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Abstract 
In this Paper, we have proposed a new weighted residual method known as 
orthogonal collocation-based on mixed interpolation (OCMI). Mixed inter-
polation uses the classical polynomial approximation with two correction 
terms given in the form of sine and cosine function. By these correction terms, 
we can control the error in the solution. We have applied this approach to a 
non-linear boundary value problem (BVP) in ODE which governs the elec-
trohydrodynamic flow in a cylindrical conduit. The solution profiles shown in 
the figures are in good agreement with the work of Paullet (1999) and Ghase-
mi et al. (2014). Our solution is monotonic decreasing and satisfies 

( ) 10
1

w r
α

< <
+

 ( )0,1∀ ∈r , where, α governs the strength of non-linearity 

and for large values of α solutions are 1
α
 
 
 

O . The residual errors are given in 

Table 1 and Table 2 which are significantly small. Comparison of residual 
errors between our proposed method, Least square method and Homotopy 
analysis method is also given and shown via the Table 3 where as the profiles 
of the residual error are depicted in Figures 4-8. Table and graphs show that 
efficiency of the proposed method. The error bound and its L2-norm with re-
levant theorems for mixed interpolation are also given. 
 

Keywords 
Electrohydrodynamic (EHD) Flow, Weighted Residual Method, Orthogonal 
Polynomial, Mixed Interpolation 

 

1. Introduction 

The electrohydrodynamic flow (EHD flow) of a fluid in a “ion drag” configuration 
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in a circular conduit (see Figure 1) is governed by a nonlinear second-order 
ordinary differential Equations ((1), (2)) 

2
2

2

d 1 1 0, 0 1,
d 1d a

w dw wH r
r r wr α

 + + − = < < −               
(1) 

subject to the boundary conditions  

( ) ( )0 0, 1 0.w w′ = =                        (2) 

where ( )w r  is the fluid velocity, r is the radial distance from the center of the 
cylindrical conduit, aH  is the Hartmann electric number and the parameter α 
measures the strength of the non-linearity. It has been noted that the nonlinearity 
occurred in this problem is in the form of a rational function and thus, creates a 
significant challenge in regard to obtain analytical solutions. 

Though, some analytic solutions are introduced by several researchers which 
are mentioned here. In 1997, Mckee et al. [1] developed regular perturbation 
solutions of EHD flow Equations ((1), (2)) in terms of the nonlinearity control 
parameter α governing a nonlinearity of the problem. Mckee and his coworkers 
used a Gauss-Newton finite-difference solver combined with the continuation 
method and Runge-Kutta shooting method to provide numerical results for the 
fluid velocity over a large range of values of α. This was done for both large and 
small values of α. 

For 1α  , Mckee et al. [1] assumes the solution of the form  
( ) ( ) ( )0, ;n

nnw r w r w rα α α∞

=
= =∑  and obtained the ( )3O α  perturbation 

solution as  

( ) ( )
( )

0

0

, 1 .rI H
w r

I H
α = −  

Similarly, for 1α  , the authors in [1] proposed that the solution of BVP (1 - 
2) could be expanded in the series of the form ( ) ( )0 ;n

nnw r w rα α∞

=
=∑  with 

( )1O  leading term. In 1999, Paullet [2] proved the following the existence and 
uniqueness of a solution of BVP of electrohydrodynamic flow. 

For any 0α >  and any 2 0aH ≠  ∃ a solution of BVP (1 - 2). Further this  
 

 
Figure 1. “Ion-drag” flow in a circular cylindrical conduit.  
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solution is monotonically decreasing and satisfies ( ) 10
1

w r
α

< <
+

 ( )0,1r∀ ∈ . 

Remark: Clearly the solution ( )w r  of BVP (1 - 2) satisfies ( ) 1w r
α

<  and 

( )w r  never equals 1
α

, otherwise the term ( )
( )1

w r
w rα−

 creates the singularity. 

