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Abstract 
The Weak Galerkin (WG) finite element method for the unsteady Stokes equ-
ations in the primary velocity-pressure formulation is introduced in this pa-
per. Optimal-order error estimates are established for the corresponding nu-
merical approximation in an H1 norm for the velocity, and L2 norm for both 
the velocity and the pressure by use of the Stokes projection. 
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1. Introduction 

The finite element method for the unsteady Stokes equations developed over the 
last several decades is based on the weak formulation by constructing a pair of 
finite element spaces satisfying the inf-sup condition of Babuska [1] and Brezzi 
[2]. Readers are referred to [3] [4] [5] [6] [7] for specific examples and details in 
the different finite element methods for the Stokes equations. The idea of weak 
Galerkin method was first introduced by the Professor Junping Wang in June 
2011. Weak Galerkin refers to a general finite element technique for partial dif-
ferential equations in which differential operators are approximated by weak 
forms as distributions for generalized functions. Thus, two of the key features in 
weak Galerkin methods are 1) the approximating functions are discontinuous, 
and 2) the usual derivatives are taken as distributions or approximations of dis-
tributions. The method was successfully applied to the second order elliptic equ-
ations [8] [9], the Stokes equations [10], Parabolic equations [11], and Maxwell 
equations [12]. A posteriori error is effectively estimated, and proved the con-
vergence of the WG finite element method in this paper. 
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2. Preliminaries 

In this paper, we study the initial-boundary value problems of the Stokes. 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

, ,     0,
0,                       , 0,

0,                           , 0,
,0                   , 0

tu u p f x t t T
u x t T

u x t T
u x x x tψ

 − ∆ +∇ = ∈
∇ ⋅ = ∈Ω×
 = ∈∂Ω×
 = ∈Ω =

           (1) 

where ( )T
1 2,u u u=  is fluid velocity, p is pressure, ( )T

1 2,f f f=  is volumetric 
power density. 

The solution of the Stokes equations forms an important aspect of both theo-
retical and computational fluid dynamics. A limited number of solutions of these 
non-linear partial differential equations mostly involving spatially 
one-dimensional problems are given in the literature. Solutions of practical in-
terest have been obtained for cases where, with suitable approximations, the eq-
uations are reduced to linear partial differential equations. 

Let Ω be a bounded domain in R2. We introduce function spaces  

( )
21

0X H = Ω  , { },  0V u X div u= ∈ = , ( ){ }2 ; d d 0M q L q x y
Ω

= ∈ Ω =∫ , then 

the unsteady Stokes problem would take the following form: seek 
( ),u p X M∈ ×  satisfying 

( ) ( ) ( ) ( )
( )
( ) ( )

, , , , ,  
, 0,    

,0

tu v u v p v f v v X
q u q W

u x xψ

 + ∇ ∇ − ∇ ⋅ = ∀ ∈
 ∇ ⋅ = ∀ ∈
 =

          (2) 

We use 
,s D⋅  and 

,s D⋅  to be denote the norm and Semi-norm in the So-

bolev space ( )sH D  for any 0s ≥ , respectively. The inner product in ( )sH D  

is denoted by ( ) ,, s D⋅ ⋅ . For example, for each 0s ≥ , the Semi-norm 
,s D⋅  is 

given by 
1
22

, ds D D
s

Dγ

γ
ϕ ϕ

=

 
= ∂  
 
∑∫  

and ⋅  is said to be the norm of 2L . 
For w is [ ]0,T  to ( )sH D , the definition is given by 

( )( ) ( )( )
1

0, ; ,0
, dq s

T q q
L T H D s D

w w t t= ⋅∫  

for 1 q≤ ≤ ∞ , we have 

( )( ) ( )0, ; ,0
sup ,sL T H D s Dt T

w w t∞
≤ ≤

= ⋅  

The space ( )sH D  and the norm defined in the ( )sH D  defined as 

( ) ( ) ( ){ }2 2, : ,H div q q L q L Ω = ∈ Ω ∇ ⋅ ∈ Ω   

( ) ( )
1

2 2 2
,H divq q q
Ω
= + ∇ ⋅  
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3. Weak Galerkin Finite Element Approximation Scheme 

