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Abstract 

There exists a well-developed statistical theory predicting extreme price values 
for financial markets known as extreme value theory (EVT). This approach 
relies on the seemingly obvious, but rarely analyzed, assumption that price 
displacement extremes actually exist for various markets. This paper attempts 
to describe the behavior of financial markets as a set of functions in terms of 
the dynamic variables price and time based on the net difference between ask 
and bid volumes over a unit period, thereby offering evidence to support the 
assumption that price extremes exist. Yet, it’s not meaningful to show merely 
that extremes exist. If the extreme negative price displacement simply 
represents a complete market collapse then the assumption becomes trivial. 
Accordingly, the paper also introduces a method to determine whether price 
displacements are constrained by non-trivial extremes. This description might 
have implications for EVT and market risk management in approximating the 
magnitude of “Black Swan” events. The paper also shows that if one can 
closely approximate the magnitude of such a rare event, one cannot also pre-
dict when the event will occur with any meaningful degree of certainty. 
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1. Introduction 

A “Black Swan” refers to a highly improbable event that lies significantly outside 
of normal expectations.1 For financial markets, such events typically manifest 
themselves as extreme price variations. 

 

 

1This phrase finds its roots in David Hume’s criticism of reasoning from experience alone, although 
Hume makes no mention of the water fowl. Hume, D. (1748) An Enquiry into Human Understand-
ing. The black swan metaphor was specifically employed by John Stuart Mill almost one hundred 
years later and recently popularized in the financial context by Nassim Nicholas Taleb. Mill, J. S. 
(1843) A System of Logic, Ratiocinative and Inductive; Taleb, N. N. (2007) The Black Swan: The 
Impact of the Highly Improbable, Random House, New York. 
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There exists a well-developed theory predicting these extreme price variations 
called Extreme Value Theory (EVT) [1] [2] [3] [4] [5]. Different EVT approach-
es use statistical methods in an attempt to determine the probability of Black 
Swan-type events occurring [6] [7]. EVT relies on the seemingly obvious, but 
rarely analyzed, assumption that price displacement extremes actually exist for 
various markets. This paper attempts to describe the behavior of financial mar-
kets as a set of functions in terms of the dynamic variables price and time based 
on the net difference between ask and bid volumes over a unit period, thereby 
offering evidence to support the EVT assumption that price extremes exist. 

Yet, merely demonstrating that extreme values exist is not enough. In the 
context of financial markets, the extreme measure that investors and market risk 
managers care about most is usually a negative price displacement. If the ex-
treme negative price displacement—measured as a percent decrease in prices 
over a defined period—is simply unity (i.e., a complete market collapse to zero) 
then the assumption that price displacement extremes exist becomes trivial. This 
paper introduces a heuristic method to determine whether negative price dis-
placements over a defined period are constrained by extremes that are 
non-trivial.  

There are two reasons to focus on price reductions instead of price increases. 
The first is the reason just mentioned; it is the focus of most market risk manag-
ers. The second is that price increases are theoretically infinite while price de-
creases are limited to the displacement between the current price and zero. Al-
though we use an extreme price increase variable as part of our mathematical 
formalism, this paper is careful to only claim a method for approximating price 
reductions. 

Further, this method is only potentially useful for markets that are robust and 
actively traded, and where the mean value of the price displacement ratio is close 
to zero. This last requirement implies a form of mean reversion, which remains 
controversial in the literature [8] [9] [10] [11]. 

Lastly, this heuristic is based on an uniformitarian-like assumption that, to 
some extent, historical data can be used to predict extreme price displacements. 
There is significant disagreement in the literature over whether this postulate 
holds [12] [13] [14] [15]. Consequently, this underlying assumption might be a 
significant limitation of the method. 