Paullet [2] claimed an error in the perturbation solution and numerical 
solution given in [1] for the large value of α. This is obvious from the fact that 

for the large α, the solutions are of 1O
α
 
 
 

 not of ( )1O  as proposed in [1]. For  

1α  , our solution obtained by orthogonal collocation method based on mixed 
interpolation are in complete agreement with those of [1] and [2] but for 1α  , 
the proposed solution profiles are similar to those of [2]. The strong strength of 
our proposed method is its simplicity and high accuracy. Our results for large 
and small value of α are in good agreement with those of the solutions given in 
[3] [4] [5]. Recently Mastroberardino [3] presented the approximate solution by 
homotopy analysis method (HAM) for the nonlinear BVP of electrohydrodynamic 
flow Equations ((1), (2)) for [ ]0,1α ∈ . In 2011, Pandey et al. [4] settle this 
differentiation and they showed that the solution profile for the large value of α 
is in good agreement with those of Paullet [2]. They solve EHD flow Equations 
((1), (2)) using two semi-analytical algorithms based on optimal homotopy 
asymptotic method (OHAM) and optimal homotopy analysis method. They 
showed that HAM solutions are quite accurate especially for lower values of the 
parameters α and 2

aH , but the accuracy decreases rather fast for higher values of 
these parameters. They found that for the large value of α, solution profile given 
by Paullet was correct and the solution profiles given in Mckee’s paper was quite 
different with those given in [4]. Khan et al. [5] introduced new homotopy 
perturbation method to solve EHD flow equation. Recently, Ghasemi et al. [6] 
introduced Least square method (LSM) to find the approximated solution of 
EHD flow equation. 

The aim of the present article is to introduce a new weighted residual method 
based on collocation and mixed interpolation. There are several known weighted 
residual methods like collocation, Galerkin, Least square method etc. There are 
several important research contributions to the development of numerical 
techniques for solving ODE and PDE by different method based on the weighted 
residual method [7]. 

Collocation method is widely used to solve various problems in science and 
engineering. Its usefulness is due to its simplicity and easy computations. 
Collocation method has found as one of the important methods to solve various 
integral and differential equations in science and engineering [8]. Some other 
developments in the area of collocation methods are given in [9] [10] [11]. In 
orthogonal collocation, zeros of some orthogonal polynomial are used as 
collocation (grid) points. Several important contributions in the field of 
development of orthogonal collocation are done by Carey and Finlayson [12], 
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Bhatia [13], and Arora et al. [14]. In 1971, Peterson and Cresswell [15] was first 
who introduced orthogonal collocation in finite elements (OCFE) and his work 
were further extended by Carey and Finlayson (1975) [12]. Recently, Vaferi et al. 
[16] solved the diffusivity equation (arising in petroleum engineering) using 
orthogonal collocation method.  

The idea of mixed interpolation was introduced by Mayer et al. (1990) [17] 
[18]. They replaced the existing Lagrange interpolation by mixed interpolation 
to find the numerical value of ( )df x x∫ . Where, they approximated the 
integrand ( )f x  by means of the interpolation formula of the form  

( ) ( )
2

0
 cos  sin .

n
i

i
i

a kx b kx c x
−

=

+ +∑  

The present approach of mixed interpolation is inspired by the work of Meyer 
et al. (1990). Meyer et al. approximates a function ( )f x  by a function ( )nf x  
of the form ( ) ( ) 2

0 cos  sin n i
iia kx b kx c x−

=
+ +∑  such that ( ) ( ), ,nf j h f j h=  for 

( )1n +  equidistant points jh, 0,1,2, ,j n=  , h is stepsize. Several authors have 
formulated new quadrature rules and multi-step methods for ordinary differential 
equations on the basis of mixed interpolation [19] [20] [21].  

