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Abstract 
The macroscopic electric permittivity of a given medium may depend on fre-
quency, but this frequency dependence cannot be arbitrary, its real and im-
aginary parts are related by the well-known Kramers-Kronig relations. Here, 
we show that an analogous paradigm applies to the macroscopic electric con-
ductivity. If the causality principle is taken into account, there exist Kra-
mers-Kronig relations for conductivity, which are mathematically equivalent 
to the Hilbert transform. These relations impose strong constraints that mod-
els of heterogeneous media should satisfy to have a physically plausible fre-
quency dependence of the conductivity and permittivity. We illustrate these 
relations and constraints by a few examples of known physical media. These 
extended relations constitute important constraints to test the consistency of 
past and future experimental measurements of the electric properties of hete-
rogeneous media. 
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1. Introduction 

The theory of electromagnetism can be applied to complex media like inhomo-
geneous materials or biological tissue. A first approach to such media is to expli-
citly consider their microscopic structure, and the associated variations of elec-
tric conductivity or permittivity, but this approach requires a detailed mapping 
of these electric parameters and includes this in detailed simulations. Another 
approach is to use a mean-field electromagnetic theory by considering scales 
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larger than the typical scales of inhomogeneities in the medium. In this case, the 
mean-field theory relates to macroscopic measurements of conductivity and 
permittivity. For example, in neural tissue, macroscopic measurements of these 
quantities were done in a number of studies [1] [2] [3] [4] who measured the 
frequency dependence of electric parameters in different conditions (reviewed in 
ref. [5]). Theoretical work showed that this frequency dependence can be ac-
counted by physical phenomena such as ionic diffusion or cell polarization [6] 
[7]. In the present paper, we investigate the relations between the apparent ma-
croscopic conductivity and permittivity1 and show that they cannot take arbi-
trary values but are strongly constrained to be consistent with Maxwell’s theory 
of electromagnetism. 

An important aspect of the equations of electromagnetism when applied to 
media with a given electric permittivity ( ), tε r , is that the real ε ′  and imagi-
nary ε ′′  parts of the complex Fourier transform of ( ),ε ωr  cannot take inde-
pendent values, but they are linked together by a set of mathematical relations 
called Kramers-Kronig relations [8] [9] [10]. These relations are a direct conse-
quence of the principle of causality, namely that the future cannot influence the 
past [8], and were shown to be equivalent to the Hilbert transform in a perfect 
dielectric [11] [12]. 

Here, we will re-examine these Kramers-Kronig relations and their equiva-
lence to Hilbert transforms in heterogeneous media. The goal is to determine the 
constraints that the frequency dependence of electric conductivity and permit-
tivity must satisfy. We will also consider the application of this formalism to a 
few concrete examples. 

2. Theory 

We begin by setting the framework of the present study, by outlining the elec-
tromagnetic theory used here, and how to apply it to heterogeneous media. We 
next consider the Kramers-Kronig relations within this framework. 

2.1. General Framework 

To derive a formalism applicable to heterogeneous media, we consider linear 
media within the electric quasi-static approximation in mean-field2 [13] [14], 
which corresponds to a physical situation where electromagnetic induction can 
be neglected. This is the case for neural tissue, where we have an excellent ap-
proximation of the electric field if we assume 

free

0
ρ∇ ⋅ =


∇× =

D
E

                      (1) 

where the fields free, , ρE D  are mean-fields over a base volume   [7]. By de-

 

 

1Here, “apparent” refers to the values that can be measured experimentally. 
2Note that there also exists a magnetic quasi-static approximation, where electromagnetic induction 
is not negligible, but the displacement current is rather neglected. The latter approximation applies 
when  cE B . 
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finition, we have X=


X . 

In this approximation of the Maxwell-Heaviside equations, the electric field 
and magnetic induction are such that  cE B  where c is the velocity of 
electromagnetic waves [13]. Thus, in this approximation, we can calculate E  
independently of B  and H  if we know the linking equation between D  
and E . 