Although EVT deals with extreme deviations from a probability distribution 
median, this paper does not use a statistical approach in arguing that extreme 
prices exist. The paper does employ some basic probability methods in §3, but 
these are transitional in arriving at a conclusion of non-triviality. Even though 
these are not the standard probability methods of EVT, the paper’s conclusions 
offer an approximation of the magnitude of a price displacement extreme, which 
is a consistent element in traditional EVT analysis [16] [17] [18]. In this way, the 
paper might make some substantive contribution to the EVT literature and 
market risk management [19] in addition to supporting the veracity of EVT’s 
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underlying assumption [20] [21] [22] [23]. 
The paper is divided into five sections. The first is this brief introduction. The 

second defines a financial market as a system dependent entirely upon the inte-
ractions of generalized buyers and sellers and then offers an inductive argument 
that suggests the existence of price extremes. The third section offers a way to 
calculate these price extremes to determine if they are non-trivial. The fourth 
provides predictive limitations of the heuristic as to the timing of extreme events 
in the form of an uncertainty principle and other limitations generally. The fifth 
section offers a brief summary. 

2. Do Extreme Prices Exist? 

We begin by defining the time and price variables of a financial market and then 
examine the different perspectives from which one can view these variables as 
coordinates. We will then derive a general equation of market dynamics based 
on these perspectives and show that the solution suggests the existence of nega-
tive price extremes. 

Define a unit period as 0 1t t→  with the quantity 1 0 1t t t= − =  unit of 
elapsed time. The asset of a financial market has a price configuration space 
( ) { }1 :jV q q j= ∈ ∈  .2 
An asset also has a set of possible price displacement configurations as func-

tions of elapsed time ( ){ } ( )1 : 0, q t t t V q∈ ≥ ∈ ⊆  . The dynamics of a finan-
cial market are time-dependent since ( ) ( ) ( )1 0q t q t q t= − . Thus, a market’s 
price displacement configuration space is a vector field defined by price coordi-
nates ( )q t  that have the time derivatives ( )q t , ( )q t , etc. 

Define ( )r t  as the price displacement ratio for the unit period t and ( )r t  
as the modulus of the ratio, where ( ) ( ) ( )0r t q t q t=  Although the price dis-
placement is properly defined as ( )q t , we’ll use “price displacement” and 
“price displacement ratio” synonymously throughout the remainder of this pa-
per to refer to ( )r t , and ( )V r  for the price displacement ratio vector field. 

Because we are primarily concerned with the net price displacement for a unit 
period, we can imagine a normalized price-time coordinate system K such that 

( )0 0 0t r t= = , 1t t= , and ( ) ( )1r t r t= . Let’s arbitrarily, but intuitively, desig-
nate an increase in price as positive (+) and a decrease in price as negative (−) in 
K. We’ll first consider an asset moving up or down the stationary 
one-dimensional vector field ( )V r . Let’s call this first frame of reference 1K . 

In an active market, traders with the desire to buy an asset place bid orders 
and traders wishing to sell place ask orders. Yet, desire is not enough to directly 
affect a change in the price of an asset. There must also exist an interaction with 
another trader to turn a bid or ask order into a transaction. We’ll call transac-

 

 

2Actually, ( ) { }:jV q q z z= ⊂ ∈ , but this then reduces back to ( ) { }1jV q q= ∈ , as we shall see at 

the end of §2. Therefore, it suffices for our purpose generally to define ( )V q  as having real and 
not complex coordinates, although aspects of this heuristic will rely heavily on complex attributes of 
the price displacement. The “asset,” as used here, can be thought of as an abstract point particle. 
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tions associated with bids “bid volume.” This becomes the scalar quantity B 
representing the number of bid transactions for a unit period. “Ask volume” is 
similarly the scalar quantity A representing the number of ask transactions for a 
unit period. 

Analysis of historical data from active markets suggests B has the potential to 
reduce prices while A has the potential to increase prices. The bid price is de-
fined as the highest current price at which a trader is willing to buy. The ask 
price is defined as the lowest current price at which a trader is willing to sell. 
Therefore, as bid transactions transpire, the once highest bid price vanishes and 
the next highest (but lower than before) price becomes the highest current price. 
As ask transactions transpire, the once lowest ask price vanishes and the next 
lowest (but higher than before) price becomes the lowest current price. Thus, B 
is selling volume and A is buying volume [24]. 

