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Abstract 
In this paper, we first study the linear regression model y X β ε= +  and ob-
tain a norm-minimized estimator of the parameter vector β  by using the 
g-inverse and the singular value decomposition of matrix X . We then inves-
tigate the growth curve model (GCM) and extend the GCM to a generalized 
GCM (GGCM) by using high order tensors. The parameter estimations in 
GGCMs are also achieved in this way. 
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1. Introduction 

Linear regression model, or called linear model (LM), is one of the most widely 
used models in statistics. There are many kinds of linear models including sim-
ple linear models, general linear models, generalized linear models, mixed effects 
linear models and some other extended forms of linear models [1] [2] [3] [4] [5]. 
The growth curve model (GCM) is a special kind of general linear models which 
have applications in many areas such as the psychology data analysis [6]. The 
GCMs can be used to handle longitudinal data or missing data or even the hie-
rarchical multilevel mixed case [2] [3] [5] [7]-[12]. There are some variations of 
GCMs such as the latent GCMs which are also very useful. The traditional treat-
ment of the GCMs in the estimation of the parameters in the case of mixed ef-
fects for a single response factor is usually to stack all the dependent observations 
vertically into a very long column vector, usually denoted by y, and all the design 
matrices (both the fixed effect design matrix and the random effect design ma-
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trix), the random errors are accordingly concatenated to fit the size of y. This 
treatment makes the implementation of the related programming much slow due 
to the magnificent dimensions of the data (matrices and vectors). Things will get 
even worse if we encounter a huge dataset (big data) such as the data of genome, 
web related, image gallery, or social network etc. 

In this paper, we first use the generalized inverse of matrices and the singular 
value decomposition to obtain the norm-minimized estimation of the parame-
ters in the linear model. Then we introduce some basic knowledge about tensors 
before we employ tensors to express and extend the multivariate mixed effects 
linear models. The extended tensor form of the model can be also regarded as a 
generalization of the GCM. 

Let us first begin with some basic linear regression models. We let y be a re-
sponse variable and 1, , rx x  be independent random variables for explaining y. 
The most general regression model between y and 1, , rx x  is in form 

( )1, , ry f x x ε= +                        (1.1) 

where ε  is the error term, and f is an unknown regression function. In linear 
regression model, f is assumed to be a linear function, i.e., 

0 1 1 2 2i r ry x x xβ β β β ε= + + + + +                (1.2) 

where all iβ  are unknown parameters. Denote ( )1, , rx x=x   which is called a 
random vector. Let ( ),P y= x , an ( )1r + -dimensional random vector, which is 
called an observable vector. Given N observations of P, say ( )1 2, , , ,i i i i irP y x x x=  , 

1,2, ,i N=  . Here iy  stands for the ith observation of the response variable y, 
and 1 2, , ,i i irx x x  are the corresponding explanatory observations. The sample 
model of Equation (1.2) turns out to be 

0 1 1 2 2i i i r iry x x xβ β β β ε= + + + + +                (1.3) 

or equivalently 

y X β ε= +                          (1.4) 

where ( )T
1 2, , , N

Ny y y y= ∈   (here and throughout the paper T  stands for 
the transpose of a matrix/vector) is the sample vector of the response variable y, 

( ) ( )1N r
ijX x × += ∈  is the data matrix or the design matrix each of whose rows 

corresponding to an observation of x, ( ) 1
0 1, , , r

rβ β β β += ∈   is the regres-
sion coefficient vector, which is to be estimated, and ( )T

1 2, , , Nε ε ε ε=   is the 
random error vector. A general linear regression model, abbreviated GLM, is a 
LM (1.4) with the error terms iε  satisfying: 

1) Zero-mean: [ ] [ ]0,i i NεΕ = ∀ ∈ , i.e., the expected value of the error term is 
zero for all the observations. 

2) Homoskedasticity: [ ] 2Var ε σ= , i.e., all the error term are distributed with 
the same variance. 

3) Uncorrelation: ( )Cov , 0i jε ε =  for all distinct ,i j , i.e., distinct error terms 
are uncorrelated. 
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Equations (1)-(3) is called Gauss-Markov assumption [13]. The model (1.4) under 
the Gauss-Markov assumption is called the Gauss-Markov model. Note that the 
variance reflects the uncertainty of the model, the zero-mean, homoskedasticity 
and the uncorrelation of the sample errors form the Gauss-Markov assumption. 
An alternative form of the Gauss-Markov model is 

[ ] ( ) 2, Cov NY X Iβ ε σΕ = =                    (1.5) 

where NI  is the N N×  identity matrix and 2 0σ > . In order to investigate 
the general linear model and extend the properties, we recall some known results 
concerning the linear combinations of some random variables. Suppose nα ∈  
is a constant vector with the same length as that of y, the random vector under 
the investigation. 