Let K be any polygonal or polyhedral domain with boundary K∂ . A weak vec-
tor-valued function on the region K refers to a vector-valued function 

{ }0 , bv v v=  such that ( )2
0

d
v L K ∈    and ( )

1
2

d

bv H K
 

∈ ∂ 
 

. The first compo-
nent 0v  can be understood as the value of v in K, and the second component 

bv  represents v on the boundary of K. Note that bv  may not necessarily be re-
lated to the trace of 0v  on K∂  should a trace be well-defined. Denote by 
( )Kν  the space of weak functions on K; 

( ) { } ( ) ( )
1

2 2
0 0, : ,

d
d

b bK v v v v L K v H Kν
    = = ∈ ∈ ∂   

   
         (3) 

Definition 1. For any ( )v Kν∈ , the weak gradient of v is defined as a linear 
functional wv∇  in the dual space of ( ),

d
H div K   , whose action on each 

( ),
d

q H div K∈    is given by 

( ) ( )0, , ,w b KK K
v q v q v q n

∂
∇ = − ∇ ⋅ + ⋅                  (4) 

where n is the outward normal direction to K∂ , ( ) ( )0 0, d
K K

v q v q K∇ ⋅ = ∇ ⋅∫  is 
the action of 0v  on q∇ ⋅ , and , db bK K

v q n v q n s
∂ ∂

⋅ = ⋅∫  is the action of q n⋅  
on ( )

1
2

d

bv H K
 

∈ ∂ 
 

. 
The Sobolev space ( )1 d

H K    can be embedded into the space ( )Kν  by an 
inclusion map ( ) ( )1:

d
i H K Kν ν  →   defined as follows 

( ) { } ( )1, , 
d

K Ki H Kν φ φ φ φ
∂

 = ∈   

With the help of the inclusion map iν , the Sobolev space ( )1 d
H K    can be 

viewed as a subspace of ( )Kν  by identifying each ( )1 d
H Kφ  ∈    with 

( )iν φ . 
Let ( )rP K  be the set of polynomials on K with degree no more than r. 
Definition 2. The discrete weak gradient operator, denoted by , ,w r K∇ , is de-

fined as the unique polynomial ( ) ( ), ,
d d

w r K rv P K
×

∇ ∈    satisfying the following 
equation, 

( ) ( ), , 0, , , ,w r K b KKK
v q v q v q n

∂
∇ = − ∇ ⋅ + ⋅             (5) 

for all ( ) d d
rq P K

×
∈    . 

In what follows, we give the definition of weak divergence, first of all, we re-
quire weak function { }0 , bv v v=  such that ( )2

0

d
v L K ∈    an ( )2

bv n L K⋅ ∈ ∂  
Denote by ( )V K  the space of weak vector-valued functions on K; 

( ) { } ( ) ( ){ }2 2
0 0, : ,

d

b bV K v v v v L K v n L K = = ∈ ⋅ ∈ ∂            (6) 

Definition 3. For any ( )v V K∈ , the weak divergence of v is defined as a li-
near functional w v∇ ⋅  in the dual space of ( )1H K  whose action on each 

( )1H Kϕ∈  is given by 

( ) ( )0, , ,w b KK K
v v v nϕ ϕ ϕ

∂
∇ ⋅ = − ∇ + ⋅             (7) 

where n is the outward normal direction to K∂ , ( )0 ,
K

v ϕ∇  is the action of 0v   
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on ϕ∇ , and ,b Kv n ϕ
∂

⋅  is the action of bv n⋅  on ( )
1
2H Kϕ∈ ∂ . 

The Sobolev space ( )1 d
H K    can be embedded into the space ( )V K  by an 

inclusion map ( ) ( )1:
d

iv H K V K  →   defined as follows 

( ) { } ( )1, , 
d

K Ki H Kν φ φ φ φ
∂

 = ∈   

Definition 4. A discrete weak divergence operator, denoted by , ,w r K∇ , is de-
fined as the unique polynomial ( ) ( ), ,w r K rv P K∇ ⋅ ∈  that satisfies the following 
equation. 

