,3 ,k kx f x x x kα α= =
            (4.1) 

with ( )1 6, , Rα α ∈
, forms a 6-parameter Lie group. The Lie group of isome-

tries of the space (4.1), also called the group of motions of E3 [12] [13], gives rise 
to 6 linearly independent metric preserving vector fields, or Killing fields, 

( )1,2, ,6X µ µ = 
, which are its infinitesimal generators [12]. The set { }X µ  is 

a basis for the Lie algebra LA associated with the Lie group (4.1). Every element 
of LA can be expressed as a linear combination of the elements of { }X µ , and LA 
is closed under taking linear combinations of any number of elements, as well as, 
taking the commutator of any two elements. On fixing five parameters in (4.1) 
one obtains a one-parameter group (1-PG for short) of symmetries of the space. 

In rectangular Cartesian coordinates Equation (4.1) becomes the orthogonal 
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transformations 

( ) ( ); , 1, 2,3k kj j k kx R x f kβ α β= + = =r             (4.2) 

where ( )1 2 3, ,α α α α= , ( ) 3
1 2 3, ,β β β β= ∈  and ( )kjR α  is an arbitrary or-

thogonal matrix with determinant +1. In this case it is straight forward to list six 
“independent” 1-PGs of symmetries, or motions, whose generators (apart from 
multiplicative constants) are the components of a free particle’s momentum on 
the three coordinate axes and angular momentum about them. A convenient 
way to determine the symmetries of a space or a manifold, especially when it is 
not Euclidean, is to specify the corresponding Lie algebra. A basis of the latter is 
composed of the infinitesimal generators of motion, or Killing vector fields 

i iX xη= ∂ ∂  determined by Killing equations [12] [13] 

( ), , , 0 , 1, 2,3k ij k k i kj k j ikg g g i jη η η+ + = =             (4.3) 

where ijg  are the covariant components of the metric tensor, comma denotes 
differentiation with respect to the variable following it, and sum is implied on 
the repeated index k. 

Space’s symmetries are specified solely through geometry and do not involve 
time, whereas, physical quantities pertaining to physical systems embody, in 
general, time in their very definitions. Homogeneity of time implies that physical 
laws under the same conditions are the same regardless of the starting instant of 
time. Combining the last statement with the homogeneity of space we conclude 
that the outcomes of any experiment and their probabilities depend neither on 
the experiment’s location in space nor on the chosen zero of time. Under the 
same conditions, all exactly similar experiments have the same results regardless 
of where or when they are performed. The predictive physical laws cannot 
therefore involve location in space or initial instant of time but they may, of 
course, involve distances and periods of time. 

5. Continuous System’s Symmetry 

A coordinate transformation 
( ) ( )1 2 3, , ; or ,i ix f x x x α α= =r f r                (5.1) 

where α is a real parameter, induces a unitary transformation ( )U αf  in the 
Hilbert space [14] [15] of absolutely square-integrable functions, ( )2 3L E ; it is 
defined by 

( )( ) ( ) ( ) ( )2 3,fU L Eψ ψ ψ ψ≡ = ∈r r r              (5.2) 

If the family of coordinate transformations (5.1) with α ∈  forms an 
one-parameter group then so does the corresponding family of unitary trans-
formations ( ){ }:U α α ∈f  . The generator of the latter group [16] [17] is the 
complete vector field, 

( )
0

k
k

k k

fX x
x xα

η
α =

∂ ∂ ∂
= ≡
∂ ∂ ∂

(sum on k)         (5.3) 
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There corresponds to the vector field X [14] [16] [18] [19] [20] a classical 
momentum ( )k kP x pη= , where kp  is the generalized momentum conjugate 
to kx , and the quantum momentum 

1ˆ ,
2

P i X divX = − + 
 
                       (5.4) 

which is essentially self-adjoint on the domain [14] [16] [18] [19]  

( ) ( ){ }1 3 2 3ˆ: , , ,pD f f C E f Pf L E= ∈ ∈               (5.5) 

where ( )1 3C E  is the set of continuously differentiable functions on the space. 
We shall confine our attention to spatial symmetries of a physical system, 

which can be an electron, a hydrogen atom, a pendulum, a planet, a solar sys-
tem, etc. We may imagine moving the system (a body) with respect to a coor-
dinate frame S and in no time changing its position and orientation. The new 
hypothetical configuration can be achieved through a rotation by an angle φ 
about some axis ∆ followed by a translation by some vector b, and a particle of 
the body with coordinate S∈r  is displaced instantly to the position 