2. Orthogonal Collocation Method Using Mixed Interpolation 
Method 

In this section, we propose a new type of weighted residual method called 
orthogonal collocation mixed interpolation method (OCMIM). It is an 
advancement over existing collocation method in a sense that we interpolate the 
unknown solution by means of a mixed interpolating function which is actually 
the mixed version of classical Lagrange polynomial and trigonometric functions. 
This advancement improves the accuracy of the method. Here, we are using one 
cosine factor ( )cos kx  and one sine factor ( )sin kx  in interpolating function. 
These functions can be taken as correction terms of the solution [17]. 

 The principle of orthogonal collocation method is to minimize the residual 
function (defect) ( ), iR x c  and set equal to zero at preassigned collocation 
points (Zeros of some orthogonal polynomial). In this paper, we have 
considered the zeros of shifted Legendre polynomial as collocation points. The 
approximate solution is produced by means of the values it assumes in some 
locations, called collocation points, where the governing differential equation is 
satisfied. Such approach is called the collocation method. 

2.1. Collocation Points 

The important step in collocation technique is the choice of collocation points. It 
is the most important part of collocation technique as the wrong choice of 
collocation points may lead to divergent results. Preferably the zeros of the 
orthogonal polynomial are used as collocation points to keep the error 
minimum. 

Jacobi polynomial of degree n, denoted as ( ),
nP α β , forms a basis for the vector 
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space of polynomials of degree at most n. Jacobi polynomial is defined on the 
interval [−1, 1] and can be determined with the aid of the following recurrence 
formulae: 

( )( )( ) ( ) ( )
( ) ( )( ) ( )

( )( )( ) ( ) ( ) [ ]

1

2 2 ,

,
1

2 1 1 2

2 1 2 2 2

2 2 2 , 1,1

n

n

n

n n n P x

n x n n P x

n n n P x x

α β

α β

α β

α β α β

α β α β α β α β

α β α β

+
+

−

+ + + + + +

 = + + + − + + + + + + 

− + + + + + ∀ ∈ −

 

( ) ( ),
0 1,P xα β =                          (3) 

( ) ( ) ( )( )( ),
1

1 1 1 2 .
2 2

x xP xα β α β+ + + −
= +  

The interpolation points (‘n’ in number) are chosen to be the extreme values 
of an nth order shifted Jacobi polynomial. For the interval [0, 1], the collocation 
points are obtained by mapping the computational domain of the interval [−1, 1] 
to [0, 1] with the help of the following relationship:  

1
; 2,3, , 1,

2
j

j

x
j nξ

+
= = −  

where, jx  is the jth zero of ( ) ( ),
2nP xα β

−  in the interval [−1, 1] with 1 0ξ =  and 
1nξ = . 

For 0α β= = , Jacobi becomes Legendre polynomial which is defined by  

( ) ( )21 d 1 .
2 ! d

n n

n n nP x x
n x

= −  

The first five zeros of shifted Legendre polynomial in the interval [0, 1] are 
given by  

1 0.046910077030668x = , 2 0.23076534494715875x = , 3 0.5x = , 

4 0.7692346550528495x = , and 5 0.9530899229693268x = . 

2.2. Description of the Method 

Suppose a diffrential operator A is acted on a function u to produce a function f. 
i.e.  

( )( ) ( ).A u x f x=
                        

(4) 

It is considered that u is approximated by a function Nu , which is a linear 
combination of basic functions chosen from a linearly dependent set. That is, 

( ) ( ) ( )
2

0
 cos  sin .

n
i

N i
i

u u x a kx b kx c x
−

=

≅ = + +∑
             

(5) 

Consider a set of collocation (grid) points { }: 1, 2, , 1iu i n= +  in the 
domain [0, 1] such that 1 0u =  and 1 1nu + =  and { } ( )2 3, , , 0,1nu u u ∈ , such 
that 1 2 3 10 1nu u u u += < < < < = . In the present article, we have taken 
{ }: 2,3, 4, ,iu i n=   the interior collocation points as zero of shifted Legendre 
polynomial of order ( )1n − . Let ( ){ }: 1, 2, , 1i iu u u i n= = +  represent the 
values of dependent variable at these collocation points. Suppose the approximate 
solution ( )N iu u  given in (4) agrees with the exact one i.e. with ( )iu u  i.e.  
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( ) ( ); 1, 2, , 1.i i N iu u u u u i n= = = +                 (6) 