( ) ( ), , 0, , , ,w r K b KKK
v v v nϕ ϕ ϕ

∂
∇ ⋅ = − ∇ + ⋅            (8) 

for all ( )rP Kϕ∈ . 

4. Weak Galerkin Finite Element Scheme 

Let h  be a partition of the domain Ω with mesh size h that consists of arbi-
trary polygons/polyhedra. In this paper, we assume that the partition h  is WG 
shape regular-defined by a set of conditions as detailed in references. Denote by 

hε  the set of all edges/flat faces in h , and let 0
h hε ε= ∂Ω  be the set of all inte-

rior edges/faces. For any integer 1k ≥ , we define a weak Galerkin finite element 
space for the velocity variable as follows, 

{ } { } ( ) ( ){ }0 0 1, : , ,
d d

h b b k kT
V v v v v v P T P e e T−= = ∈ × ⊂ ∂        

We would like to emphasize that there is only a single value bv  defined on 
each edge he ε∈ . For the pressure variable, we have the following finite element 
space 

( ) ( ){ }2
0 1: ,h kTW q q L q P T−= ∈ Ω ∈  

Denote by 0
hV  the subspace of hV  consisting of discrete weak functions with 

vanishing boundary value; 

{ }{ }0
0 , , 0 onh b h bV v v v V v= = ∈ = ∂Ω  

The discrete weak gradient , 1w k−∇  and the discrete weak divergence ( ), 1w k−∇  
on the finite element space hV  can be computed by using (5) and (8) on each 
element T, respectively. More precisely, they are given by 

( ) ( ), 1 , 1, ,w k w k T hTT
v v v V− −∇ = ∇ ∀ ∈  

( ) ( ), 1 , 1, ,w k w k T hTT
v v v V− −∇ ⋅ = ∇ ⋅ ∀ ∈  

For simplicity of notation, from now on we shall drop the subscript 1k −  in 
the notation , 1w k−∇  and ( ), 1w k−∇  for the discrete weak gradient and the dis-
crete weak divergence. The usual 2L  inner product can be written locally on 
each element as follows 

( ) ( ), ,
h

w w w w T
T

v w v w
∈

∇ ∇ = ∇ ∇∑
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( ) ( ), ,
h

w w T
T

v q v q
∈

∇ ⋅ = ∇ ⋅∑


 

Denote by 0Q  the L2 projection operator from ( )2 d
L T    onto ( ) d

kP T   . 

For each edge/face he ε∈ , denote by bQ  the L2 projection from ( )2 d
L e    

onto ( )1
d

kP e−   . We shall combine 0Q  with bQ  by writing { }0h bQ Q Q= . 

We are now in a position to describe a weak Galerkin finite element scheme 
for the Stokes Equations (1). To this end, we first introduce three bilinear forms 
as follows 

( ) 1
0 0, ,

T
h

T b b b b
T

s v w h Q v v Q w w−
∂

∈

= − −∑


 

( ) ( ) ( ), , ,w wa v w v w s v w= ∇ ∇ +  

( ) ( ), ,wb v q v q= ∇ ⋅  

WG Algorithm. Seek { }( )0 , ,h b h h hu u u p V W= ∈ ×  satisfying 

( ) ( ) ( ) ( )
( )
( ) ( )

0
,

0

, , , , ,

, 0,  
,0

h t h h h

h h

h

u v a u v b v p f v v V

b u q q W
u x xψ

 + − = ∀ ∈
 = ∀ ∈
 =

          (9) 

In the following, the proof process of Lemma 1-6 refers to reference [10] [11] 
[12]. 

Lemma 1. For any 0
hv V∈ , the following equation hold true, 

2 2 21
0

h h
w T b bT T

T T
v v h Q v v−

∂
∈ ∈

= ∇ + −∑ ∑
 

 

Lemma 2. For any 0, hv w V∈  we have 

( ),a v w v w≤  

( ) 2
, .a v v v=  

In addition to the projection { }0 ,h bQ Q Q=  defined in the previous section, 
let hQ  and hQ  be two local L2 projections onto ( )1kP T−  and ( )1

d d
kP T

×

−   , 
respectively. 

