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Abstract 

In this paper, we proposed an iterative reweighted 
1l  penalty regression ap-

proach to solve the line spectral estimation problem. In each iteration process, 
we first use the ideal of Bayesian lasso to update the sparse vectors; the deriva-
tive of the penalty function forms the regularization parameter. We choose 
the anti-trigonometric function as a penalty function to approximate the 

0l  
norm. Then we use the gradient descent method to update the dictionary pa-
rameters. The theoretical analysis and simulation results demonstrate the ef-
fectiveness of the method and show that the proposed algorithm outperforms 
other state-of-the-art methods for many practical cases. 
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1. Introduction 

Spectral estimation technology is widely used in the fields of electronic coun-
termeasures, radar, sonar and mobile communication. In this paper, we mainly 
consider the line spectral estimation in compressed sensing. Considering the 
problem of the line spectral estimation using a pre-specified discrete Fourier 
transform matrix, the sparse solution we obtained may not close to the real 
sparse vectors when the true frequency components may not lie on the 
pre-specified frequency grid. This error, referred as grid mismatch, results in 
performance degradation or even recovery failure. Therefore, in this paper, we 
treat the dictionary parameters as the unknown variable along with the sparse 
signal, and complete the optimization of the dictionary parameters when we es-
timate the sparse vector through the iterative way. 

Rather than applying the traditional compressed sensing theory, an increasing 
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number of scholars have concentrated on the grid mismatch problem instead. 
For example, work [1] focused on the impact of the basis mismatch on the re-
construction error by treating the error as a perturbation between the presumed 
and the actual dictionaries. In work [2], to handle the grid mismatch, the true 
dictionary is approximated as a summation of a presumed dictionary and a 
structured parametrized matrix via the Taylor expansion. A highly coherent dic-
tionary was used to approximate the real dictionary in [3], and a class of greedy 
algorithms that use the technique of band exclusion was proposed. On the other 
hand, in [4] [5] [6], the grid mismatch problem was studied by proposing an 
atomic norm-minimization approach to handle an infinite dictionary with con-
tinuous atoms. Bayesian statistics has also been applied to solve the grid mis-
match problem. In work [7] and [8], Bayesian approaches were proposed to ite-
ratively refine the dictionary by treating the sparse signals as hidden variables. 
The work [8] used a generalized expectation-maximization (EM) algorithm to 
solve the dictionary parameters and determine the sparse vector. Work [9] 
proved that the problem of compressed sensing using a logarithmic penalty can 
be transformed into an iterative reweighted 2l  norm regression problem by 
providing a special surrogate function. 

In addition, we analyze the first-order optimal condition of the original prob-
lem and then prove that the problem can be transformed into a series of re-
weighted lasso [10] problems by using the iterative method. In each step of the 
iteration, the derivative of the anti-triangular penalty function forms the weight 
of the 1l  norm. Compared with the algorithms proposed in [9] and [11], our 
method is more adaptive with regard to the choice of penalty function and the 
calculation method for the weight, additionally, the sparse effect of the 1l  norm 
is also better than the 2l  norm. However, it is well known that there is no expli-
cit solution to the problem of the 1l  penalty regression. In this study, we use a 
Bayesian lasso approach to determine the optimal solution for each step. 

The remainder of the paper is organized as follows. Section 2 is the descrip-
tion of the line spectral estimation problem, which we formulate as the penalty 
least squares problem with dictionary parameters. In Section 3, we provide a 
theoretical analysis and propose the iterative reweighted 1l  algorithm. In Sec-
tion 4, we present several sets of numerical experiments to demonstrate that the 
iterative reweighted 1l  method is better than other state-of-the-art algorithms 
in many cases. Section 5 concludes the paper and provides some ideas for future 
work. 

2. Model Overview 

2.1. Line Spectral Estimation 

Assume the line spectral estimation problem where the observed signal is a 
summation of a number of complex sinusoids: 

1
e , 1, ,j

k
in

n j n
j

y n Nθβ ε−

=

= + =∑                   (1) 
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And we write it in the form of a matrix expression: 

( )Y X θ β ε= +                          (2) 

where [ ]T
1, , NY y y=   represents the observed value. [ ]T

1, , kθ θ θ=   is un-
known parameters represent the frequency. ( ) ( )N kX N kθ

∗


 determined by 
parameter θ . The covariate in the model [ ]T

1, , kβ β β=   represents the am-
plitude of the corresponding frequency. [ ]T

1, , nε ε ε=   represents a random 
error term, assuming that they are independent. 