On the other hand, the link between the electric displacement field and mag-
netic field always hold because we have 

free

0

o t
µ

∇ ⋅ =


∂  ∇× = +  ∂ 

B
DB j

                    (2) 

where oµ  is the magnetic permeability of vacuum. We do not consider here the 
situation where this permeability would be different from vacuum, which nor-
mally should be a good approximation because of the absence of large amounts 
of ferromagnetic, paramagnetic or diamagnetic materials in neural tissue. 

Moreover, if we restrict to isotropic media (when the inhomogeneity of the 
medium similarly affects all directions), we have: 

( ) ( ) ( )

( ) ( ) ( )free

, , , d (a)

, , , d (b)e

t t t

t t

ε τ τ

σ τ τ τ

+∞

−∞

+∞

−∞

 = −

 = −

∫

∫

D r r E r

j r r E r
                 (3) 

where ( ), tε r  and ( ),e tσ r  are real-valued functions. 
This formalism applies to neural tissue, which can be considered as a hetero-

geneous isotropic medium within a mean-field context, when the base volume is 
sufficiently large (>1 µm3; see ref. [7]). The linking equations imply that the val-
ues of D  and freej  at a given time depend on the past values of the electric 
field in general, which can be seen as a kind of “memory”. The only way to avoid 
such a memory is to assume ( ) ( ) ( ),  e ct tσ σ δ=r r  and ( ) ( ) ( ),  ct tε ε δ=r r  where 

cσ  and cε  are not time-dependent. Note that such a memory is equivalent to 
having a frequency dependence of the electric permittivity and/or conductivity, 
when we formulate the problem in Fourier frequency space. In this case, the re-
lations (3) imply ( ) ( ) ( ), , ,ω ε ω ω=D r r E r  and ( ) ( ) ( ), , ,eω σ ω ω=j r r E r . 

Finally, recalling that ∇ ⋅D  allows us to calculate the free charge density in a 
region  , we have: 

( ) ( )free , d d dQ t t x y z= ∇ ⋅∫∫∫ D r


.                  (4) 

The electric permittivity ε  measures the amount of free charges in a given 
region. The higher the density, the larger the permittivity. 

2.2. Electric Conductivity and Permittivity in a Mean-Field Model 
of Isotropic Media 

In the following, we will re-examine the Kramers-Kronig relations in the case of 
a heterogeneous and conductive medium, where the electric field is time depen-
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dent. In a first step, we show that the Kramers-Kronig relations are equivalents 
to the Hilbert transform if we apply them to ( ),ωε ωr  instead of ( ),ε ωr . In a 
second step, we show that we have the same relations for the conductivity eσ . 

2.2.1. General Expression for the Absolute Electric Permittivity 
According to relations (3), the electric displacement field D  is linked to the 
resulting electric field E  by a convolution integral: 

( ) ( ) ( ) ( ) ( ), ,  , d , , dt t tε τ τ τ ε τ τ τ
+∞ +∞

−∞ −∞
= − = −∫ ∫D r r E x x E r .      (5) 

However, we must also assume that ( ), 0tε =x  when 0τ <  because the fu-
ture cannot influence the past (causality principle). Thus, we can write 

( ) ( ) ( )
0

, , , dt tε τ τ τ−

+∞
= −∫D r r E r                   (6) 

which is always valid in a plausible physical system. 
Moreover, in general, we can write 

( ) ( ) ( ), ,ot t tε ε δ χ= +  r r                     (7) 

which is always valid because χ  is an arbitrary function (or distribution). The 
parameter 128.875 10 F moε

−= ×  is the vacuum permittivity and χ  is the elec-
tric susceptibility expressed in temporal space. χ  measures the amount of free 
charges induced by applying an electric field in the medium. Note that this phe-
nomenon will be necessarily present in a heterogeneous medium such as neural 
tissue because we have charge accumulation in membranes when applied to an 
electric field. Note that the phenomenon of charge induction can change the law 
of attenuation with distance, as shown before [15]. 