Let m nA ×∈ . The g-inverse of A, denoted gA , is a generalized inverse de-
fined as an n m×  matrix satisfying [4] gAA A A= . An equivalent definition for 
g-inverse is that gx A b=  is always a solution to equation Ax b=  whenever 

( )b A∈ , the column space of A. A well known result is that all the solutions to 
Ax b=  (when compatible) are in form 

( ) ,g g nx A b I A A ω ω= + − ∀ ∈ .                 (1.6) 

It is easy to verify that 1gA A−=  is unique when A is invertible. The g-inverse 
of a matrix (usually not unique) can be calculated by using singular value decom-
position (SVD). 

Lemma 1.1. Let N pX ×∈  with a SVD decomposition TX UDV=  such that 
N NU ×∈  and p pV ×∈  are orthogonal matrices, and N pD ×∈  is in form 

( )1 2, , , ,0, ,0rD diag σ σ σ=    where ( ) ( )min ,r rank X N p= ≤ , and  

1 2 rσ σ σ≥ ≥ ≥ . Then 
1

T*
* *

g n mrDA V U
−

× 
= ∈ 

 
                   (1.7) 

where * denotes any matrix of suitable size and ( )1 2, , ,r rD diag σ σ σ=  . 
The Gauss-Markov Theorem (e.g. Page 51 of [13]) is stated as: 
Lemma 1.2. Suppose that model (1.4) satisfies the Gauss-Markov assumption 

and Na∈  be a constant vector. Then Tz a y=  is estimable, and T ˆa β  is the 
best (minimum variance) linear unbiased estimator (BLUE) of Ta β , with  

( )T Tˆ g
X X X yβ = . 

Based on Lemma 1.2, we get 
Proposition 1.3. If ( ) ( )min ,rank X r N p= <  in Equation (1.4) and X  sa-

tisfies condition in Lemma 1.2. Then the estimator of β  with minimal 2-norm 
is in form 

1
1ˆ

0
rD yVβ
− 

=  
 



                      (1.8) 

where 
TT T T

1 2,y U y y y = =      with 1
ry ∈  , 2

N ry −∈  . 
Proposition 1.3 tells us that by taking D as a block upper triangle form in the 

decomposition 
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( ) 11 12T T

220
g G G

X X V V
G

 
=  

 
. 

We can reach a norm-minimised estimator of β . Now denote ( )T:
g

H X X X= . 
By Gauss-Markov Theorem, we have 

( )2 2T T T T T,
g

Hy Hy y H Hy y X X X X yβ = = =


 

which implies that ( )T g
XX yβ =



. 

The generalized linear model (GLM) is a generalization of LM [1]. In a GLM 
model some basic assumptions in linear regression model are relaxed. Also the 
fitting values of the response variables are no longer directly expressed as a linear 
combination of parameters, but rather a function which is usually called a link 
function. A GLM consists of the independent random components iy  in expo-
nential distribution, the predictive value T

iX β , the system components, and the 
link function f, strictly monotone differentiable function in GLM ( )T

i if Xη β= . 
The parameters in a GLM include regression parameters β  and the discrete 
parameters in the covariance matrix, both can be estimated with maximum like-
lihood method. The estimation of the regression parameter for model (1.4) can 
be expressed as 

( ) ( )( ) ( ) ( ) ( )1 1 1T T
1 2, , , ,

gm m m m
NX W X X W z W diag W W Wβ − − −= =   

where ( ) ( ){ }2T
i i i iW w v gφ µ µ =    with iw  being a known priori weight,  

φ  the dispersion parameter, ( )v ⋅  a variance function, g a link function, and 
Nz∈  the work dependent variable with ( ) ( )T

i i i i iz y gη µ µ= + − . The mo-
ment estimation of discrete parameters is 

( )
( )

2

1

ˆ1ˆ
ˆ1

N
i i i

i i

w y
N k v

µ
φ

µ=

−
=

− − ∑ .                  (1.9) 

In order to extend the GLMS to more general case, we need some knowledge 
on tensors. In the next section, we will introduce some basic terminology and 
operations implemented on tensors, especially on low order tensors. 

2. The 3-Order Tensors and Their Applications in GLMs 

A tensor is an extension of a matrix in the case of high order, which is an im-
portant tool to study high-dimensional arrays. The origin of tensor can be traced 
back to early nineteenth century when Cayley studied linear transformation theory 
and invariant representation. Gauss and Riemann et al. promoted the develop-
ment of tensor in mathematics. In 1915 Albert Einstein used tensor to describe 
his general relativity, leading tensor calculus more widely accepted. In the early 
twentieth century, Ricci and Levi-Civita further developed tensor analysis in ab-
solute differential methods and explored their applications [14]. 

For our convenience we denote [ ] { }: 1, 2, ,n n=   and use ( ),S m n  to denote 
the index set 
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( ) ( ) [ ] [ ]{ }1 2, : , , , : ,m kS m n i i i i n k mτ= = ∈ ∀ ∈ . 