( ),R Sϕ= ∆ + ∈r r b . As opposed to the “active view” in which r and r  are the 
coordinates of the same particle in one frame of reference S, the “passive view” 
considers r and r  the coordinate of the same particle in two frames S and S , 
where S  is defined by the latter relation, or equivalently by  

( )( ),R ϕ= − ∆ −r r b . 
A physical observable, or an operator A in ( )2 3L E , is transformed under the 

coordinate transformation (5.1) to the operator ( ) ( ) ( )1 1
f fA U A U A f− −= =r r r  

[21] [22]. The observable A is said to be invariant under the transformation (5.1) 
if ( ) ( )A A=r r , which is equivalent to A commuting with fU , , 0fA U  =  . 

A physical system possesses a symmetry transformation, ( ),α=r f r , if the 
system and its effective environment are indistinguishable from themselves be-
fore and after the transformation. This implies that the transformation must 
preserve the metric as well as the system’s potential energy, which means that, 
the geometry of the surroundings and the prevailing forces are invariant under 
the transformation. The latter statements lead to an important conclusion: the 
transformation (5.1) is a symmetry transformation of a physical system if and 
only if its kinetic energy T and potential energy V are separately invariant under 
the transformation. Equivalently 

, 0, , 0f fT U V U   = =                       (5.6) 

This does not mean of course that either T or V is conserved. In general nei-
ther T nor V is a constant of motion although their sum is, provided V does not 
depend on time. The invariance of the kinetic and potential energies follows 
from the invariance of the metric and the effective field of force respectively. The 
requirements (5.6) are more stringent than the commonly accepted fact that the 
transformation (5.1) is a symmetry transformation of the physical system if 

, 0fH U  =                            (5.7) 
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The latter equation results of course by summing the Equations (5.6). 
Combining the result (5.6) with the fact that translations and rotations are the 

only continuous transformations under which the Laplace operator is invariant, 
and confining our consideration to unconstrained motion, we conclude that: the 
set of spatial continuous symmetries of any physical system is a subset of the 
symmetries of the space; it consists therefore of translations, rotations, and their 
compositions. 

Orthogonal transformations preserve the norm of a vector [21] [22], and 
hence the invariance of the kinetic energy T under such transformations follows 
from the fact that, apart from a multiplicative constant, T is the square of the 
velocity vector. Explicitly, by (4.3), i i ij j ik k jk j k j jx x R x R x x x x xδ= = =     

  . The inva-
riance of the quantum operator of kinetic energy under rotation and translation 
follows from the invariance of Laplace operator under orthogonal transforma-
tion. Indeed, setting i ix∂ = ∂ ∂  and i ix∂ = ∂ ∂ , we get from (4.3), k ik iR∂ = ∂ , 
and hence 

( ) ( ) ( )2 2 2 ,k k ik rk i r ir i r r rR R fδ∇ ≡ ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ ≡ ∇ ≡ ∇r r r  

which prove our assertion. 

The generator ( )k
k

X x
x

η
∂

=
∂

 of the 1PG (5.1), when the latter is a symmetry  

transformation, preserves the metric, and the volume element in particular, 
yielding 0div X = . The vanishing of the divergence of a Killing field can also be 
derived through multiplying Equations (4.3) by ijg  to get 

( ), , , , ,

12 0 0 0 0.
2

ij
k ij k k k k k k k k k
g g g g div X

g
η η η η η+ = → + = → = → =  

Here g is the determinant of the covariant metric tensor ijg . 
There corresponds to the Killing field X, the classical momentum k kP pη=  

and the quantum momentum [14] [16] [18] [19]  

( )ˆ
k

k

P i x
x

η
∂

= −
∂

                        (5.8) 

which is essentially self-adjoint on the domain (5.5). 
The one-parameter unitary group fU  acting in 2L  can be expressed as an 

exponential function in its infinitesimal generator X [17] [23], 

( )e .X
fU α α= ∈                      (5.9) 

In vicinity of the identity, 0α = , we have 

( ) ( )2 20 0fU I X Sαα α α= + + = +                 (5.10) 

where S I Xα α= +  is an infinitesimal symmetry transformation. The expres-
sion (5.10) of fU  in vicinity of the identity operator, I, shows that the potential 
energy commutes with fU  if and only if it commutes with fU  generator, X:  

[ ] [ ], 0 , 0 , 0fV U V S V Xα  = ↔ = ↔ =             (5.11) 

Parallel relations hold for the kinetic energy T and the Hamiltonian H; they 

https://doi.org/10.4236/am.2018.93021


C. P. Viazminsky 
 

 