Thus, we can write 

( ) ( ) ( ) ( )

( ) ( )
0

0

, , , d

, , d .

o

o o

t t t

t

ε δ χ τ τ τ

ε ε χ τ τ τ

+∞

+∞

= + −  

= + −

∫

∫

D r r E r

E r E r
              (8) 

It follows that, if the Fourier transform relative to 2πω ν=  exists3, then we 
have 

( ) ( ) ( ) ( ) ( ), 1 , , , ,oω ε χ ω ω ε ω ω= + =  D r x E r r E r           (9) 

where 

( ) ( )
 0

, 1 , e di
o

ωτε ω ε χ τ τ
+∞ − = +  ∫r x .                (10) 

We see that the electric permittivity in Fourier frequency space is in general a 
complex function, and its variation with respect to that of vacuum is such that 

 

 

3Note that the Fourier transform may not necessarily exist for all possible mathematical models. 
However, in the case of heterogeneous media like neural tissue, we can safely assume that the Fouri-
er transform of electric field and parameters associated to the medium exist because they have a fi-
nite duration. Thus, the time integral does not go to infinity, which means it will necessarily con-
verge because the induced electric charge and susceptibility are bounded. 
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( )
 0

, e d .i
o o

ωτε ε ε ε χ τ τ
+∞ −∆ = − = ∫ x                (11) 

The latter equation implies that we have 0ε∆ =  when ω →∞ . Thus, the 
permittivity tends to that of vacuum when the frequency tends to infinity, which 
is in good agreement with experimental measurements. The real part of ( )ε ω∆  
is an even function relative to the frequency ω  and its imaginary part is an odd 
function because ( )o tε χ  is a real function. 

2.2.2. Analytic Continuation of ωε and the Kramers-Kronig or Hilbert 
Transform 

We have shown that the imaginary part of ( ),ε ω∆ r  in Fourier frequency 
space must be odd and that the real part must be even if we want the system to 
be physically plausible. Moreover, it was shown that the real and imaginary parts 
of permittivity are linked by the Kramers-Kronig relations. However, we will 
develop this transform for ( ),ω ε ω∆ r  instead of ( ),ε ω∆ r  to make the for-
malism more uniform between conductivity and permittivity. 

According to expression (11), we have 

( )
 0

, e di
o

ωτω ε ωε χ τ τ
+∞ −∆ = ∫ x .                        (12) 

If we analytically continue the real frequency ω  over the complex plane by 
setting iω ω ω′ ′′= +  then the last integral becomes 

( ) ( ) ( ) ( )1

0 0
, e d lim , e e di i

o o i
δ ω δ τωτ ω τ

δδ
ε χ τ ω τ ε χ τ ω ω δ τ

+∞ ′′−′− −

→
′ ′′= + −  ∫ ∫r r   (13) 

where 0δ > . The last integral converges when 0ω′′ ≤  and tends to zero when 
ω′′→ −∞ . It diverges when 0ω′′ > . Note that it is because we have applied the 
causality principle that the integral can converge for 0ω′′ < ; omitting causality 
would prevent convergence because one would need to integrate between −∞  
and +∞  (see Equation (5)). 

Thus, the causality principle has the consequence that the function ω ε∆  is 
holomorphic in the complex inferior half-plane, as well as on the real axis4. If we 
call this Region   and apply the Cauchy integral of a holomorphic function, 
which gives 

( ) ( ),1, d
2π

a a
a

ai
ω ε ω

ω ε ω ω
ω ω
∆

∆ =
−∫
r

r


                 (14) 

if the path is closed within Region  , and if all points in this path are all si-
tuated at a finite distance from the origin. Note that, under this constraint, the 
function in the integral has only one singular point at aω ω=  because ω ε∆  is 
a holomorphic function inside  . This is not the case for ε∆  in a conductive 
medium. 