Lemma 3. The projection operators hQ , hR , and hS  satisfy the following 
commutative properties 

( ) ( ) ( )1, 
d

w h hQ v R v v H ∇ = ∇ ∀ ∈ Ω   

( ) ( ) ( ),  w h hQ v S v v H div∇ ⋅ = ∇ ⋅ ∀ ∈ Ω  

Lemma 4. There exists a positive constant β independent of h such that 

( )
0

,
sup

hv V

b v
v
ρ

β ρ
∈

≥  

for all hWρ ∈ . 
Lemma 5. Poincare inequality of Weak gradient operator: If 0

hv V∈ , then ex-
ists a constant c satisfying 
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222
wv c v c v≤ ∇ ≤  

First of all, we study the existence and uniqueness of the solution for (9). The 
space defined as follows 

( ) ( ){ }; , 0, .h h h w hT v V j q v q W= ∈ ∇ ⋅ = ∀ ∈  

Then we need to seek ( ) ( ), : 0,h hu x t T T→  satisfying 

( ) ( ) ( )
( ) ( )
,

0

, , , ,

,0
h t h h

h

u v a u v f v v T

u x xψ

 + = ∈


=
               (10) 

Let ( ),hu x t  be the solution of (10) and which is unique, the linear bounded 
functional ( )hl l u=  on hV  defined as follows. 

( ) ( ) ( ),, , , ,h t hl v u v a u v f v= + −               (11) 

Then problem (9) is equivalent to seek h hP W∈  satisfying 

( ), , ,h w hP v l v v V∇ ⋅ = ∀ ∈               (12) 

Using LBB condition and Lax-Milgram Lemma, we know that the solution 

h hP W∈  of (12) is unique. 
Combing (11) and (12), it is concluded that if initial approximation 
( ) ( )0,0h hu x x Tψ= ∈ , the solution ( ),h h h hu P V M∈ ×  of (9) is unique. 
In what follows, we introduce Stokes projection, which is the important ap-

proximation of projection. 
Lemma 6. First of all, we introduce Stokes projection of ( ),u p X W∈ × , 

which is ( )1 1,h h h hQ u S p V W∈ ×  need satisfying 

( ) ( ) ( )

( )

1 1
,

1

, , ,

, 0, 

h h h h u p h

h h h

a u Q u v b v p S p v v V

b u Q u q q W

ϕ − − − = − ∈


− = ∈
     (13) 

If let f u p∗ = −∆ + ∆ , easy to know that ( )1 1,h h h hQ u S p V W∈ ×  satisfying 

( ) ( ) ( )
( )

1 1
0

1

, , , ,

, 0,

h h h

h h

a Q u v b v S p f v v V

b Q u q q W

∗ − = ∈


= ∈
           (14) 

Then ( )1 1,h h h hQ u S p V W∈ ×  is the finite element approximation of 
( ),u p X W∈ × , so we have 

( )
( )

( ) ( )

1 1 1
1

1
1

1 1 1
1 1

 

k
h h h h k k

k
h h k k

k
h h h h t tk k k kt

u Q h u Q Ch u p

p S p Ch u p

u Q h u Q Ch u p u p

+
+

+

+
+ +

 − + − ≤ +


− ≤ +

 − + − ≤ + + +


  (15) 

5. Error Equations 

In what follows, we list Lemma 7 to prove the error estimation of approximate 
solution for Semi-discrete scheme. 

We know that ( ),u p X M∈ ×  and ( ),h h h hu p X M∈ ×  be solution of (1) 
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and Galerkin finite element solution of (9), respectively. The L2 projection of u 
in the finite element space hV  is given by { }0 ,h bQ u Q u Q u= . Similarly, the 
pressure p is projected into hW  as hS p . Denote by he  and hε  the corres-
ponding error given by 

{ } { }0 0 0, ,h b b b

h h h

e e e Q u u Q u u
S p pε

 = = − −


= −
                (16) 

Lemma 7. Let ( ) ( ) ( )1 2,
d

w p H L ∈ Ω × Ω   be sufficiently smooth and satisfy 
the following equation 

tw w ρ η− ∆ +∇ =                        (17) 

in the domain Ω. Let { }0 ,h bQ w Q w Q w=  and hS ρ  be the L2 projection of 
( ),w p  into the finite element space h hV W× . Then, the following equation 
holds true 