So, we get a set of ( )1n +  equations in unknown coefficients ic . 
Solving Equation (5) with the combination of Equation (4), we get ic  in 

terms of unknown numerical solutions { }: 1, 2,3, , 1iu i n= + . 
1 ,C A U−=  

where [ ]T0 1 2, , , , , nC a b c c c −=   and [ ]T1 2 2 1, , , , nU u u u u +=   and A is a 
coefficient matrix whose rows are of the form  

( ) ( ) 2 2cos ,sin ,1, , , , , 1, 2,3, ,n
i i i i iku ku u u u i n−  =   . Following the procedure of 

Mayer et al. (1989), we can prove A is non-singular and 0A ≠  as iu  are 
distinct grid points in the domain. Thus, ( )Nu x  in (4) can be rewritten as  

( ) ( )
0

.
n

N i i
i

u x u l x
=

= ∑
                       

(7) 

When an approximate solution ( )Nu x  given in (5) is substituted into the 
differential Equation (4), the result of the operations generally not equal to 
( )f x . Hence, an error or residual will exist which is denoted and defined by 

( ) ( ) ( ) ( )
2

0
, cos sin 0.

n
i

i N i
i

R x c A u f a kx b kx c x f
−

=

≅ − = + + − ≠∑
      

(8) 

Here, the residual ( ), iR x c  is a function of position as well as of the parameters 

ic . 
Combining (7) and (8), we have the residual error as:  

( ) ( ) ( )
0

, .
n

i i i
i

R x R x u A u l x f
=

 ≡ ≅ − 
 
∑

                
(9) 

To find the iu  from (8), we set ( ) ( ), iR x u R x=  equal to zero at interior 
collocation points { }: 2,3, 4, ,iu i n=   with combination of boundary 
conditions ( )0 0u′ =  and ( )1 0u = . i.e. we solve the set of ( )1n +  equations 
in , 0,1, 2, ,iu i n=   which are  

( ) ( )1

0
, d 0, 2,3, 4, , ,i iR x c x u x i nδ − = =∫ 

             
(10) 

and  

( ) ( )0 1, 1 0.u u′ = =                       (11) 

where, Dirac delta function is defined by  

( ) 0 when ,i ix u x uδ − = ≠  

and  

( ) ( ) ( ).i iR x x u R uδ
∞

−∞
− =∫  

Solving (10) and (11), we get the desired unknown numerical solutions iu  
which on substituting in (7) gives us the approximates solution ( )Nu x . 

3. Error Estimate 

In this section, we consider the convergence analysis and error bound of the 
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orthogonal collocation method introduced in section 2 to compute the 
approximate solution of the EHD flow equation (Equations ((1), (2))).  

We denote,  

( ) ( ) ( ).n ne x y x xφ= −  

To compute the error bound, we use the following results. 
Theorem (3.1). (Weierstrass Approximation Theorem). Any Continous 

function defined on the closed and bounded interval [a,b] can be approximated 
uniformly by polynomials to any degree of accuracy on that interval. If 

[ ],f C a b∈  is approximated by a polynomial ( )p x  of degree n then  

( ) ( ) [ ], , .f x p x x a b− ≤ ∀ ∈  

Theorem (3.2). If 1, , nx x  are distinct n points defined on [0, 1] and 
( ) [ ]1 0,1nf x C +∈  is any function defined on [0, 1] then there exists a unique 

polynomial ( )L x  of degree atmost n such that  

( ) ( ); 1, 2, , ,i if x L x i n= =   

where,  

( ) ( )
1

.
n

i i
i

L x l x f
=

= ∑  

Proof. Result is straightforward and proof is followed by use of theorem (3.1). 
Theorem (3.3). ([10]). If ( ) [ ]1 0,1ny x C +∈  and , 0,1, 2, ,ix i n=   are the 

roots of (n + 1)th degree shifted Legendre polynomial in [ ]0,1 . If ( )n xφ  is the 
interpolating polynomial to ( )y x  in [ ]0,1  such that  
( ) ( ) , 0,1, 2, ,i n iy x x i nφ= =  . Then, 