2.2. Penalty Least Squares Regression 

In the process of signal reconstruction, the dimension of Y is much smaller than 
the number of measurements ( N k ). Since the signal is sparse, the Equation 
(2) would be transformed into an optimization problem (3): 

( )
0min

s.t Y X

β

θ β ε= +
                      (3) 

where 0β  stands for the number of the non-zero components of β . The 
optimization (3), however, is an NP-hard problem (which is difficult to find the 
solution in polynomial time). We can transform optimization (3) into a penalty 
least squares problem: 

( )
( )

min

s.t

G

Y X

β

θ β ε= +
                       (4) 

The optimization (4) can be formulated as an unconstrained optimization 
problem by removing the constraint and adding a penalty term to the objective 
function: 

( ) ( ) ( )2

2, 1
min ,

k

i
i

H Y X G
β θ

θ β θ β λ β
=

= − + ∑           (5) 

where λ  represents the adjustable penalty parameter. Different penalty func-
tions form different regularization parameters in the iterative process. We find 
that the penalty function of the inverse trigonometric function has better prop-
erties than other common penalty function such as logarithmic penalty function. 
In the next section we propose an iterative reweighted 1l  sparse algorithm with 
anti-trigonometric function penalties. 

3. Iterative Reweighted l1 Sparse Algorithm 

3.1. Algorithm Description 

We now develop an iterative reweighted algorithm for joint dictionary parame-
ter learning and sparse signal recovery. Consider the line spectral estimation 
with anti-trigonometric penalty function: 

( ) ( ) ( )2

2, 1
min , arctan

k

i
i

H Y X
β θ

θ β θ β λ ϕ β
=

= − + ∑       (6) 

We consider the first derivative of the problem (6). Since the absolute value is 
involved, we summarize the following derivative functions: 
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( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

22

22

2 , 0
1

,
2 , 0

1

2 , 0
i

ii
i

ii
i i

ii

X X X Y

H
X X X Y

X X X Y C β

λϕ
θ θ β θ β

ϕ β
θ β λϕ

θ θ β θ β
β ϕ β

θ θ β θ λ β

 ′ ′− + > +
∂  ′ ′= − − <

∂ +
 ′ ′− − =


    (7) 

( ) ( ) ( ) ( ) ( ) ( ),
2

H X X X
X X Y

θ β θ θ θ
β θ θ β β

θ θ θ θ
′ ′∂ ∂ ∂ ∂ 

′ ′ ′= + − 
∂ ∂ 

    (8) 

The penalty function ( )arctan iϕ β  cannot be guided at zero, 
i

C β  
represents its sub-gradient at zero which is a set of real number: 

i
a C bβ≤ ≤  

( ) ( )

( ) ( )
0

0

arctan arctan 0
lim

0

arctan arctan 0
lim

0

i

i

i

i

i

i

a

b

β

β

ϕ β
ϕ

β

ϕ β
ϕ

β

−

+

→

→

−
= = −

−

−
= =

−

              (9) 

If we have the iteration value of step t: ( ),t tθ β , combine with (7) we can es-
timate 1tβ +  by solving the next weighted lasso problem: 

( ) ( )
21 1 1

22 21
| , min

1

k
t t t t t

iti
i

G Y X
β

λϕ
β θ β θ β β

ϕ β
+ + +

=

= − +
+

∑       (10) 

Here we use the ideal of Bayesian lasso [11] (which we will briefly introduce 
later in this article) to find 1tβ + . Similar to (7), the first derivative of (10) can be 
summarized as: 

( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

22

1

1 22

22

2 , 0
1

| ,
2 , 0

1

ˆ2 , 0
1 i

ii t
i

t t t

it i t
i i

ii t
i

X X X Y

G
X X X Y

X X X Y C β

λϕ
θ θ β θ β

ϕ β
β θ β λϕ

θ θ β θ β
β ϕ β

λϕ
θ θ β θ β

ϕ β

+

+


 ′ ′− + >
 +
∂  ′ ′= − − <

∂ +

 ′ ′− − = +

(11) 