( ) ( )( ) ( )
( ) ( ) ( )

0

0

, , ,

, ,
h t w h w w h

w

Q w v Q w v v S

v v vρ

ρ

η θ

+ ∇ ∇ − ∇ ⋅

= + −

           (18) 

for all 0
hv V∈ . Where w  and ρθ  are two linear functionals on 0

hV  defined 
by 

( ) ( )0 ,
h

w b h T
T

v v v w n R w n
∂

∈

= − ∇ ⋅ − ∇ ⋅∑


 

( ) ( )0 ,
h

b h T
T

v v v S nρθ ρ ρ
∂

∈

= − −∑


 

Proof. Together Lemma 3, Equation (5) and integration by parts. we obtain 

( )( )
( )( )

( )( ) ( )
( )( ) ( )

( ) ( )

0

0 0

0

,

,

, ,

, ,

, ,

w h w T

h w w T

h w b h wT T

h w b h wT T

b h wT T

Q w v

R v

v R v R n

v R v v R n

w v v v R n

∂

∂

∂

∇ ∇

= ∇ ∇

= − ∇ ⋅ ∇ + ∇ ⋅ ∇ ⋅

= ∇ ∇ − − ∇ ⋅ ∇ ⋅

= ∇ ∇ − − ∇ ⋅ ∇ ⋅

          (19) 

Next, Combing Lemma 3 and Equation (8), the fact that , 0
h bT Tv pn

∈ ∂
=∑  ,  

then using integration by parts, we obtain 

( )
( ) ( )

( )

( )

0

0 0

0 0

,

, ,

, ,

, ,

h h

h h

h h

w h

h b hT T
T T

h b hT T
T T

b hT T
T T

v S

v S v S n

v S v v S n

v v v S n

ρ

ρ ρ

ρ ρ

ρ ρ

∂
∈ ∈

∂
∈ ∈

∂
∈ ∈

∇ ⋅

= − ∇ +

= ∇ ⋅ − −

= ∇ ⋅ − −

∑ ∑

∑ ∑

∑ ∑

 

 

 

 

( )

( )

( ) ( )

0 0 0

0 0 0

0 0

, , ,

, , ,

, ,

h h h

h h h

h

b hT T T
T T T

b b hT T T
T T T

b h T
T

v v n v v S n

v v v n v v S n

v v v S n

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

∂ ∂
∈ ∈ ∈

∂ ∂
∈ ∈ ∈

∂
∈

= − ∇ + − −

= − ∇ + − − −

= − ∇ + − −

∑ ∑ ∑

∑ ∑ ∑

∑
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We can imply that 

( ) ( ) ( )0 0, , ,
h

w h b h T
T

v p v S v v S nρ ρ ρ
∂

∈

∇ = − ∇ ⋅ + − −∑


            (20) 

Next, we test (17) by using 0v  in { } 0
0 , b hv v v V= ∈  to obtain, we can obtain 

( ) ( ) ( ) ( )0 0 0 0, , , ,tw v w v v vρ η− ∆ + ∇ =                 (21) 

It follows from the usual integration by parts that 

( ) ( )0 0 0, , ,
h h

b TT
T T

w v w v v v w n
∂

∈ ∈

− ∆ = ∇ ∇ − − ∇ ⋅∑ ∑
 

 

Where we have used the fact that , 0
h bT Tv w n

∈ ∂
∇ ⋅ =∑  . using Equations 

(19) and (20), we have 

( ) ( )( ) ( )0 0, , ,
h

w h w b h T
T

w v Q w v v v w n R w n
∂

∈

− ∆ = ∇ ∇ − − ∇ ⋅ − ∇ ⋅∑


    (22) 