When a financial market experiences more buying volume than selling vo-
lume, there are more traders buying at the ask price. This “pushes” the asset up 
in price. When a market is experiencing more selling volume than buying vo-
lume, there are more traders selling at the bid price, which “pushes” the asset 
down in price. Thus, the effect of bid volume on price displacement in 1K  is 
the product of B and Br−  since we arbitrarily defined price reductions as nega-
tive. Likewise, the effect of ask volume is the product of A and Ar− . 

From this we see that the net effect of all bid volume for a unit period changes 
the state of the asset along the stationary price dimension in the negative direc-
tion from ( )0r t  to ( )1r t− . This negatively-directed result is proportional to 
the effect of bid volume on the price displacement attributable to it, or 

( )( )B Br B r− ∝ − . Similarly, we see that the net effect of all ask volume for a unit 
period changes the state of the asset along the price dimension in the positive 
direction from ( )0r t  to ( )1r t+ , or that ( )( )A Ar A r∝ . 

Historical data analysis indicates that not all markets given identical ask and 
bid volumes have the same ask and bid volume effects with respect to positive 
and negative price displacement ratios. As a result, we can assume that each 
market additionally has some specific inertial property—let’s call it n—that con-
strains the asset in its positive or negative movement away from ( )0r t  in K for 
a specific unit of time. Essentially, n is some number specific to a particular 
market that is inversely proportionate to the price displacement. The lower the 
number, the more likely the asset is to move farther from ( )0r t , and vice versa. 
Therefore, n is minimized when the modulus ( )r t  is maximized, and n is 
maximized in the limit as ( ) 0r t → . As a result, we can express the price effects 
of bid and ask volumes as ratios specific to each market. We’ll call these specific 
ask volumes and specific bid volumes, respectively, expressed as 

, .A A B B
A Br r r r
n n

   = − = −   
   

   

Of course, this description is incomplete. Ask and bid volumes do not exist in 
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isolation. In an active market, there is always a superposition of specific ask and 
specific bid volumes over any unit period where the asset is pushed in the posi-
tive direction when the ask volume dominates and pushed in the negative direc-
tion when the bid volume dominates. This specific net volume gives us 

( ) ( ) ( ), .A B A B
A B A Br r r t r r r t

n n
− −   − = − =   

   
    

The net effect of the specific net volume—which we’ll call ( )G r —is then equal 
to the result experienced by the asset and the direction is determined by whether 
the ask or bid volume dominates for a unit period: 

( ) ( ) ( ).A BG r r t r t
n
− = = 

 
                    (1) 

Again, this is the equation for an asset moving through the stationary dimension 
of price resulting from the net effect of the specific ask and specific bid volumes 
for a unit period. It is, in fact, market mechanics as described from the perspec-
tive of the vector field ( )V r . 

Now let’s look at this behavior from a second frame of reference, 2K . This 
new perspective is identical to 1K  in all respects except one: Instead of the price 
dimension being stationary and the asset moving along it, in 2K  the asset is 
fixed and ( )V r  moves up and down relative to the stationary asset. This be-
comes price displacement as described from the perspective of the asset. The 
specific ask and bid volumes remain the cause of any change in ( )V r  just as in 

1K . The only difference between 1K  and 2K  is what we consider to be sta-
tionary and what we consider to be changing. Each produces indistinguishable 
data regarding price displacement magnitudes. 

After imagining this behavior from the 2K  perspective, we can conclude that 
to get the same effect as observed in 1K  this new frame of reference must expe-
rience oppositely-directed changes in ( )V r . Therefore, every ±  price dis-
placement of the asset resulting from the net effect of ask and bid volumes in 

1K  is the same as a   change in the price dimension in 2K . This means 

( ) ( ) ,G r V r′= −                        (2) 

where the prime denotes a price derivative just as the dot denotes a time deriva-
tive. Combining Equations (1) and (2) gives us the dynamics of a market in 
terms of both changes in time and price: ( ) ( ).r t V r′= −  

But what does ( )V r′  comprise? Recall that ( )0 0r t =  in K, which we’ll now 
express as simply 0r  for concision. A review of historical data from active, ro-
bustly-traded markets reveals that the mean price displacement for a unit period 
tends to be relatively close to zero in K, the specific frame of reference notwith-
standing. Therefore, we can approximate the price displacement vector field 
with the following Maclaurin series: 

( ) ( ) ( ) ( )0 0 2
0 .