ˆ
i

C β  represents the sub-gradient of 1t
iβ
+  at zero which is also a set of real 

number: ˆˆˆ
i

a C bβ≤ ≤  

1

1

1

10

1

10

0
ˆ lim 1

0

0ˆ lim 1
0

t
i

t
i

t
i
t
i

t
i
t
i

a

b

β

β

β

β

β

β

+ −

+ +

+

+→

+

+→

−
= = −

−

−
= =

−

                      (12) 

The next step is to find 1tθ + . In this situation we do not need to calculate the 
optimal solution, instead we are going to find the estimation 1tθ +  which satis-
fied: 

( ) ( )2 21 1 1

2 2

t t t tY X Y Xθ β θ β+ + +− ≤ −                (13) 
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The stop condition of the algorithm is controlled by tolerance value 1 2,ω ω . In 
this paper we set the tolerance value equals 0.02 in the numerical simulation. 
Based on the discussion above, we summarise our algorithm as follows: 
 

 

3.2. Theoretical Analysis 

First we want to prove that the objective function (6) is guaranteed to be 
non-increasing at each iteration: 

( ) ( ) ( )1 1 1, , ,t t t t t tH H Hθ β θ β θ β+ + +≥ ≥               (14) 

Since we obtain 1tθ +  by the gradient descent method, it is obvious that 

( ) ( )1 1 1, ,t t t tH Hθ β θ β+ + +≤ . 
On the other hand, we prove ( ) ( )1, ,t t t tH Hθ β θ β +≥  using the next lemma 

which has been introduced by [12]: 
LEMMA: Given that the adjust parameter 0ϕ > , then we have the following 

inequality: 

( ) ( ) ( )1 1
22

arctan arctan
1

t t t t
i i i it

i

ϕ
ϕ β ϕ β β β

ϕ β
+ +− ≥ −

+
      (15) 

proof: 
We first denote ( ) ( )arctanf x x=  and let 0x ≥ , then by the mean value 

theorem we have: ( ) ( ) ( )( )1 2 1 2f x f x f x xζ′− = − , where ζ  between 1x  and 

2x . 
Since ( )f x  is an increasing function and ( )f x′  is a decreasing function, 

the following inequality: ( ) ( ) ( )( )1 2 1 1 2f x f x f x x x′− ≥ −  is always holds for 
any non-negative value 1x  and 2x . If we let 1

t
ix ϕ β=  and 1

2
t
ix ϕ β += , the 

inequality (15) would be certainly proved. 
Next we consider the following equality: 
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( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( )

1

2 21

2 21

1

1
2 21

2 2

1 1 1

1

, ,

arctan

arctan

2

2 arctan arctan

t t t t

k
t t t t t

i
i

k
t
i

i

t t t t t t t t

k
t t t t t t

i i
i

H H

Y X Y X

X X Y X X

Y X X

θ β θ β

θ β λ ϕ β θ β

λ ϕ β

θ β θ β θ β θ β

θ β θ β λ ϕ β ϕ β

+

+

=

+

=

+

+ + +

=

−

= − + − −

−

′= + − −

′+ − + −

∑

∑

∑

 

( ) ( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( )( )

21 1

2

1 1

1

1
21 1 1

2

1

1

2

2 2

arctan arctan

2

arctan arctan

t t t t t t t t t t

t t t t t t t t

k
t t
i i

i

t t t t t t t t t

k
t t
i i

i

X X X X X

Y X X Y X X

X X Y X X

θ β θ β θ β θ β θ β

θ β θ β θ β θ β

λ ϕ β ϕ β

θ β θ β θ β θ β β

λ ϕ β ϕ β

+ +

+ +

+

=

+ + +

+

=

′= − + −

′ ′− − + −

+ −

 = − + − − 

+ −

∑

∑

     (16) 

using the lemma above we can yields: 

( ) ( )
( ) ( ) ( )( ) ( )( )

( )

1

21 1 1

2

1
221

, ,

2

1

t t t t

t t t t t t t t t

k
t t
i iti

i

H H

X X Y X X

θ β θ β

θ β θ β θ β θ β β

ϕ
λ β β

ϕ β

+

+ + +

+

=

−

 ≥ − + − − 

+ −
+

∑

  (17) 

where 1t
iβ
+  is the optimal solution of problem (10), which satisfied: 

( )1

1

| ,
0

t t t

t
i

G β θ β

β

+

+

∂
=

∂
                       (18) 

Substituting (18) to (17), we show that we have the inequality: 

( ) ( )1, ,t t t tH Hθ β θ β +≤                      (19) 

in different situations: 
When: 1 0t

iβ
+ ≥ : 