( ) ( )
( ) ( )

( )

1

0 , 0 1,
1 !

n
n

i
i

n

y x x
y x x

n

ξ
φ ξ

+

=

−
− = < <

+

∏
 

and  

( ) ( ) ( )2 12 1 !
n

n n

My x x
n

φ +− ≤
+                   

(12) 

where,  

( ) [ ]{ }1max : 0,1 .n
nM y ξ ξ+= ∈  

Proof: Let  

( ) ( ) ( ) ( )0
0

,
n

n
i

f x y x x L x xφ
=

= − − −∏  

where, L is constant such that ( )f x  vanishes at some interior point x′  in 
[ ]0, nx x , where 0 1 20 1nx x x x= < < < < = . 

Under the assumption of the theorem (3.3), it is clear that ( )f x  vanishes at 
( )2n +  values 0 1, , , nx x x  and x′ . So, by repeated use of Rolle’s theorem, 
one can prove that,  
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( ) ( )
( ) ( )

( )

1

0 , 0 1.
1 !

n
n

i
i

n

y x x
y x x

n

ξ
φ ξ

+

=

−
− = < <

+

∏
 

So,  

( ) ( )
( ) ( )

( )

1
0

=0 ,
1 !

n
n

i
n

y x x
y x x

n

ξ
φ

+ −
− ≤

+

∏
 

or, 

( ) ( ) ( )2 1 .
2 1 !

n
n n

My x x
n

φ +− ≤
+

 

Theorem (3.4). Suppose the solution of boundary value problem (1 - 2) is 
( )1n +  times continuously differential on [0, 1] and ( )n xφ  be the Lagrange 
polynomial approximation of ( )y x . If ( )n xψ  is the approximate solution of 
BVP (1 - 2) based on mixed interpolation where  

( ) ( ) ( ) 2
0cos sin n i

n iix a kx b kx c xψ −

=
= + +∑  and ( ) [ ]{ }1max : 0,1n

nM y ξ ξ+= ∈  
then ∃ two real numbers nα  and nβ  such that  

( ) ( ) ( )2 12 2
,

2 1 !
n

n n nn

My x x C C
n

ψ α β+− ≤ + − +
+

 

where, ( )T
0 1 2 2, , , , nC C C C C −=   and ( )T

0 1 2 2, , , , nC C C C C −=  . 
Proof: Consider, 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

.n n n n ne y x x y x x x xψ φ φ ψ= − ≤ − + −
      

(13) 

Using theorem (3.3) and Equation (12)  

( ) ( ) ( )2 1 .
2 1 !

n
n n

My x x
n

φ +− ≤
+                  

(14) 

Again,  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2 22 1 1 12 2 2 1 2
12 0 0 0

0
1 12 22 2
0 0

2 22 2 2 22 2 1

0

d d d

cos d sin d

sin 2

2 1 2 1 4 4

n
n n

n n i i i n n
i

n
n n

n i i
i

x x C C x x C x x C x x

a kx x b kx x

b a kC C a bC C
n n k k

φ ψ

α

−
−

−
=

−
−

=

− ≤ − + +

+ +

−+
≤ − + + + +

− +

∑ ∫ ∫ ∫

∫ ∫

∑

 

( ) ( )
2

,n n nx x C Cφ ψ α β− ≤ − +  

where,  
2

0

1
2 1

n

n
i i

α
−

=

=
+∑  

and  

( )2 22 2 2 2
1

sin 2
.