2
V r V r

V r V r r r
n n
′ ′′

≈ + + +                  (3) 
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(N.B.: For markets where the mean price displacement for a unit period is not 
relatively close to zero in K, this assumption cannot hold.) 

The first two terms in Equation (3) give us no new information about ( )V r . 
Thus, the first meaningful term in this series is ( )0V r′′ . Because changes in the 
price derivative of the vector field are uniform for all price displacement values, 
we see that ( )0V r′′  is some mean constant of the vector field for that particu-
lar unit period. Let’s call this mean constant h. Therefore, from Equation (3) 
we get 

( )
2

.
2
r hV r

n
≈                        (4) 

Yet, as we just discussed, the only meaningful mean constant for any given 
unit period is the net (ask and bid) volume for that period since we know from 
Equations (1) and (2) that 

( ) ( ) ,A BV r G r H
n
−′′ ′− = = = −  

where H is the specific net volume h n . Therefore, ( )H B A n= − . 
From Equation (4), we see that ( ) ( )V r Hr t′ ≈ . Consequently, the price dis-

placement dynamics for any unit period in K, from both perspectives, can be 
expressed as the harmonic approximation 

( ) ( ) 0.G r Hr t+ =                          (5) 

This is consistent with Equation (2). 
The general solution to this harmonic approximation is well known:3 

( ) ( ) ( )*1 1 cos .
2 2

i ir t z z z e z e zϕ ϕ ϕ−= + = + =              (6) 

Here, z is a complex number, *z  is its complex conjugate, i is the imaginary 
unit, and 

( ) 0Arg z tϕ ϕ ϕ= = +                          (7) 

is the phase or principal argument of z. The change in the phase for each unit 
period is the radial frequency ϕ , and the square of this time derivative is H.3 
Thus, for a unit period, ( ) 0tϕ ϕ ϕ= − . If 0ϕ  is constant, it is clear that one can 
determine ( )r t  from ( )tϕ . 

 

 

3Equation (5) asks us for a solution to the second-order linear ordinary differential equa-

tion ( ) ( )
2

2

d 0
d

r t Hr t
t

+ = . Assume the solution is proportional to ( )exp tα  where α  is a 

constant. This gives us ( ) ( )2 exp exp 0.t H tα α α+ =  For a finite α , ( )exp 0tα ≠ . This 

leaves the roots of the polynomial 2 0Hα + = , which are i Hα =  and i Hα = − . This 

yields ( ) ( )1 0 2 0exp , exp ,A B A Br t u t r t v t
n n

ϕ ϕ
   − −

= + = − +      
   

 where u  and v  are ar-

bitrary constants and 0ϕ  is the initial condition of ϕ  in K . Because ( )r t  is the pro-

jection of both z  and *z  on the real axis, we hold that 2u v z= = . Given that 

( ) ( ) ( )1 2r t r t r t= +  we get Equation (6). 
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In solving Equation (5) as an initial value problem, we see that  
( ) dt H t t H Cϕ = = +∫ . Here we interpret C as the starting point of ϕ  in K 

at 0t , or 0C ϕ= , which is consistent with Equation (7). This means 0ϕ  is 
constant in K so one can determine ( )r t  from ( )tϕ . Therefore, we see from 
Equation (6) that the price displacement ratio is a function of the net ask and bid 
volumes over a unit period. This is consistent with our initial assumption that 
any price change is a direct result of the total ask and bid transactions over a unit 
period. There are no other factors directly affecting ( )r t . 