( )( ) ( )( ) ( )1 1 1
221

2
1

k
t t t t t t t

i iti
i

Y X X ϕ
θ β θ β β λ β β

ϕ β
+ + +

=

 ′− − = − 
  +

∑   (20) 

then: 

( ) ( )
( ) ( ) ( )

1

21 1 1
22 21

, ,

1

t t t t

k
t t t t t t t t

i i i iti
i

H H

X X

θ β θ β

ϕ
θ β θ β λ β β β β

ϕ β

+

+ + +

=

−

≥ − + − + −
+

∑   (21) 

By the fact that 1 1 0t t t t
i i i iβ β β β+ +− + − ≥  on the condition of 1 0t

iβ
+ > , the 

inequality (19) has proved to be correct. 
When: 1 0t

iβ
+ ≤ : 
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( )( ) ( )( ) ( )1 1 1
221

2
1

k
t t t t t t t

i iti
i

Y X X ϕ
θ β θ β β λ β β

ϕ β
+ + +

=

 ′− − = − − 
  +

∑   (22) 

then: 

( ) ( )
( ) ( ) ( )

1

21 1 1
22 21

, ,

1

t t t t

k
t t t t t t t t

i i i iti
i

H H

X X

θ β θ β

ϕ
θ β θ β λ β β β β

ϕ β

+

+ + +

=

−

≥ − + − + −
+

∑   (23) 

By the fact that 1 1 0t t t t
i i i iβ β β β+ +− + − ≥  on the condition of 1 0t

iβ
+ < , the 

inequality (19) has proved to be correct. 
When: 1 0t

iβ
+ = : 

The set of sub-gradient at 1t
iβ
+  (which is ˆˆ,a b 

  ) should contains 0 when 
1t

iβ
+  is the critical point, thus we have the following inequality: 

( )( ) ( )( )2 22 2
2 0, 2 0

1 1i it t
i i

X Y X Yϕλ ϕλθ θ
ϕ β ϕ β

′ ′− − ≤ − + ≥
+ +

      (24) 

Consider the inequality we want to prove, we can easily formulate: 

( ) ( )
( ) ( )

1

2

22 2=1

, ,

0
1

t t t t

k
t t t t

i iti
i

H H

X

θ β θ β

λϕ
θ β β β

ϕ β

+−

≥ + − ≥
+

∑            (25) 

The discussion above proves that we can ensure that the function value keeps 
non-increasing at each iteration. In addition we want to illustrate that 1tβ +  
convergence to *β  and 1tθ +  convergence to *θ  on the limit situation 

*tβ β→  and *tθ θ→ . 
As 1tβ +  is the optimal solution of (10), we define: * *

1 1
,

ˆ limt t
β β θ θ

β β+ +
→ →

= .  

Consider the first-order condition of 1tβ +  which satisfied: 

( )
* * 1,

| ,
lim 0

t t

t
i

G
β β θ θ

β β θ

β +→ →

∂
=

∂
                  (26) 

On the other hand we have the following conclusion in the situation of 
* 0β ≠ : 

( )
*

,
0

i

H β θ
β

∂
=

∂
                        (27) 

Compare the above two equalities we can conclude that 1 *ˆ tβ β+ = . 
As for the situation when 1 0tβ + = , consider the inequality from (18): 

( )( )

( )( )

22 *

22 *

2 0
1

2 0
1

i
i

i
i

X Y

X Y

ϕλ
θ

ϕ β

ϕλ
θ

ϕ β

′− − ≤
+

′− + ≥
+

              (28) 

Since 22 *1 i

ϕλ ϕλ
ϕ β

≤
+

, we can easily conclude: 
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( )( )
( )( )

2 0

2 0
i

i

X Y

X Y

θ ϕλ

θ ϕλ

′− − ≤

′− + ≥
                     (29) 

After the discussion before we can summarize that 1ˆ tβ +  always satisfied the 
first-order condition (7) when *tβ β→  and *tθ θ→ . Thus we demonstrate 
the limit of: 1 *tβ β+ → . When *tθ θ→ , consider the gradient of tθ : 

( )
*

1,
lim 0

t

t

H
θ θ

β θ

θ

+

→

∂
=

∂
                         (30) 

Thus the value of 1tθ +  remains *θ . 

3.3. The Bayesian Lasso 

In this article we use the ideal of Bayesian lasso to estimate the optimal solution 
of problem (10). 