Substituting (20), (22) and ( ) ( )0 0, ,h t tQ w v w v=  into (21) yields 

( ) ( )( ) ( ) ( ) ( ) ( )0 0, , , ,h t w h w w h wQ w v Q w v v S v v vρρ η θ+ ∇ ∇ − ∇ ⋅ = + −  

which completes the proof of the lemma. 
In what follows, we give the derivation of the error equation of (9). 
Lemma 8. Let he  and hε  be the error of the weak Galerkin finite element 

solution arising from (9), as defined by (16). Then, we have 

( ) ( ) ( ) ( )
( )

, ,, , ,

, 0,
h t h h u p

h

e v a e v b v v

b e q

ε ϕ + − =


=
            (23) 

for all 0
hv V∈  and hq W∈ , where ( ) ( ) ( ) ( ), ,u p u p hv v v s Q u vϕ θ= − +

 is a li-
near functional defined on 0

hV . 
Proof. Since ( ),u p  satisfies the Equation (17) with fη = , then from Lem-

ma 6 we have 

( ) ( )( ) ( ) ( ) ( ) ( )0 0, , , ,h t w h w w h uQ u v Q u v v S p f v v vρθ+ ∇ ∇ − ∇ ⋅ = + −  

Adding ( ),hs Q u v  to both side of the above equation give 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,h t h h u hQ u v a Q u v b v S p f v v v s Q u vρθ+ − = + − +
  (24) 

The difference of (24) and (9) yields the following equation, 

( ) ( ) ( ) ( ) ( ) ( ), 0, , , ,h t h h u he v a e v b v v v s Q u vρε θ+ − = − +  

for all 0
hv V∈ , where { } { }0 0 0, ,h b b be e e Q u u Q u u= = − − . This completes the de-

rivation of (23). 
As to (24), we test Equation (1) by hq W∈  and use (9) to obtain 

( ) ( ) ( )0 , , ,w h hu q Q u q b Q u q= ∇ ⋅ = ∇ ⋅ =            (25) 

The difference of (25) and (9) yields the following equation 

( ), 0hb e q =  

for all hq W∈ . 
Which completes the proof of the lemma. 
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In the following, the proof process of Lemma 9 refers to reference [10]. 

Lemma 9. If ( ) ( ) ( )1, ,
dr r

hw r H H Vρ + ∈ Ω × Ω ×   and 1 r k≤ ≤ , with the  

precondition of regular-shape h , we have the following estimation. 

( ) 1, r
h rs Q w v Ch w v

+
≤  

( ) 1
r

w rv Ch w v
+

≤  

( ) 1
r

rv Ch w vρθ +
≤  

6. Error Estimates 

The following theorem is the main result of this paper. 
Theorem 1. Let ( ) ( ) ( ) ( ) ( )1 1 2

0 0,
dk ku p H H L H+   ∈ Ω Ω × Ω Ω      and  

( ),h h h hu p V W∈ ×  be the solution of (1) and (9), respectively. the following error 
estimates is true. 

( )( )
( )
(

( ) )

1
1 1 10

1 1

1
1 1

1 1 10

d

              d

tk
h h t tk k k k k k

k
h h t tk k k k

k
h h t tk k k k

t
t t tt ttk k k k k k

Q u u Ch u p u p u p

Q u u Ch u p u p

S p p Ch u p u p

u p u p u p

τ

τ

+
+ + +

+ +

+
+ +

+ + +

− ≤ + + + + +

− ≤ + + +

− ≤ + + +

+ + + + + +

∫

∫

 

Proof. Let 
1 1

h h h h h h he Q u u Q u Q u Q u u θ η= − = − + − = +  

( ) ( ) ( ),0 ,0 ,0 0he θ η⋅ = ⋅ = ⋅ =  

By the error of Equation (23), we have 

( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
,

, , ,

, , ,

t h h

u p t h h

v a v b v S p S p

v v a v b v S p p

θ θ

ϕ η η

+ − −

= − − + −
         (26) 

Substituting (13) into (26), we obtain 

( ) ( ) ( ) ( )1, , , ,t h h tv a v b v S p S p vθ θ η+ − − = −         (27) 

Let 1
h hv Q u Q uθ= = − , combing the Equation (25) and (14), we have 

( )1, 0h hb S p S pθ − =  

That is 

( ) ( ) ( ), , ,t taθ θ θ θ η θ+ = −  

By Lemma 2 and Cauchy inequality, we have 

2 22 21 d
2 d t tt

θ θ η θ η θ+ ≤ ≤ +                 (28) 