Let [ ]( )kI k m∈  be any positive integer (usually larger than 1). Sometimes we 
abuse kI  as a set [ ]kI . Denote 1 2: mI I I I= × × × . If kI  stands for an index 
set, then I is a tensor product of 1 2, , , mI I I . An m-order tensor ( )Aσ=  of 
size I is an m-array whose entries are denoted by 

1 2
:

mi i iA Aσ =


 with 
( )1 2, , , mi i i Iσ = ∈ . Note that a vector is a 1-order tensor and an m n×  matrix 

is a 2-order or second order tensor. An m n×  tensor is a tensor with 

1 2 mI I I n= = = = . We denote by ,m n  the set of all mth order n-dimensional 
real tensors . An m n×  tensor   is called symmetric if Aσ  is constant under 
any permutation on its index. 

An mth order n-dimensional real tensors   is always associated with an 
m-order homogeneous polynomial ( )f x  which is defined by 

( )
1 2

1 2

, , , 1 2
, , ,

:
m

m

m
i i i i i im

i i i
f A x x x= = ∑x x





  .            (2.10) 

  is called positive definite or pd (positive semidefinite or psd) if 

( ) : 0,m nf = ≥ ∀ ∈x x x   .                  (2.11) 

A nonzero psd tensor must be of an even order. Let   be of size m n p× × . 
Given an r-order tensor 1 2 rn n n× × ×∈   and a matrix ( ) k kI J

ijU u ×= ∈  where 
[ ]k r∈ . The product of   with U  along k-mode is defined as the r-order 

tensor k U×  defined as 

( )
1 1 11 1 1 , , , , , ,, , , , , ,

1
k k k mk k k m

n

k i i i i i iiki i i i i
i

U A u
− +− +

=

× = ∑
 

 

 .          (2.12) 

Note that k U×  is compressed into an ( )1m − -order tensor when kIU ∈  
is a column vector ( )1kJ = . There are two kinds of tensor decomposition, i.e., 
the rank-1 decomposition, also called the CP decomposition, and the Tucker 
decomposition, or HOSVD. The former is the generalization of matrix rank-1 
decomposition and the latter is the matrix singular value decomposition in the 
high order case. A zero tensor is a tensor with all entries being zero. A diagonal 
tensor is a tensor whose off-diagonal elements are all zero, i.e., 

1 2, , , 0
mi i iA =



 if 

1 2, , , mi i i  are not identical. Thus an m n×  tensor has n diagonal elements. By 
this way, we can define similarly (and analogous to matrix case) the identity tensor 
and a scalar tensor. 

For any [ ]i n∈ , an i-slice of an m-order tensor ( )1 2 mi i iA=


  along mode k 
for any given [ ]k m∈  is an ( )1m n− ×  tensor   with 

1 2 1 1 1 1, , , , , , , , , , 1, 2, , .
m k k mi i i i i i i iB A i n
− − +
= =

  

  

A slice of 3-order tensor ( ) m n p
ijkA × ×= ∈  along mode-3 is an m n×  ma-

trix ( ):,:,A k  with [ ]k p∈ , and a slice of a 4-order tensor is a 3-order tensor. 
Let 1 1,m n p n n p× × × ×∈ ∈    be two tensors of 3-order. The slice-wise prod-

uct of ,  , denoted by s= ⊗  , is defined as ( ) m n p
ijkC × ×= ∈   where 

( ) ( ) ( ):,:, :,:, :,:,C k A k B k=  for all [ ]k p∈ . This multiplication can be used to 
build a regression model 
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sA ε= ⊗ +                        (2.13) 

where ( ):,:,A k  is the matrix consisting of n sample points of size m in class k 
and ( ):,:,X k  is the design matrix corresponding to the kth sample (there are 

1n  observations in each class in this situation). 
Let k be a positive integer. The k-moment of a random variable x is defined as 

the expectation of x, i.e., ( ) ( ) ( )k km x x= Εx . The traditional extension of mo-
ments to a multivariate case is done by an iterative vectorization imposed on k. 
This technique is employed not only in the definition of moments but also in 
other definitions such as that of a characteristic function. By introducing the 
tensor form into these definitions, we find that the expressions will be much 
easier to handle than the classical ones. In the next section, we will introduce the 
tensor form of all these definitions. 

Let ( )T
1 2, , , nx x x=x   be a random vector. Denote by mx  the (symmetric) 

rank-one m-order tensor with 

( ) ( )1 2 1 2, : , , , ,m
i i im mx x x i i i S m nσ σ= ∀ = ∈x   . 

mx  is called a rank-1 tensor generated by x  which is also symmetric. It is 
shown by Comon et al. [15] that a real tensor   (with size 1 2 mI I I× × × ) 
can always be decomposed into form 

( ) ( ) ( )
1 2

1

r
j j j

m
j
α α α

=

= × × ×∑                    (2.14) 

where ( ) ij I
iα ∈  for all [ ] [ ],j r i m∈ ∈ . The smallest positive integer r is called 

the rank of  , denoted by ( )rank  . We note that Equation (2.14) can also be 
used to define the tensor product of two matrices, which will be used in our next 
work on the covariance of random matrices. Note that the tensor product of two 
rank-one matrices is 

( ) ( )1 1 2 2 1 2 1 2α β α β α α β β× × × = × × × . 