Assuming that the prior distribution of the parameter β  follows the Laplace 
distribution: 

( ) 2 2exp
4 2i if λ λβ β
σ σ

 = − 
 

                    (31) 

Combined with the likelihood function we can get the posterior probability: 

( ) 2
2 22

1

1| exp
2 2

k

i
i

f Y Y X λ
β β β

σ σ=

 ∝ − − − 
 

∑           (32) 

Solving problem (10) is equivalent to solving the maximal probability of post-
erior probability, which we can obtain from Gibbs sampling [13]. 

As Laplace distribution is difficult to directly derive intuitive full condition 
posterior distribution, the following integral (33) provides an effective solution: 

( )
( )

2 2 2

1 20

1exp exp exp d
2 2 2 22π
a z a a va z v

vv
∞    − −

− = ×   
   

∫       (33) 

Using the above integral we can rewritten the Laplace prior distribution  

( )~ exp
2i
a a zβ −  by introducing the intermediate parameter v: 

( ) ( )

( )
2

~ 0,

~ exp
2

i i

i

f N v

af v

β

 
 
 

                      (34) 

In problem (32) we let 
22

a λ
σ

= . 

Then we can motivate the following hierarchical Bayesian lasso model: 

( ) ( )
( ) ( )

( )

2

2

4

| , ~ ,

| ~ 0,

~ exp
8

v

i

L Y X N X I

f V N D

f v

β β σ

β

λ
σ

 
 
 

                  (35) 
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where [ ]1, , kV v v= 
 corresponds to [ ]1, , kβ β β= 

 and [ ]1, ,v kD diag v v= 
. 

For Bayesian inference, the full condition distribution of β  and v is: 

( ) ( )

( )

1 2 1

* *

| , ~ ,

1 | , ~ ,

t

i
i

f V Y N A X Y A

f Y I G a b
v

β σ

β

− −

 
− 

 

                 (36) 

where 1 t
vA X X D− = + , the distribution ( )* *,I G a b−  represent inverse Gaussian 

distribution with 
*

*

i

a λ
β

= , ( )2* *b λ=  and *
22

λλ
σ

= . The density of inverse 

Gaussian as follows: 

( ) ( )
( )

21 * *
2* *

3 2*
, , exp

2π 2

b x a
f x a b

x a x

λ  − −   = −      
 

          (37) 

By repeated sampling, we will form a Markov chain contains a series of point:  

( ) ( ) ( )1 1 2 2, , , , , ,t t t
m mv v vβ β β . 

Since each iteration will lead to a Markov chain, we will get a long sample of 
β  through the whole algorithm: 

1 1 1 2 2
1
2 2 2 3 3

1

* *
1

, , , , ,

, , , , ,

, , , , ,

l k

l k

T T T
l k

β β β β θ

β β β β θ

β β β β θ

→

→

→

 

 



 

                     (38) 

And we have demonstrated that ( ) ( ) ( )1 * *, , ,t t t tH H Hθ β θ β θ β+≥ ≥ ≥  in 
the above. The simulation results are shown in the next section. 

4. Simulation Results 

In this section, we carry out a series of experiments to illustrate the performance 
of our proposed 1l  iterative reweighted algorithm (denoted to as l1-IR). In 
our simulations, we compare our proposed algorithm with other existing 
state-of-the-art methods, including the sparse Bayesian learning with dictionary 
refinement algorithm (denoted as DicRefCS) [7], the sparse Bayesian learning 
with dictionary estimation (denoted as SBL-DE) [8], and especially the su-
per-resolution iterative reweighted algorithm (denoted as SR-IR) [11]. 

In order to control the noise level at some of the experiments, we first give the 
definition of observation quality by the peak-signal-to-noise ratio (PSNR): 

( )2
1010 log 1PSNR σ≡                       (39) 

where 2σ  represents the variance of noise. We calculate the signal-to-noise ra-
tio (PSNR) to complete the recovery effect comparison: 

2*

2
10 2*
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20 log
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RSNR
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β β

 
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where *β  represents the original sparse signal and β̂  represents the signal 
recovered by the algorithm. Parameters λ  and ϕ  have the same effect as re-
gularization parameters, we choose 1ϕ =  and select optimal parameters λ  by 
cross validation. 