An interesting choice of path is a clockwise along the real axis, going around 

 

 

4Note that we take into account that the permittivity may vary in time, and its Fourier transform re-
flects these time variations. But one could also consider a specific frequency profile of permittivity, 
and in that case, the temporal variations are given by its inverse Fourier transform (see ref. [8] [11]). 
In the latter case, one must consider the holomorphic transformation in the superior half-plane. 
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the singularity aω ω=  along a half-circle of radius δ  and a large half-circle of 
radius 1R δ=  (see Figure 1). In this case, there is only the principal value of 
the integral on the real axis, and we can write 

( ) ( ),1, d
π

a
a

ai
ω ε ω

ω ε ω ω
ω ω

+∞

−∞

∆
∆ = −

−∫
r

r .              (15) 

For aω ∈  and aω →∞ , we have ( ), 0aω ε ω∆ →r . Note that this con-
dition is equivalent to postulate that ( ), aε ω∆ r  tends to 0 faster than 1 aω  
when frequency tends to infinity. This insures that the integral in Equation (15) 
converges. This is obtained because for R →∞  ( 0δ → ), the integral over the 
large circle is zero (see Equation 10) while the integral over the small circle is 
equal to ( ), 2ω ε ω− ∆ r  when 0δ →  (see Figure 1). We note the principal 
part of the integral by ∫ . 

We can separate the real and imaginary parts of ( ),ω ε ω∆ r , leading to 

( ) ( ) ( )

( ) ( ) ( )

,1, d (a)
π

,1, d (b)
π

a a
a

a

a a
a

a

ω ε ω
ω ε ω ω ε ω

ω ω

ω ε ω
ω ε ω ω ε ω

ω ω

+∞

−∞

+∞

−∞

′ ∆
′′ ′∆ = ∆ =

−


′′∆ ′ ′′∆ = − ∆ = − −

∫

∫

r
r

r
r





     (16) 

Note that Equations (16a) and (16b) are of opposite sign as the Kramers-Kronig 
relations as presented by Landau & Lifshitz [8] and Forster & Schwan [10]. The 
reason for this difference is that our analytic continuation of the electric pa-
rameters are holomorphic in the negative half-plane, instead of the positive 
half-plane [11]5. 
 

 
Figure 1. Illustration of the integration path in Region  . The singular point aω ω=  
is on the real segment inside the half circle indicated. If 0r →  and R →∞ , then ap-
plying the Cauchy integral gives the Hilbert transform. 

 

 

5The starting point of Landau & Lifshitz [8] is to assume that the permittivity depends on frequency 
a priori, which defines the temporal evolution of the permittivity as the direct Fourier transform of 
the permittivity defined in frequency space. In our approach, we consider that the permittivity is 
first defined in time, while the permittivity in frequency space is given by its direct Fourier trans-
form. These two definitions are mathematically equivalent but with a change of sign. This is why in 
our formalism, we apply the inverse Fourier transform of the permittivity in frequency space to ob-
tain the temporal evolution of the permittivity. The two approaches are equivalent, but our approach 
is more appropriate in the case there are time variations of electric parameters (such as the opening 
and closing of ion channels). 
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Consequently, the real and imaginary parts of ( ),ω ε ω∆ r  are linked by the 
Hilbert transform. To calculate the real part from the knowledge of the imagi-
nary part, one can apply the inverse Hilbert transform, while the direct trans-
form is used to calculate the imaginary part from the real part. Note that this 
transform is totally equivalent to the Kramers-Kronig relations6. 

Finally, we can write 

i iω ε ω ε ω ε ω ε ω ε′ ′ ′′ ′′   ∆ = ∆ + ∆ = − ∆ + ∆     .       (17) 

We can see that the phase φ  of ω ε∆  is such that we have: 

( )tan
ω ε ω ε

φ
ω ε ω ε

′ ∆ ′′∆ = = −
′∆ ′′ ∆ 




. 

Thus, the phase is completely determined when either the real or imaginary 
part of ω ε∆  is known. 