DOI: 10.4236/am.2018.93021 282 Applied Mathematics 

 

commute with fU  if and only if they commutes with X.  
The kinetic energy is invariant under rotations and translation, and hence 

commute with X. The transformation (5.1) is therefore a symmetry transforma-
tion of a physical system if and only if its generator X commutes with the system 
potential energy. Noting that [ ] ( ), 0 0X V X V= ↔ = , we state: 

Theorem: The quantum (classical) momentum observable ( )ˆ
k

k

P i x
x

η
∂

= −
∂

   

( k kP pη= ) is a constant of the motion if and only if the Lie derivative of the po-
tential energy by the vector field X vanishes: 

( ) 0.k
k

x V
x

η
∂

=
∂

                      (5.12a) 

When Cartesian coordinates are employed the latter relation can be written as 
( ) ( ), 1 2 3 ,1 ,2 ,3, , , , 0k kV V V Vη η η η= ⋅ = , which is abbreviated by 0X V⋅∇ = . This 

signifies that the vector field X is orthogonal to gradient V (i.e. to the force field), 
and hence, is tangent to the level surfaces of V. 

Noting that the system mechanical energy E T V= +  is conserved if V is in-
dependent of time, we may adjoin to (5.12a) the energy conservation relation 

0V
t

∂
=

∂
 ↔ Energy is conserved.             (5.12b) 

On the account of (5.12a) and (5.12b), a closed system of particles is invariant 
under translation, rotation, and translation in time. There follows that the sys-
tem’s total linear momentum, total angular momentum, internal energy (and of 
course translational kinetic energy) are conserved.  

6. Examples 

Example 1. Consider a particle with the Lagrangian 

( ) ( )2 2 2
1 2 3 1 1 2 2 3 3

1
2

m x x x V a x a x a x= + + − + +              (6.1) 

where ( )1 2 3, ,x x x  are rectangular Cartesian coordinates. Here the potential is 
constant on a plane Π, given by 1 1 2 2 3 3a x a x a x c+ + = , and changes its value 
from a plane c to another c′ . The symmetries consist of: 

1) The group of translations ( )1,2,3i i ix x b i→ + =  in the plane Π. The 
components of the displacement vector ( )1 2 3, ,b b b=b  are not independent be-
cause it is in the plane Π. Indeed, in order V remains unchanged by the trans-
formation, i.e., is an invariant, we should have ( )3

1 i i ii a x b c
=

+ =∑ , which yields 
3

1 0i ii a b
=

=∑ , or as to say 0⋅ =n b . 
2) Rotations in the plane Π about an axis defined by the normal 
( )1 2 3, ,a a a=n  to Π and passing through any point. 

When checking formula (5.12a) we should remember that a generator of  

symmetry can only be a linear combinations of i∂  and i
i L


, and only those 

combination that satisfy (5.12a) are the possible generators of continuous spatial 
symmetries. It is clear that the results we obtain hold good equally for classical 
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and quantum momenta. 
1) Two independent generators of the group of translation in Π can be cho-

sen as 

1 2 1 1 2 2 3 2 2 3, .X a x a x X a x a x= ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂  

Any other generator of this group is a linear combination of 1X  and 2X . It 
is apparent that the Lie derivative of V by 1X  and 2X  vanishes, which give 
rise to the conserved momenta 1 2 1 1 2P a p a p= −  and 2 3 2 2 3P a p a p= − . We may 
replace 2X  by ( )2 2

1 3 1 2 3 2 1 2 32X a a a a a a′ = − ∂ − ∂ + + ∂  which is orthogonal to 1X . 

2) The generator of the group of rotations is 3 3i i
i i iX a L P= ⋅ = ≡n L
  

,  

which is the component of the angular momentum vector ( )1 2 3, ,L L L=L  on n. 
Any other conserved momentum is a linear combination of 1P , 2P  and 3P .  