2 1 2 1 4 4
n n

n

b a kC C a b
n n k k

β −
−+

= + + +
− +

 

Remark: If ( ) [ ]2 0,1f x L∈  be aprroximated by  
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( ) ( ) ( )
2

0
cos sin .

n
i

n i
i

f x a kx b kx c x
−

=

= + +∑
              

(15) 

Then (7) can be rewritten as  

( ) ( ) ( )
0

,
n

n i i i
i

f x f x l x
=

= ∑
                    

(16) 

where, ( )il x  are called trial function and ( )i if x f=  are unknown numerical 
solution at node ix .  

4. Numerical Experiment 

Consider the EHD flow equation (Equations ((1), (2))). Using (5) the approximate 
solution of BVP (1 - 2) is  

( ) ( ) ( ) 2 3 4
0 1 2 3 4cos sin ,Nu r a kr b kr c c r c r c r c r= + + + + + +        (17) 

such that  

( ) , 0,1, ,6N i iu u u i= =                      (18) 

So, by Equation (7), 

( ) ( )
6

0
,N i i

i
u r u l r

=

= ∑
                      

(19) 

where ( )il x  are base functions. Differentiating Equation (19) two times,  

( ) ( )
6

0

d ,
d N i i

i
u r u l r

r =

′= ∑  

( ) ( )
2 6

2
0

d
.

d
N

i i
i

u r
u l r

r =

′′= ∑  

So, in view of (1), the residual ( )R r  (given in (9)) is: 

( ) ( ) ( )
( )

( )

6

6 6
2 0

6
0 0

0

1 0, 0 1.
1

i i
i

i i i i a
i i

i i
i

u l r
R r u l r u l r H r

u l rα

=

= =

=

 
 
 ′′ ′= + + − = < <
 − 
 

∑
∑ ∑

∑
 

In light of (9) and (10), we have the following set of 7 equations  

( ) ( )1

0
d 0; 0,1, 2, ,6.iR r x u x iδ − = =∫ 

              
(20) 

For 0.5α = , 2 0.5aH =  and 1.5k = , solving the system (20), we have  

0 0.11374565155265949u = , 1 0.1135037385434152u = , 

2 0.107880936281508u = , 3 0.08602380525867034u = , 

4 0.04735712479570691u = , 5 0.010736218560820429u = , 

6 0u = . 

Similarly, For other values of parameters α and 2
aH  the numerical results are 

shown in the upcoming Figure 2 & Figure 3 and residual errors are displayed 
via the Tables 1-3. 

Note: There are several choices for the parameter k but here we have 
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considered particular 1.5k = . The optimum value of k can be computed and it 
takes a tedious computation which can be the part of future research in this 
direction. 

 

 
Figure 2. Solution profile for 1.α =   

 

 

Figure 3. Solution profile for 2 1.=aH   
 

Table 1. Maximum residual error. 

α 2 1aH =  2 0.5=aH  2 2aH =  

0.5 1.3 × 10−5 1.35 × 10−6 1.5 × 10−4 

1 2.3 × 10−6 8 × 10−7 9 × 10−5 

2 1.4 × 10−4 1 × 10−5 1.55 × 10−3 

4 0.54 6 × 10−5 1.7 

10 0.42 0.11 0.32 
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Table 2. Maximum residual error. 

2
aH  0.5α =  1α =  2α =  

0.5 1.35 × 10−6 8 × 10−7 1 × 10−5 

1 1.3 × 10−5 2.3 × 10−6 1.4 × 10−4 

2 1.5 × 10−4 9 × 10−5 1.55 × 10−3 

4 1.7 × 10−3 2.5 × 10−3 9 × 10−3 

10 3 × 10−2 8 × 10−2 0.22 

 
Table 3. Comparison of residual errors using LSM, HAM and OCMI (our method).  