2.3. Electric Conductivity within the Quasi-Static Approximation 

We now consider the temporal and frequency dependence of the electric con-
ductivity in linear media within the electric quasi-static approximation. In the first 
section below, we review the constraints that must be satisfied in Fourier frequen-
cy space on the electric conductivity to simulate a physically plausible system. We 
show that the electric conductivity also obeys to a Hilbert transform, similar to that 
shown above for ω ε∆ . 

2.3.1. Electric Conductivity and Free-Charge Current in Linear  
Electromagnetism 

It is well known that the most general relation between the free-charge current 
density ( )free , tj r  and the electric field ( ), tE r  in linear electromagnetism is 
given by the convolution integral: 

( ) ( ) ( ) ( ) ( )free , , , d , , de et t tσ τ τ τ σ τ τ τ
+∞ +∞

−∞ −∞
= − = −∫ ∫j r r E r x E x    (18) 

where 0eσ ≥ 7 Expression (1) can be written as: 

( ) ( ) ( )free , , ,eω σ ω ω=j r r E r                  (19) 

in Fourier frequency space. Here, the convolution in temporal space corresponds 
to a simple product in frequency space. Note that the function ( ),eσ ωr  de-
pends on the value of the electric field when the relation between the current 
density and eclectic field is nonlinear, but this dependence vanishes if the system 
is linear. 

Finally, Ohm’s law corresponds to the simplest model expressed by Equations 
(17), (18). In this particular case, we have ( ) ( ) ( ),e t tσ τ σ δ τ− = −x x  where 
σ  does not depend on time. δ  is the Dirac distribution. This law corresponds 

 

 

6One can recover Kramers-Kronig by considering the parity of the real and imaginary parts. 
7This function is necessarily positive or zero, because experiments show that the current density is 
always in the same direction as the electric field. The terms under the integral are real functions, and 
the function ( )e tσ  is in [S/ms]. 
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to an idealized physical system without memory (see Section 2), were the work 
produced by the electric field on the free charges dissipates almost instantaneous-
ly8 in the system. Note we also have in this case ( ) ( ) ( )free , ,t tσ=j r r E r  in tem-
poral space, and we have a similar relation ( ) ( ) ( )free , ,ω σ ω=j r r E r  in frequency 
space. Thus, we have the same algebraic relation between freej  and E  in both 
spaces. 

2.3.2. Constraints Imposed by the Causality Principle 
To be physically plausible, a system must obey the causality principle. This prin-
ciple determines a constraint on the relation between the free-charge current 
density freej  and the electric field E  (within the linear electromagnetic theory). 
According to this principle, the future cannot influence the past, and thus we 
can write that, at a given time t, freej  and E  are related as 

( ) ( ) ( )free
0

, , , det tσ τ τ τ
+∞

= −∫j r r E r               (20) 

because the values of the electric field at times greater than t cannot influence 
the current density at time t. Note that this is equivalent to assume that 

( ), 0eσ τ =r  when 0τ <  in Equation (19). This constraint is general and must 
be included in all mathematical models of conductivity to be physically plausi-
ble. 

2.3.3. Electrical Conductivity in a Heterogeneous Medium 
We now consider the case of a heterogeneous medium composed of different cells 
and various processes immersed in a conductive fluid, such that the distance 
between different elements cδ  is always greater than zero. We also assume that 
the electric conductivity of this medium tends asymptotically to ( ), tσ∞ r  when 
the frequency ν  tends to infinity. For high frequencies, there is a portion of 
free charges which does not meet any process, because their mean displacement 
becomes smaller than cδ . However, for sufficiently low frequencies, the pres-
ence of cells will impact all free charges, and the conductivity will be affected and 
will be different as that of high frequencies. Thus, the conductivity of a hetero-
geneous medium will necessarily be frequency dependent within some frequency 
range. 