It is straightforward to verify that the derived momenta are constants of mo-
tion through showing that their commutation relations, or Poisson bracket, with 
the Hamiltonian 

( ) ( )2 2 2
1 2 3 1 1 2 2 3 3

1
2

H p p p V a x a x a x
m

= + + + + +  

vanish. For 1P , for instance, we have 
In the quantum case: [ ] [ ] [ ] ( )1 1 1 1, , , 0P H P V i X V i X V= = − = − = 

 
In the classical case: 

{ } 1 1 1
1 2 1 1 2

d d, 0
d dj j j j j j

P P PH H H V VP H a a a a
x p p x p x c c
∂ ∂ ∂∂ ∂ ∂  = − = − = − − = ∂ ∂ ∂ ∂ ∂ ∂  

 

Example 2. We apply (5.12a) to the following example which is given in [6]. 
Consider a one particle system with the Lagrangian given in cylindrical coordi-
nates by 

( ) ( )2 2 2 21 ,
2

m z V a zρ ρ ρ= + ∅ + − ∅ +


  

It is clear that the Lie derivative of V by the vector field X a
z

∂ ∂
= −
∂∅ ∂

  

vanishes. Moreover, X is an infinitesimal motion of the space because it is a  

linear combination of the infinitesimal motions ∂
∂∅

 and 
z
∂
∂

. Since  

( ) 0X V = , the momentum zP p ap∅= −  is conserved. 

7. Symmetries and Potentials 

The symmetries of a free particle are the symmetries of the space E3. The gene-
rators of these symmetries can be chosen the following six linearly independent 
Killing vector fields: 

( ), 1, 2,3i i i ijk j kX Y x i= ∂ = ∂ =                    (7.1) 

where ijk  is the permutation (Levi-Civita) symbol. Any other infinitesimal ge-
nerator of symmetry is a linear combination of the Killing vectors (7.1). The 
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constants of motions corresponding to (7.1) are the components of the momen-
tum and angular momentum: 

( )and 1,2,3i i ijk j kp L x p i= =                  (7.2) 

It is easy to check that these momenta commute (have a vanishing Poisson 
bracket) with the Hamiltonian ( ) 12 i iH m p p−= . 

The 1-PGs of symmetry transformations whose generators are the Killing 
fields (7.1) are: The three 1-PGs of translations along the coordinate axes: 

1 1 2 2, ,i i i i i i ix x x x x xα + + + += + = =                (7.3a) 

And the three 1-PGs of rotations about the coordinate axes (no sum on re-
peated induces in the rest of this section) 

1 1 1 2 2cos sin , sin cos ,i i i i i i i i i i i ix x xx x x xx β β β β+ + + + += + = − + =     (7.3b) 

where ( )1,2,3i =  and 1i +  stands for ( )1 mod3i + . I.e., 1 1, 2 2i i+ = + =  for 
3i = , and 2 1i + =  for 2i = . Any other symmetry transformation is a compo-

site of the these six independent symmetry transformations. 
The 1-PGs of unitary transformations of ( )2 3L E  induced by the 1-PGs of 

symmetry transformations of E3 are 

( ) ( )e , e
k

kk k

i L

k kU U
β

αα β− ∂= =                 (7.4) 

As an example we calculate ( )1U β  in which we drop the index 1, and call 
the coordinates ( ), ,x y z  

( ) ( ) ( )( ) ( )1 cos sin , sin cos ,U R x y x y zβ ψ ψ β ψ β β β β−= = − +r r    (7.5) 

In vicinity of the identity, 0β = , 

( ) ( ) ( )

( ) ( ) ( )

( )

22

, ,

11
2

e z

y x y x

i L

U x y y x z

x y x y

β

β ψ ψ β β

β β ψ

ψ

= − +

 = + ∂ − ∂ + ∂ − ∂ −  

=

r

r

r

      (7.6) 

We list here the symmetries that occur according to the functional form of the 
potential energy. In all cases below the total energy is conserved as V does not 
depend on time. 

1) If the potential energy depends only on x, then the constants of motion are 
, ,y z xp p L , and any function in them. Parallel statements hold for ( )V V y=  

and ( )V V z= . 
2) If the potential energy is of the form ( ),V V x y=  then zp  is conserved. 

Moreover, if ( ) ( )2 2,V x y V x y= +  then 0zL V =  and zL  is conserved. If 

( )V V ax by= +  then zp  and x ybp ap−  are conserved as well as any function 
in them. Parallel statements hold for a cyclic permutation in the coordinates. 

3) If the potential energy is of the form ( ) ( )2 2 2, ,V x y z V x y z= + +  then 

( ), ,x y zL L L=L  is conserved. If ( ) ( ), ,V x y z V ax by cz= + +  then x ybp ap− , 

y zcp bp−  and x y zaL bL cL+ +  are conserved, as well as any function in them. 
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8. Conclusion 

The set of symmetries of a mechanical system is a subset of the symmetries of 
the space. A space’s symmetry is admitted as a symmetry of a system if the direc-
tional derivative of the potential energy by its infinitesimal generator vanishes. 
The found results provide a scheme to specify the sought symmetries, and shed 
new insight in the inspiring and beautiful Noether’s theorem. 
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