α 
2 1=aH  2 2=aH  

LSM HAM OCMI LSM HAM OCMI 

0.5 2 × 10−5 8 × 10−5 1.3 × 10−5 2 × 10−4 6 × 10−4 1.5 × 10−4 

1 4 × 10−5 4 × 10−5 2.3 × 10−6 5 × 10−4 1.5 × 10−3 9 × 10−5 

 
The solution profiles of numerical solution for several values of α and 2

aH  
are shown via the Figure 2 & Figure 3. Also, the maximum residual error is 
tabulated in Table 1 & Table 2 for varying value of α and 2

aH . From the Table 
1 & Table 2, it is obvious that errors are significantly small which shows the 
effectiveness of the method. 

5 .Result and Discussion 

The main aim of the discussion is to recognize the effects of Hartmann number 
2
aH  and nonlinearity parameter α on conduit velocity profiles. In this paper, the 

solution profiles for both large and small values of α are considered. For 1α  , 
the solution profiles obtained by our proposed method are similar to Mckee et al. 
[1], Paullet [2], Ghasemi et al. [6]. As in [2], author claimed that solutions (for  

large 2
aH ) are monotonically decreasing and satisfy 10 ( )

1
w r

α
< <

+
 which is 

quite evident from Figure 2. For 1α  , solutions profiles are also bounded by 
1

1α +
 which is depicted via the Figure 3. The amount of maximum residual  

errors for varying values of α and 2
aH  are tabulated in Table 1 & Table 2. 

Table 3, shows the comparison of residual errors obtained by Least Square 
Method (LSM), Homotopy Analysis Method (HAM)and OCMI (our proposed 
method). The residual errors by our method are smaller than the errors obtained 
by Least Square Method [6] and Homotopy Analysis Method [3]. The amount of 
residual errors for 1α =  with 2 1,2,4aH =  are depicted in Figures 4-6 
respectively which infer that residual errors are quite smaller than the residual 
errors claimed in [6]. For 2 1aH =  with 4,10α =  the residual errors are plotted 
in Figure 7 & Figure 8 which are significantly smaller as compared to the 
residual errors claimed in the Figures shown by Ghasemi et al. [6]. 
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6. Conclusion 

In this paper, we have successfully introduced a very simple numerical method 
named as “orthogonal collocation-based on mixed interpolation” (OCMI). We have 
solved a non-linear boundary value problem governing the electrohydrodynamic  

 

 
Figure 4. Residual error for 2 1aH =  and 1.α =   

 

 

Figure 5. Residual error for 2 2aH =  and 1.α =   
 

 

Figure 6. Residual error for 2 4aH =  and 1.α =   
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Figure 7. Residual error for 2 1aH =  and 4.α =   
 

 

Figure 8. Residual error for 2 1aH =  and 10.α =   
 

flow (EHD) in cylindrical conduit where the unknown solution is approximated 
by means of mixed interpolation. The approximate solutions are in excellent 
agreement with those of the solution given by previous researchers Mckee et al. 
(1997), Paullet (1999) and Ghasemi et al. (2014). The comparison of residual 
errors is made in Table 3 which shows the error in our method is smaller or 
equal to the error via Least Square Methods (LSM), Homotopy Analysis Method 
(HAM) for a fixed non-linearity parameter. The effect of Hartmann electric 
number ( 2

aH ) is depicted in Figure 2 which shows that the conduit velocity 
increases with increase in 2

aH . On the other hand, the increasing effect of 
nonlinearity parameter (α) for a fixed 2

aH  affects conduit velocity adversely. 
For small values of α, conduit velocity shows rhythmic behavior but for large 
values of α, its behavior is adversed which is shown in Figure 3. For 1α   
velocity profile found to be flatten in shape, thus shown an agreement in velocity 
profile that claimed by Paullet [2]. The graphs of residual errors are displayed via 
Figures 4-8 which infer that the amount of errors are significantly smaller than 
the values, shown in Figures given by Ghasemi et al. [6]. The truncation error is 
bounded and its L2-norm has computed and given in section 3. In this approach 
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of mixed interpolation we have used a fixed value of parameter 1.5k =  in 
correction terms. The computation of optimum value of correction parameter k 
can be taken as future development in this direction. 
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