This intuitive explanation can be formulated more quantitatively. The electric 
conductivity can be expressed as 

( ) ( ) ( ), , 1 ,e et t tσ σ∞  = + ∆ r r r             (21) 

where ( ), 0e t∆ ≠r . It follows that Expression (5) can be written as 

( ) ( ) ( ) ( )free
0

,  , 1 , , det tσ τ τ τ τ
+∞

∞  = + ∆ − ∫j r x x E x .     (22) 

Taking the Fourier transform, we obtain 

( ) ( ) ( ) ( ) ( )free
0

, , , , e d ,i
e

ωτω σ ω σ τ τ τ ω
+∞ −

∞ ∞
 = + ∆  ∫j r r x x E r .     (23) 

 

 

8“Almost instantaneously” means that the dissipation of the energy brought by the electric field is 
produced at 0 0 dt+ = + . 
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Thus, we can write 

( ) ( ) ( ) ( )
0

, , , ,  e di
e e

ωτσ ω σ ω σ τ τ τ
+∞ −

∞ ∞= + ∆∫r r r r         (24) 

where the function ( ) ( ), ,eσ τ τ∞ ∆r r  is such that the integral in Expression (24) 
tends to zero when ω →∞ . Thus, ( ),eσ ω →∞r  tends to ( ),σ ω∞ r . Note that 
the integral in the right-hand side converges because it is the Fourier transform 
of e eσ σ σ∞∆ = − . 

2.3.4. Similar Relations between ω ε∆  and eσ∆  

We know that the imaginary part of eσ∆  in frequency space is an odd function, 
while the real part is even, if the model is physically plausible because the 
time-dependent conductivity is a real function. However, these parts could still 
be independent of each-other. We now show that if we apply the causality prin-
ciple, the imaginary part of eσ∆  (in frequency space) is completely determined 
by its real part, via a Hilbert transform, exactly like ω ε∆ . 

If we analytically continue the frequency ω  over the complex plane by taking 
iω ω ω′ ′′= + , then the integral in Expression (23) becomes 

( ) ( ) ( ) ( ) ( )1

0 0
, , e d lim , ,  e e di i

e e
δ ω δ τωτ ω τ

δδ
σ τ τ τ σ τ τ τ

+∞ ′′−′− −
∞ ∞→

∆ = ∆∫ ∫r r r r    (25) 

where 0δ > . This integral converges when 0ω′′ <  and tends to 0 for ω′′→ −∞ . 
On the other hand, it diverges when 0ω′′ > . Note that the principle of causality 
allows the convergence of this integral when the imaginary part of ω  is smaller 
than zero. This would not be the case if the causality principle is not used, be-
cause one would need to integrate between −∞  and +∞ . 

Thus, the situation is completely analogous to the analytic continuation of ω ε∆ , 
and we can write: 

( ) ( )

( ) ( )

,1 d  (a)
π

,1 d (b) 
π

e a
e e a

a

e a
e e a

a

σ ω
σ σ ω

ω ω

σ ω
σ σ ω

ω ω

+∞

−∞

+∞

−∞

′ ∆
′′ ′∆ = ∆ =

−


′′∆ ′ ′′∆ = − ∆ = − −

∫

∫

r

r





        (26) 

( ) ( ) ( ), , ,e e eiσ ω σ ω σ ω′ ′′= +r r r  and iσ σ σ∞ ∞ ∞′ ′′= + . ( ),eσ ω′ r  and σ∞′  are 
respectively the real part of eσ  and σ∞ , while ( ),eσ ω′′ r  and σ∞′′  are respec-
tively their imaginary part. Consequently, if we know the conductivity at very 
high frequencies and the real part of its frequency dependence, then we can de-
termine the corresponding imaginary part using the Hilbert transform, and vice 
et versa. Finally, note that we apply here the Hilbert transform to the variation of 
conductivity relative to ( ),eσ ∞r  to make sure that the integral converges when 
the frequency tends to infinity. 

2.4. Apparent Conductivity and Permittivity between Two  
Isopotential Surfaces 

Within the electric quasi-static approximation, the electric field can be expressed 
as the gradient of the potential, V= −∇E . We also know that the free-charge 
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current is not conserved in general in a heterogeneous medium, for example be-
cause charge accumulation can occur9 The density of the generalized current  

is such that 0g∇ ⋅ =j , where freeg

t
∂

= +
∂
Dj j . Note that this does not represent  

a stationary law, because gj  is time dependent, but it is rather a conservation 
law [16]. The generalized current entering a given domain is always equal to the 
generalized current exiting that domain, even if charge accumulation occurs10. 