Now consider two matrices ,m n p qA B× ×∈ ∈  . Then write ,A B  in a rank-1 
decomposition, i.e., 

( ) ( ) ( ) ( )1 2

1 1 2 2
1 1

,
R R

j j k k

j k
A Bα β α β

= =

= × = ×∑ ∑ . 

Tucker decomposition decomposes the original tensor into a product of the 
core tensor and a number of unitary matrices in different directions [15] so   
can be decomposed into 

1 1 2 2 3 N NS U U U= × × × ×                 (2.15) 

where S  is the core tensor, and 1 2, , , NU U U  are unitary matrices. 
Example 2.1. Let ( )ijkX=  be an 2 2 2× ×  tensor which is defined by 

( ) ( )
1 3 5 7

:,:,1 , :,:, 2
2 4 6 8

X X   
= =   
   

. 

Then the unfolded matrices along 1-mode, 2-mode and 3-mode are respec-
tively 
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1 2 3

1 5 3 7 1 3 5 7 1 2 5 6
, ,

2 6 4 8 2 4 6 8 3 4 7 8
X X X     

= = =     
     

. 

3. Application of 3-Order Tensors in GLMs 

The growth curve model (GCM) is one of the GLMs introduced by Wishart in 
1938 [16] to study the growth situation of animals and plant between different 
groups. It is a kind of generalized multivariate variance analysis model, and has 
been widely used in modern medicine, agriculture and biology etc. GCM origi-
nally referred to a wide array of statistical models for repeated measures data [2] 
[14]. The contemporary use of GCM allows the estimation of inter-object varia-
bility such as time trends, time paths, growth curves or latent trajectories, in in-
tra-object patterns of change over time [17]. The trajectories are the primary fo-
cus of analysis in most cases, whereas in others, they may represent just one part 
of a much broader longitudinal model. The most basic GCMs contain fixed and 
random effects that best capture the collection of individual trajectories over 
time. In a GCM, the fixed effects represent the mean of the trajectory pooling of 
all individuals, and the random effects represent the variance of the individual 
trajectories around these group means. For example, the fixed effects in a linear 
trajectory are estimates of the mean intercept and mean slope that define the 
underlying trajectory pooling of the entire sample, and the random effects are es-
timates of the between-person variability in the individual intercepts and slopes. 
Smaller random effects imply the more similar parameters that define the tra-
jectory across the sample of individuals; at the extreme situation where the ran-
dom effects equal 0, all individuals are governed by precisely the same trajectory 
parameters (i.e., there is a single trajectory shared by all individuals). In contrast, 
larger random effects imply greater individual differences in the magnitude of 
the trajectory parameters around the mean values. 

The analysis of a GCM focuses on the functional relationship among ordered 
responses. Conventional GCM methods apply to growth data and to other ana-
logs such as dose-response data (indexed by dose), location-response data (in-
dexed by distance), or response-surface data (indexed by two or more variables 
such as latitude and longitude). The GCM methods mainly focus on longitudinal 
observations on a one-dimensional characteristic even though they may also be 
used in multidimensional cases [2]. 

A general GCM can be indicated by 

Y XBT E= +                       (3.16) 

where N pY ×∈  is the random response matrix whose rows are mutually inde-
pendent and columns correspond to the response variables ordered according to 

T
1 2, , , pd d d d =   ; N qX ×∈  is the fixed design matrix with  
( ):r rank X q N= ≤ ≤ ; The matrix q mB ×∈  is a fixed parameter matrix whose 

entries are the regression coefficients; m pT ×∈  is a within-subject design ma-
trix each of whose entries is a fixed function of d, and N pE ×∈  is a random 
error with matrix normal distribution ( ), 0, ,N p NE I∼ Σ  where p p×Σ∈  is an 
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unknown symmetric positive definite matrix. Suppose the samplings correspond-
ing to each object are recorded at p different times (moments) 1 2, , , pd d d . Con-
sider an example of a pattern of the children’s weight. The plotting of the weights 
against the ages indicates a temporal pattern of growth. A univariate linear mod-
el for weight given age could be fitted with a design matrix T expressing the cen-
tral tendency of the children’s weights as a linear or curvilinear function of age. 
Here T is an example of a within-subject design matrix. If 1N > , a separate 
curve could be fitted for each subject to obtain a separate matrix of regression 
parameter estimators for each independent sampling units, ( ) 1T

î iYT T Tβ
−

=  for 
[ ]i N∈ , and a simple average of the N fitted curves is a proper (if not efficient) 

estimator of the population growth curve, that is, 

1

1ˆ ˆ
N

j
j

B B
N =

= ∑ . 