In the following, we examine the behaviour of respective algorithms under 
different scenarios. First we control the noise level 20PSNR = , which means 

2 0.01σ = . Figure 1 shows the changes in PSNR of the various algorithms with 
the change of sparseness S (the sparseness S represents the number of non-zero 
values in original sparse signal). We keep 64K =  and the sparseness S values 
range from 1 to 10. We set the number of measurements 20N =  in order to 
control the variables. Each data point is averaged by repeated tests. 

Figure 1 indicates that the performance of the 1l  iterative reweighted algo-
rithm is better than other state-of-the-art methods. With a low sampling number 
( 20N = ), the performances of the DicRefCS and SBL-DE algorithms deteri-
orated quickly and failed when the sparseness S was higher than 5. On the other 
hand, our proposed algorithm still performed well, even when the sparseness S 
reached 8. It is worth mentioning that the SR-IR algorithm also performed better 
than the other two Bayesian algorithms but not as well as the L1-IR algorithm. 
The reasons are that the 1l  norm is sparser than the 2l  norm and we chose a 
better weight function. 

Next, we illustrate the influence of the sample size N on the recovery effect 
using another set of experiments. We keep 64K = , the sparseness 3S =  and 
the PSNR maintains at 20. We change the number of measurements N from 6 to 
32. For each N, Figure 2 shows the performance of respective algorithms. 

It can be observed from Figure 2 that, with the increase in N, the recovery 
performance of the respective algorithms is increased to a relatively high level 
but our proposed algorithm outperforms the other methods for a small number 

 

 
Figure 1. RSNR in different S while K = 64, n = 20, PSNR = 20. 
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of measurements. This means that our method performs better for the recovery 
of sparse signals when the number of samples is limited. 

Our last experiment tested the recovery performance of respective algorithm 
under different noise level PSNR. According to the definition of PSNR, we set 
the variance of noise from 0.01 to 1, which makes the PSNR changed from 20 to 
0. At this experiment use signals of length 64K =  contains 3S =  complex 
sinusoids and set the number of measurements 24N = . We take 20 points 
evenly between 0 and 20 and record the performance of respective algorithm in 
each point. Each data point is averaged by repeated tests. 

Relatively speaking, the L1-IR algorithm and the SR-IR algorithm were more 
stable than the other algorithms as the noise level increased. Figure 3 indicates 
that the PSNR of all algorithms deteriorated quickly when the noise was very 
strong. In the case of relatively strong noise, some trials lead to failure results 
and the failure rate increases with an increasing noise level. Here, a trial was 
considered successful if the PSNR was higher than 15 dB. Table 1 shows the 
success rate of the algorithms for different levels of PSNR (at each level, we re-
peated 20 trials) in the last experiment. The success rate of DicRefCS and 
SBL-DE is obviously less than that of l1-IR and SR-IR when 2sigma  is large 
than 0.2. 

The validity, superiority, and stability of the l1-IR algorithm are illustrated by 
these experiments, indicating that the algorithm is worth applying in some prac-
tical cases. 

5. Conclusion 

In this paper, we treated the real dictionary parameters as unknown variables, 
and studied the line spectral estimation problem with unknown dictionary pa-
rameters. Based on the ideal of Bayesian lasso and the analysis of the first-order  

 

 
Figure 2. RSNR in different n while K = 64, S = 3, PSNR = 20. 
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Figure 3. RSNR in different noise level while K = 64, S = 3, n = 20. 
 
Table 1. Successful rate of different algorithms. 

 2 1RSNR sigma  

  0/1 3/0.5 6.98/0.2 10/0.1 13.1/0.05 20.0.01 

7* algorithm  -SBL DE  45% 75% 80% 95% 100% 100% 

 DisRefCS  40% 60% 75% 80% 90% 100% 

 -SR IR  55% 80% 95% 100% 100% 100% 

 1-L IR  60% 75% 95% 95% 100% 100% 

 
condition of the optimal solution, we proposed an iterative reweighted 1l  pe-
nalty regression algorithm. We proved that in each step of the iterative process, 
the function value is continuously reduced until the approximate solution of the 
real sparse vector is obtained. The numerical results in Section 4 illustrated that 
the performance of our algorithm is better than other state-of-the-art algorithms 
in some cases. The disadvantage is that our method is more time-consuming, 
partly because in each sampling step it is necessary to ensure convergence, re-
sulting in a sampling length that cannot be effectively reduced. Future studies 
will focus on this problem. 
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