By Gronwall Lemma, we have 

( )( )222 1
1 1

1 d
2 d

k
t tk k k kCh u p u p

t
θ θ +

+ +
+ ≤ + + +       (29) 
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By Cauchy inequality, we have 

( )1
1 1

k
t tk k k kCh u p u pθ +

+ +
≤ + + +              (30) 

Then take the integration about t of both side of Equation (28) 

( ) ( ) ( ) ( )
222 2 2

0 0

1, 2 d ,0 d sup
4

t t
t

t
t C

τ
θ θ τ θ η τ θ τ

≤
⋅ + ≤ ⋅ + +∫ ∫  

Since ( ),0 0θ ⋅ = , then 

( )

( )
0

1
1 10

dsup

d

t
t

t
tk

t tk k k k

C

Ch u p u p

τ
θ θ τ η τ

τ

≤

+
+ +

≤ ≤

≤ + + +

∫

∫
         (31) 

Combing the Equations (15), (29), (30) and triangle inequality, we have 

( )( )1
1 1 10

d
tk

h h t tk k k k k kQ u u Ch u p u p u p τ+
+ + +

− ≤ + + + + +∫    (32) 

( )1 1
k

h h t tk k k kQ u u Ch u p u p
+ +

− ≤ + + +         (33) 

Next, we proof the error estimate of pressure approximation h hS p p− , by 
using error Equation (23), we have 

( ) ( ) ( ) ( ), ,, , ,h h h t h u pb v S p p e v a e v vϕ− = + −  

By using Lemma 2, Lemma 5 and Lemma 9, we obtain 

( ) ( )
( )

1
, 1

1
, 1

, k
h h h t h k k

k
h t h k k

b v S p p e v e v Ch u p v

C e v e v Ch u p v

+
+

+
+

− ≤ + + +

≤ + + +
 

By Lemma 4, we have 

( )1
, 1

k
h h h t h k kS p p C e e Ch u p+

+
− ≤ + + +         (34) 

Next we seek error estimate ,h te , then take the derivation about t of both 
sides of Equation (27) 

( ) ( ) ( ) ( )1, , , ,tt t h t h t ttv a v b v S p S p vθ θ η+ − − = −  

Let tv θ= , take the derivation about t of both side of Equations (14) and (25), 
we obtain 

( )1, 0t h t h tb S p S pθ − =  

That is 

( ) ( ) ( ), , ,tt t t t tt taθ θ θ θ η θ+ = −  

By Lemma 2 and Cauchy inequality, we have 

221 d
2 d t t tt tt

θ θ η θ+ ≤  

That is 

( ) ( ) ( ) ( )
22 2 2

0

1, ,0 d sup
4

t
t t tt t

t
t C

τ
θ θ η τ θ τ

≤
⋅ ≤ ⋅ + +∫           (35) 

Since ( ),0 0tθ ⋅ = , that is 
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( ) ( )1
1 1 10

, dsup
tk

t t t t tt ttk k k k k k
t

t Ch u p u p u p
τ

θ θ τ+
+ + +

≤
≤ ⋅ ≤ + + + + +∫ (36) 

Combing the Equations (15) and triangle inequality, we have 

(
( ) )
1

, 1 1

1 1 10
d

k
h t t tk k k k

t
t t tt ttk k k k k k

e Ch u p u p

u p u p u p τ

+
+ +

+ + +

≤ + + +

+ + + + + +∫
     (37) 

Substituting (33) and (36) into (34), we have 

(
( ) )
1

1 1

1 1 10
d

k
h h t tk k k k

t
t t tt ttk k k k k k

S p p Ch u p u p

u p u p u p τ

+
+ +

+ + +

− ≤ + + +

+ + + + + +∫
 

This completes the proof. Thus, the error estimates of Theorem 1 hold. Op-
timal-order error estimates are established for the corresponding numerical ap-
proximation in an H1 norm for the velocity, and L2 norm for both the velocity 
and the pressure by use of the Stokes projection. 
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