The efficient estimator has the form 

( ) ( )1 1T T TB̂ X X X T T T
− −   =       

.                 (3.17) 

If the subjects are grouped in a balanced way, i.e., The N observations are 
clustered into m groups, each containing the same number, say n, of observa-
tions. For simplicity, we may assume that first n each then NX l= , the all-one 
vector, is the appropriate choice for computing B̂ . The choice of T defines the 
functional form of the population growth curve by describing a function rela-
tionship between weight and age. 

Example 3.1. We recorded the heights of n boys and n girls whose ages are 2, 
3, 4 and 6 years. From the observations we make an assumption that the average 
height increases linearly with age. Since the observed data is partitioned into two 
groups (one is for the heights of n boys and another is for the height of n girls), 
each consisting of n objects, and 4p =  with age vector [ ]T2,3,4,6d = . Thus 
the model for the height vs. age shall be Y XBT E= +  where 

T

T

0
,

0
n p

n

l l
X T

l d
  

= =   
   

 

where k
kl ∈  is an all-ones vector of dimension k. 

Here 11 12,β β  are respectively the intercept and the slope for girls and 

21 22,β β  are respectively the intercept and the slope for boys. We find that it is 
not so easy for us to investigate the relationship between the gender, height, 
weight, and age. In the following we employ tensor expression to deal with this 
issue. 

Using the notation in tensor theory, we rewrite model (3.16) in form 

2 2Y X B T E= × × +  

or equivalently 
T

1 2Y B X T E= × × +                    (3.18) 

where B is regarded as a second order tensor and ,X T  as two matrices. Ac-
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tually, according to Equation (2.12), we have 

( )T
1

1

q

ik kjij k
B X X B

=

× =∑ . 

Similarly we can define 2B V× . Note that 

1 2 2 1B U V B V U× × = × × . 

Now we extend model (3.16) in a more general form as 

1 1 2 2 3 3X X X E= × × × +                   (3.19) 

where ( )1 2 3 1 2 3,n n n m m m
ijkB× × × ×∈ = ∈    is a 3-order tensor, which is usually 

an unknown constant parameter tensor or the kernel tensor, and i in m
iX ×∈  

for 1,2,3i = . Here the tensor-matrix multiplication is defined by Equation (2.12) 
according to the dimensional coherence along each mode. 

The potential applications of Equation (3.21) are obvious. A HOSVD (high 
order singular value decomposition) of a 3-order tensor can be regarded as a good 
example for this model. 

Example 3.2. A sequence of 1000 images extracted from a repository of face 
images of ten individuals, each with 100 face images. Suppose each face image is 
of size 256 256× . Then these images can be restored in an 256 256 1000× ×  
tensor  . Let   be decomposed as 

T T T
1 1 2 2 3 3U U U= × × ×                    (3.20) 

where 
16 16 50 256 16 256 16 1000 50

1 2 3, , , .U U U× × × × ×∈ ∈ ∈ ∈     

The decomposition Equation (3.20) yields a set of compressed images, each 
with size 16 16× . If each individual can be characterized by five images (this is 
called a balanced compression), then the kernel tensor   consists of 50 com-
pressed images where each iU  is a projection matrix along mode-i (i = 1, 2, 3). 
Specifically, 1U  and 2U  together play a role of compression of each image in-
to an 16 16×  image, while 3U  finds the representative elements (here is the 50 
images) among a large set of images (the set of 1000 face images). 

Analog to GCM, we let ijkY  be the measured value of Index kI  in Class iC  
at time jT . A tensor ( ) m n p

ijkY Y × ×= ∈  can be used to express m objects, say 

1, , mP P , each having p indexes 1, , pI I  measured respectively at times 

1, , nt t . For each index [ ],kI k p∈ , we have GCM form: 

1 2k k kY B X T E= × × +                      (3.21) 

where ( ) ( )( )1 , ,k k m n
k nY y y ×= ∈  . Suppose each row of kY  stands for a class of 

individuals, e.g., partitioned by ages. To make things more clear, we consider a 
concrete example. 

Example 3.3. There are 30 persons under health test, each measured, at time 

1 4, ,T T , 10 indexes such as the lower/higher blood pressures, heartbeat rate, 
urea, cholesterol, bilirubin, etc. We label these indexes respectively by 1 10, ,I I . 
Suppose that the 30 people are partitioned into three groups (denoted by 

1 2 3, ,C C C ) with respect to their ages, consisting of 5, 10, 15 individuals respec-
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tively. Denote 

5

10 1 2 3 4
2 2 2 2

15 1 2 3 4

0 0 1 1 1 1
0 0 ,
0 0

l
X l T t t t t

l t t t t

   
   = =   
      

 

and 

11 12 1

21 22 2

31 32 3

k k pk

k k k pk

k k pk

B
β β β
β β β
β β β

 
 =  
  

. 