Additionally, z  is the complex modulus in Equation (6). We can regard 
this also as a radius vector on the complex plane. For simplicity, we’ll denote z  
as R. Thus, Equation (6) becomes ( ) cosr t R ϕ= . The cosine function, by defi-
nition, has the property 1 cos 1ϕ− ≤ ≤ . Multiplying through by the radius vector 
R gives us ( )R r t R− ≤ ≤ . Consequently, the complex modulus z  (radius 
vector) is equivalent to the extreme price displacement ratio magnitude. We can 
conclude, therefore, that for a given unit period there exists a negative extreme 
price displacement ratio of ( )r t R= − . 

Of course, this does not necessarily mean that a market has or ever will reach 
−R, only that the negative extreme theoretically exists for any unit period t. In 
this way, −R is very similar to a “Black Swan” event from a market risk man-
agement perspective [25]. We will return to this predictive limitation in §4. 

3. Are Extreme Prices Non-Trivial? 

Now that we’ve provided evidence that negative price extremes exist, the next 
step is to decide under what conditions these extremes approach triviality, if any. 
Define triviality as an extreme price displacement ratio ( ) 1r t = − . In other 
words, even if price extremes exist, they become trivial if all we can say about 
them is that a market will hit a zero-price floor for some unit period. The con-
clusion that a market losing all value can be defined as an extreme price move-
ment is self-evident and, therefore, trivial. Hence, the only price displacement 
extremes that are meaningful to any risk analysis are those that are greater than 
−1 and, therefore, non-trivial. As previously discussed, the price displacement 
ratio can exceed unity in the positive direction, but never in the negative direc-
tion. 

Here we introduce the Lagrangian function ( ), ,L r r t , which is a function of 
the price displacement ratio coordinates, their time derivatives, and time. It 
contains the same information about the dynamics of a market in K as contained 
by Equation (5).4 From the time integral of the Lagrangian of Equation (5) we 
get the following action functional [26] of an asset: 

( ) ( )1

0

2
2 21d , , .

2 2
t

t

A B nrS r t t L r r t r r
n t

 −  = = + =        
∫             (8) 

We see that 2S r n= +  and 2S r n− = −  since 1t =  for any unit 

 

 

4The Lagrangian of a market actually precedes its equation of motion; i.e., we construct 
Equation (5) from the Lagrangian in Equation (8). 
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period. This means that besides the price displacement, the remainder of the ac-
tion functional can be regarded as essentially a constant due to the inverse 
square relationship between n and r. As a result, ( ) ( )Pr Pr 2r r n± ≡ ±  for any 
given market, where ( )Pr ⋅  is a probability function. 

For the probability that either the positive or negative square root of the ac-
tion functional is on the interval between the extreme values of the square root 
of the action functional, we can write 

( ) ( )
2

Pr or 1 erfc ,
2 2 2
n n nR S S R R

    − ≤ − + ≤ + = −          
 

where ( )erfc X  is the complementary Gauss error function, defined as 
( )1 Pr X x X− − ≤ ≤ . Recall that n is a minimum at this extreme. 

Because R is an extreme value, this probability must approach certainty since 
by definition all measures for the positive or negative square root of the action 
functional must fall between the positive or negative square root of the action 
functionals containing the positive or negative extreme price displacement  

values. Of course, this means that ( )2
erfc 2 0R n → . 

We can define the phase ϕ  as having values on the interval between π± , 
where π  is a maximum radial measure in the complex plane that is consistent 
with both the generally-accepted range of the principal value of ( )Arg z  [27] 
and the fact that cosine is an even function in Equation (6). As with the proba-
bility of the square roots of the action functional, we see that ( )21 erfc π 1− → , 
which implies ( )2erfc π 0→ . Therefore, 

( )
2

2erfc erfc π .
2
nR

 
=  

 
                    (9) 

This is only an approximation, but we assume the approximation close enough 
to express the relationship as an equality for practical purposes. 