Denote by ijkY  the measurement of Index kI  in group iC  at time jT . Set 
( ):,:, kY k Y= , ( ):,:, kB k B=  for , ,1, 2 10k =  . Then we have 

T T
1 2X T ε= × × +                     (3.22) 

where 30 4 10 30 3 4 3, , ,X Tε × × × ×∈ ∈ ∈    and 3 3 10B × ×∈  is an unknown con-
stant parameter tensor to be estimated, where ( ):,:, kB k B=  is the parameter 
matrix corresponding to the k th index model. The model (3.22) can be further 
promoted to manipulate a balanced linear mixed model when multiple res-
ponses are measured for balanced clustered (i.e., there are same number of sub-
jects in each cluster) subjects. 

4. Tensor Normal Distributions 

In the multivariate analysis, the correlations between the coordinates of a random 
vector ( )T

1, , nx x=x   are represented by the covariance matrix ( ):Σ = Σ x , 
which is symmetric and positive semidefinite. When the variables are arrayed as 
a matrix, say ( ) m n

ijX X ×= ∈ , which is called a random matrix, the correlation 
between any pair of entries, say 

1 1i jX  and 
2 2i jX  of matrix X , is represented as 

an entry of a matrix Σ  which is defined as the covariance matrix of the vector. 
A matrix normal distribution is defined. m nµ ×∈ , and ,m m n nφ× ×Σ∈ ∈   are 
two positive definite matrices. A random matrix m nX ×∈  is said to obey a ma-
trix normal distribution, denoted by ( ), , ,m nX µ φ∼ Σ , if it satisfies the follow-
ing the conditions: 

1) [ ]X µΕ = , i.e., ij ijX µ Ε =   for each [ ] [ ],i m j n∈ ∈ . 
2) Each row iX ⋅  of X  obeys normal distribution ( )0,i pX φ⋅ ∼   for 
[ ]i m∈ . 

3) Each column jX ⋅  obeys normal distribution ( )0,j qX ⋅ ∼ Σ . 
It is easy to show that a matrix normal distribution ( ). , ,p qX µ φ∼ Σ  is equiv-

alent to ( ) ( )( )vec vec ,pqX µ φ∼ Σ⊗  (see e.g. [8]). 
We now define the tensor normal distribution. Let ( )1 2 mi i i mA= ∈



   be an 
m-order tensor of size 1 2: mN N N= × × × , each of whose entries is a ran-
dom variable. Let ( )1 2 mi i iµ µ=



 be an m-order tensor of the same size as that of 
 , and [ ]( )k k mΣ ∈  be an k kN N×  positive definite matrix. For convenience, 
we denote by ( )nI  the ( )1m − -tuple ( )1 2 1 1, , , , , ,n n mi i i i i− +   with [ ]k ki N∈ . We 
denote by ( )( )nA I  and ( )( )nIµ , both in nN  respectively the corresponding 
fibre (vector) of   and µ , indexed by ( )nI , i.e., 
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( )( ) ( ) [ ] { }1 2 1 1: , , , ,:, , , , , \ .n
n n m k kA I A i i i i i i N k m n− += ∀ ∈ ∈   

( )( ) ( )( )n nA I Iµ  is called a fibre of   ( µ  resp.) along mode-n indexed by 
( )nI .   is said to obey a tensor normal distribution with parameter matrices 
( )1, , , mµ Σ Σ  or denoted by 

( )1, , ,T mµ∼ Σ Σ   

if for any [ ]n m∈ , we have 

( ) ( )( )( )1 1 1, , ,:, , , n
n n m Nn nA i i i i Iµ− + ∼ Σ   . 

  is said to follow a standard tensor normal distribution if all the kΣ ’s are 
identity matrices. A model (2.13) with a tensor normal distribution is called a 
general tensor normal (GTN) model. 

To show the application of tensor normal distribution, we consider the 
3-order tensor. For our convenience, we use ( ),i j -value to denote the value re-
lated to the ith subject at jth measurement for any ( ) [ ] [ ],i j m n∈ × . For example, 
the kth response observation ijkY  at ( ),i j  represents the kth response value 
measured on the ith subject at time j. Now we let , ,m n p  be respectively the 
number of observed objects, number of measuring times for each subject, and 
the number of responses for each observation. Denote by   the response ten-
sor with ijkY  being the kth response at ( ),i j , and by   the covariate tensor 
with :

r
ijX ∈  being the covariate vector at ( ),i j  for fixed effects, and by :ijU  

the covariate vector at ( ),i j  for random effects. Further, for each [ ]k p∈ , we 
denote by r

kB ∈  the coefficient vector related to the fixed effects corres-
ponding to the kth response ijkY  at ( ),i j  for each pair ( ) [ ] [ ],i j m n∈ × , and 
similarly by q

kC ∈  the coefficient vector related to the random effects. Now 
let 1, , pB B B =    and 1, , pC Cγ  =   . Then ,r p q pB γ× ×∈ ∈  . We call 

,X U  respectively the design matrix for fixed effects and the design matrix for 
random effects. Then we have 

B γ ε= + +                        (4.23) 

with ( ) m n p
ijkY × ×= ∈ , ( ) m n r

ijkX × ×= ∈ , ( ) r p
ijB β ×= ∈ ,  

( ) m n q
ijkU × ×= ∈ , ( ) q p

ijγ γ ×= ∈ , ( ) m n p
ijkε ε × ×= ∈  where ijkε  is the error 

term. Here the tensor-matrix multiplications B  and γ are defined by 

( ) ( ) [ ] [ ] [ ]
1

, ,: , , ,
r

k ijk k kijk
k

B X i j B X i m j n k pβ′ ′
′=

= = ∀ ∈ ∈ ∈∑  

( ) ( ) [ ] [ ] [ ]
1

, ,: , , ,
q

k ijk k kijk
k

U i j U i m j n k pγ γ γ′ ′
′=

= = ∀ ∈ ∈ ∈∑ . 

Denote 1 1, , , , ,p pB β β γ γ γ   = =     , and 

( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ] [ ]1 2 3: ,:,: , : :, ,: , : :,:, , , ,i j kE E i E E j E E k i m j n k p= = = ∀ ∈ ∈ ∈  

( ) ( ) ( ) ( ) ( ) ( ) [ ] [ ] [ ]1 2 3: :, , , : ,:, , : , ,: , , ,jk ik ijE E j k E E i k E E i j i m j n k p= = = ∀ ∈ ∈ ∈  

where each matrix ( )s
lE  is called a slice on mode s, and each vector [ ]s

ltE  is 
called a fibre along mode-s. We also use [ ]sE  to denote the set consisting of all 
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fibres of ε  along mode-s, and use notation [ ]sE P∼  to express that each element 
of [ ]sE  obeys distribution P where P is a distribution function. For example, 

[ ] ( )1 0,m mE I∼   means that each 1-mode fibre [ ]1
jkE  (there are np  1-mode 

fibres) obeys a standard normal distribution, i.e., [ ] ( )1 0,jk m mE I∼  . 
Now for convenience we let ( ) ( )1 2 3, , : , ,n n n m n p= . We assume that 
1) γ  obeys matrix normal distribution ( ), 0, ,q pγ φ∼ Σ . 
2) The random vectors in { }1 2, , , pγ γ γ  are independent with [ ]sE  for each 

1,2,3s = . 
3) For any { } [ ] ( )1,2,3 , 0,

s

s
n ss E∈ ∼ Σ  with sΣ  being positive definite of 

size s sn n× . 
The model (4.23) with conditions (I, II, III) is called a 3-order general mixed 

tensor (GMT) model. We will generalise this model to a more general case. In 
the following we first define the standard normal 3-order tensor distribution: 

Definition 4.1. Let ( ) 1 2 3n n n
ijkX × ×= ∈  be a random tensor, i.e., each entry 

of   is a random variable. Let ( ) 1 2 3n n n
ijkAµ × ×= ∈  be a constant tensor and 

s sn n
s

×Σ ∈  be a positive definite matrix for each [ ]3s∈ . Then   is said to 
obey 3-order tensor standard normal (TSN) distribution if [ ] [ ]( ),

s

s s
n sX µ∼ Σ  

for all 1,2,3s = . 
A 3-order random tensor satisfying TSN distribution has the following prop-

erty: 
Theorem 4.2. Let m n p× ×∈  be an 3-order random tensor which obeys the 

tensor standard normal (TSN) distribution. Then each slice of   shall obey a 
standard matrix normal distribution. Specifically, we have 

( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) [ ]

1
,

2
,

3
,

0, , , ,

0, , , ,

0, , , .

i n p p n

j m p p m

k m n n m

A I I i m

A I I i n

A I I i p

∼ ∀ ∈

∼ ∀ ∈

∼ ∀ ∈







                  (4.24) 

Proof.                                                         □ 
Note that condition (III) is a generalization to the matrix normal distribution, 

and we denote it by ( ), , 1 2 3, , ,m n pε µ∼ Σ Σ Σ , 

( ) ( )2 1vec 0,j mnE D D∼ ⊗ . 

Note that 2 1: mn mnD D D ×= ⊗ ∈  is a diagonal matrix since both 1D  and 

2D  are diagonal. Write * ˆ: E Eε γ= + =    where ˆ  is the expansion of   
along the third mode, specifically, 

( ) ( ) ( ) ( )ˆ ˆ:,:,1: :,:,1: , :,:, 1: :,:,1: m m nq U q q q n I n × ×= + + = ∈   

here ( ):,:,1:I n  is the tensor consisting of n identity matrices of size m m×  
stacking along the third mode, thus ( )ˆ m n q n× × +∈  and E∈  . Then we have 

B= +   .                         (4.25) 

Now we unfold ,   along mode-3 to get matrix ( )3 p mnY ×∈  and 
( )3 r mnX ×∈  respectively. Then Equation (4.25) is equivalent to 