Another way to think about this is to return to the complex plane from §2. If 
the real price displacement ratio ( )r t  is the median of ( )z t  and ( )*z t , then 
there are always two complex numbers and two phases for each real price  
displacement ratio on K. For example, at 0t  of any unit period 0 π 2ϕ =  in  

complex vector space, but there is also a phase in the complex conjugate (dual)  
vector space where *

0 π 2ϕ = − . Similarly, there is a number z in complex space  

for every real price displacement ratio as well as a number *z  in the complex 
conjugate space [28]. Therefore, the probability of any ( )r t  is equivalent to the 
probability of z and the probability of *z , i.e., ( ) ( ) ( ) ( )2*Pr Pr Pr Prr z z z≡ ≡ . It 
is also equivalent to the probability of ϕ  and the probability of *ϕ , i.e., 

( ) ( ) ( ) ( )2*Pr Pr Pr Prr ϕ ϕ ϕ≡ ≡ . 
If we take the inverse complementary error function of both sides of Equation 

(9) we get 2 πR n = , which we can express as 
2R n γ=                             (10) 
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if we define the constant 2: 2πγ = . 
Equation (10) still requires knowledge of n for each market to find the value 

of R. Since n is not a number regularly measured, we should try to approximate 
R without relying on a known minimized value of n. If we look at the relation-
ship between the absolute value of a specific price displacement ratio ρ  (i.e., 

0ρ ≥ ) and the probability that other values of ( )r t  in the same market are 
greater than ρ , we find 

( )( )
2

Pr erfc exp ,
2
nr t ρ

ρ ρ
µ

   
> = = −       

           (11) 

where µ  is the expectation value of ( )r t . From this observation of historical 
data, we assume the following: 

1) The measure of centrality (expectation value) of ( )r t  is the arithmetic 
mean of the absolute value of all observed price displacement ratios for some 
order of t ; 

2) The measure of centrality of the probability that any ( )r t  is greater than 
a specific ρ  is the geometric mean of all possible probabilities; i.e., all real 
numbers on the interval [ ]0,1 ; and 

3) These measures of centrality coincide. 
From these three assumptions, we can define µ  as the specific price dis-

placement that maps to the probability of any ( )r t  being greater than the spe-
cific absolute price displacement ρ  that is equal to the inverse of the base of 
the natural logarithm, or 

( )( ) ( ): Pr exp 1 ,r tµ ρ ρ= > = −  

since the geometric mean of all real numbers on the interval [ ]0,1  is ( )exp 1− . 
This is a special case of Equation (11) when µ ρ= . 

We can next substitute R for ρ  in Equation (11) to get 
2

erfc exp .
2
n RR

µ
   

= −       
                  (12) 

From this and Equation (9), we see that 

( )2erfc π exp .R
µ

 
= − 

 
                     (13) 

If we define the constant ( )( )2: log erfc πλ = , this equation becomes 

.R µλ− =                           (14) 

Thus, we find that the magnitude of a market’s extreme price displacement ratio 
is linearly dependent on the expectation value of its absolute price displacement 
ratio. 

Because both γ  and λ  are constants relating to the radial measure of the 
phase, we can combine them into a single constant 2κ γ λ= . From Equations 
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(10) and (14), we can then discover each market’s unique minimum inertial 
constraint at its price extreme with the expression 2n κ µ=  since µ  is cal-
culable from historical data. 

4. Uncertainty and Predictive Limitations  

The method outlined here is not without limitations. Although §3 allows us to 
closely approximate R− , this does not mean that one can predict both the ex-
treme price displacement ratio of a market and the precise time at which the 
market will experience this extreme. In fact, because we can predict the price 
with relative precision, it becomes practically impossible to predict the time of 
the displacement. 

It is well known that the time and frequency domains are Fourier transform 
pairs [29]. It is also well known that the product of the variances of Fourier 
transform pairs produces a minimum scalar [30]. 

Let x be a function in Hilbert space   such that ( ) 2
1x t = , ( )tx t ∈ , and 

( )x̂ϕ ϕ ∈   , where ( )x̂ ϕ  is the Fourier transform of ( )x t . Define the 
expectation values (means) of t and ϕ  as 

( ) ( )2 2ˆ d ,  d .t t x t t xϕ ϕ ϕ ϕ
∞ ∞

−∞ −∞
= =∫ ∫     

Define the uncertainty (standard deviations) of t and ϕ  as 

( ) ( ) ( ) ( )
22 22 ˆ d ,  d .t t t x t t xϕ ϕ ϕ ϕ ϕ

∞ ∞

−∞ −∞
∆ = − ∆ = −∫ ∫      

From these definitions, Weyl [31] has proved that 

1 ,
2

tϕ∆ ∆ ≥                               (15) 

generally, and that 1 2tϕ∆ ∆ =  when x and x̂  are normally distributed. Here, 
the symbol ∆  denotes the uncertainty in a variable, not the change in that 
variable. The uncertainty in ϕ  is really just the uncertainty in the square root 
of the difference between specific ask and bid volumes since Hϕ = . Thus, we 
have 

2t B A n∆ ∆ − ≥ . 

From Equation (6), we see that if we know the measure of ( )r t  and can 
calculate R then we can deduce ϕ . This allows us to closely approximate ϕ  
when ( )r t R= − . Rearranging Equation (6) yields 

( )1sin .
r t

R
ϕ −  
= −  

 
                            (16) 

This means ( ) ( )r t tϕ± ⇔ 


. Therefore, if ( )r t R= ±  then ( ) π
2

tϕ =
 . 

Because knowing the price displacement ratio with arbitrary precision means 
that we know the time derivative of the phase with the same precision, the more 
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certain we are about the value of ( )r t  the less certain we are about when ( )r t  
will occur [32]. Thus, if we know with relative certainty that ( )r t R= − , thereby 
yielding 0ϕ∆ → , we see from Equation (15) that equation that t∆ →∞ . This 
means a market can experience its negative extreme price displacement ratio in 
any unit period. If Equation (14) allows us to approximate R−  with a high de-
gree of certainty then we cannot know with any meaningful degree of certainty 
in which unit period R−  will occur. Likewise, if we want to know the price dis-
placement ratio for a specific unit period, thereby making 0t∆ → , we see that 
ϕ∆ →∞ , meaning ( )r t  can take any value. 
Another significant limitation of this method is that it relies heavily on the 

sample with which one chooses to calculate µ  since, per Equation (14), the 
accuracy of one’s approximation of R−  depends wholly on this sample. 
Therefore, this method cannot claim to approximate fixed extreme price dis-
placement measures since some degree of selection bias in a choice of sample for 
µ  is unavoidable [33], the discussion around Equations (11) and (12) notwith-
standing. While it is possible to approximate an extreme price displacement 
given sufficient historical data, any such approximation is only valid up to the 
time of the analysis itself and the sample period chosen to calculate µ . The ex-
treme measure may, in fact, vary over time for each market and should not be 
considered an absolute extreme for all time. The inertial coefficient n, therefore, 
remains in flux for each market. 

Still, this method might improve our understanding of the rules that under-
gird market mechanics and, therefore, serve as an additional tool for managing 
market risk when faced with price displacements that deviate significantly from 
historic expectations. For example, based on historical data prior to the market 
close of October 16, 1987, Equation (14) would have predicted that Coca-Cola 
Company stock (KO) would have had a daily price displacement ratio extreme 
of 0.2661R− = −  for 1t =  trading day. During the next trading day, October 
19, 1987, KO reached an intraday low ratio of −0.2846, but closed at 
( ) 0.2451r t = − . The prediction of 0.2661R− = −  would have been an assur-

ance for KO’s risk managers (and a potential buying opportunity for traders) at 
0.2846 < Rρ− ≤ − − . More recently, there were similar assurances/opportunities 

for Automated Data Processing, Inc. (ADP) on May 6, 2010, and Bitcoin 
(BTC/USD) on August 1, 2014, among many others. 

5. Summary 

By regarding market mechanics in terms of time and price from two separate 
perspectives, we have presented theoretical evidence that financial markets have 
extreme price displacements. These extremes appear non-trivial except in the 
limits as 1µ λ→  or as n γ +→ . Historical data analysis can illumine whether 
such non-triviality is common in active markets. While the magnitude of Black 
Swan events appears calculable to a first approximation, the uncertainty prin-
ciple outlined herein makes knowing exactly when Black Swans will occur a 
practical impossibility. 
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