( ) ( ) ( )T T T3 3 3Y X B U Eγ= + +                (4.26) 
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where ( )3U  and E  are generated similarly as ( )3Y . 
The multivariate linear mixed model (4.23) or (4.25) can be transformed into 

a general linear model through the vectorization of matrices. Recall that the vec-
torization of a matrix m nA ×∈  is a vector of dimension mn , denoted by 

( )vec A , formed by vertically stacking the columns of A in order, that is, 

( )T T T T
1 2vec mA A A A =    

where 1 2, , , nA A A  are the column vectors of A. The vectorization is closely 
related to Kronecker product of matrices. The following lemma presents some 
basic properties of the vectorization and Kronecker product. We will use the 
following lemma (Proposition 1.3.14 on Page 89 of [4]) to prove our main result: 

Lemma 4.3. Let , , ,A B C X  be matrices of appropriate sizes such that all the 
operations defined in the following are valid. Then 

1) ( ) ( ) ( )Tvec vecABC C A B= ⊗ . 

2) ( ) 1 1 1A B A B− − −⊗ = ⊗ . 

3) ( )T T TA B A B⊗ = ⊗ . 

The following property of the multiplication of a tensor with a matrix is 
shown by Kolda [18] and will be used to prove our main result. 

Lemma 4.4. Let   be a real tensor of size 1 2: NI I I I= × × , and n nI JU ×∈  
where [ ]n N∈ . Then n U= ×   if and only if 

( ) ( )TB n U A n=                        (4.27) 

where ( ) ( ),A n B n  are respectively the flattened matrices of   and   along 
mode-n. 

Proof. Let ( ) ( )= , nA B Uσ σ= = ×   . Then for any ( )1 2: , , , Ni i iσ =  , we 
have 

1 1 1 1 1 1
1

n

n n n N n n n N n

I

i i i i i i i i i i ii
i

B B A Uσ − + − +
=

= = ∑
   

.             (4.28) 

From which the result Equation (4.27) is immediate.                   □ 
Note that our Formula (4.27) is different from that in Section 2.5 in [18] since 

the definition of tensor-matrix multiplication is different. 
We have the following result for the estimation of the parameter matrix B : 
Theorem 4.5. Suppose ( )rank X r mn= ≤  in Equation (4.23). Then the op-

timal estimation of the parameter matrix B  in Equation (4.23) is 

( ) ( )( ) ( ) ( )
1T Tˆ= 3 3 3 3B X X X Y
−

.                 (4.29) 

Proof. We first write Equation (4.25) in a matrix-vector form by vectorization 
by using the first item in Lemma 4.3, 

( )( ) ( )( ) ( )T T ˆvec 3 vec 3 vecY X B E= +              (4.30) 

where ( )Tˆ : 3E U Eγ +   is the sum of two random terms. By the property of the 
vectorizations (see e.g. [4]), we know that 
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( )( ) ( )( ) ( )T Tvec 3 3 vecpX B I X B= ⊗ . By the ordinary least square solution 
method we get 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1TT T T T

1T T T

1T T T

1 TT T

ˆvec 3 3 3 vec 3

3 3 3 vec 3

= 3 3 3 vec 3

= 3 vec 3 .3 3

p p p

p p

p p

p

B I X I X I X Y

I X X I X Y

I X X I X Y

I X X X Y

−

−

−

−

 = ⊗ ⊗ ⊗  

= ⊗ ⊗

 ⊗ ⊗  
 ⊗  

 

By using (1) of Lemma 4.3 again (this time in the opposite direction), we get 
result (4.29).                                                      □ 

For any m n r× ×∈ , we denote ( ) ( ) ( )( ) ( )
1T T: 3 3 3 3H X X X X
−

=  when 
( )rank r mn= ≤ , and ( ) ( )( ) ( )T: 3 3 3

g
H X X X=  when ( )rank r<  ( gA  

stands for an g-inverse of a matrix A ). Then r mnH ×∈  can be regarded as the 
projection from mn  into r  since T 2,H H H H= = . Furthermore, we have 

( ) ( )T T3 3HX X= . We now end the paper by presenting the following result as a 
pre diction model which follows directly from Theorem 4.5. 

Theorem 4.6. Suppose ( )rank r mn= ≤  in Equation (4.23). Then the 
mean of the response tensor   in Equation (4.23) is 

( )3 3A= ×                        (4.31) 

where ( ) ( ) ( )( ) ( ) ( )
1T T3 : 3 3 3 3A X X X Y
−

= . 

Proof. By Theorem 4.5 and Equation (4.26), we have 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( )

T

1T T T

T

ˆ3 3 3

3 3 3 3 3

3 .

Y X B

X X X X Y

HY

−

Ε = =  

=

=



 

It follows that 

( ) ( ) ( ) ( ) ( )( ) ( )
1T T3 3 3 3 3 3Y Y X X X X
−

= .           (4.32) 

By employing Lemma 4.4, we get result (4.31).                        □ 
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