Thus, according to these laws, the generalized current density between two 
close-by equipotential surfaces is given by: 

( ) ( ) ( ) ( ) ( ), , , ,g
eV i Vω γ ω ω σ ωε ω= − ∇ = − + ∇j r r r r      (27) 

where γ  is the admittance of the medium. eσ  is the link between freej  and 
E  in frequency space, while ε  is the link between E  and D . The latter 

link allows one to calculate the induced charge in a given region of the medium 
by a given electric field, expressed in Fourier frequency space. Note that these 
links are all complex numbers in general because there can be a non-zero phase, 
similar to a capacitance. 

If we now assume the following equalities: 

( ) ( ) ( ) ( ), , ,     ,i etγ σ ωε γ γ ω γ∞∞ = ∞ + ∞ ∆ = −r r r r .        (28) 

Applying Equations (16) and (25), we can write: 

( ) ( ) e ei iγ γ γ σ ω ε ω ε σ   ′ ′′ ′ ′ ′ ′∆ = ∆ + ∆ = ∆ − ∆ + ∆ + ∆     .     (29) 

It follows that 

( )
( )

(a)

(b)

γ γ

γ γ

 ′′ ′∆ = ∆


′ ′′∆ = − ∆




                    (30) 

because the Hilbert transform obeys ( )2 F F− = . We can also write 

( )iγ γ γ′ ′∆ = ∆ + ∆                       (31) 

such that the phase φ  obeys 

( )
( )

tan
γ

φ
γ

′∆
=

′∆


.                        (32) 

For a sufficiently large base volume, we can always assume that the conductiv-
ity and permittivity do not depend on position. In this particular case, we can 
write 

( )

ˆd (a)

ˆd (b)

eq

g

b l
a

I n S S

V V n s l
γ ω

 = ⋅ =



∆ = ∇ ⋅ =

∫∫

∫

j j

j




                (33) 

 

 

9In the Debye layers of ions around a membrane, for example. 
10Note that this is only true at chemical steady-state, when there is no current created by chemical 
reactions (see discussion in ref. [17]). 
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where the current gI  is conserved. j


 is the mean current density over an 
equipotential surface and 

l
j  is the mean current density along a current 

line between two equipotential surfaces. These two means are different in gener-
al, but if we take the curve that goes through the mean current density j


 

over each equipotential surface, then we can say that this curve is a current line. 
Consequently, there exists an equipotential surface and a current line such that 

l
=j j


. It follows that, if A  is the area of this surface, and l  is the 

distance between two isopotential surfaces, then we can write 

( ) 
g AI
V l

γ ω=
∆





.                           (34) 

This form is identical to that of a plane capacitor which possesses a leak cur-
rent, because the real part is non-zero, or a conductance with a non-negligible 
capacitive effect, because the imaginary part is also non-zero. 

If we define the apparent conductivity as σ  as the real part of γ  

eσ γ σ ωε′ ′ ′′= = −                        (35) 

and the apparent permittivity ε  times the angular frequency ω  as the im-
aginary part of γ  

 ,eωε γ ωε σ′′ ′ ′′= = +                        (36) 

we can then write where these apparent parameters are real and linked by a Hil-
bert transform. We have ( )ω ε σ∆ = ∆   and ( )σ ω ε∆ = − ∆  . 

Thus, the knowledge of one parameter is sufficient to deduce the other. For a 
given frequency, it is always possible to simulate the current-voltage relation be-
tween two isopotential surfaces as a plane capacitor (see Figure 2). The leak cur-
rent of this capacitor is determined by the Hilbert transform of its admittance, or 
by a conductance possessing a capacitive effect determined by Hilbert transform 
of the admittance. Finally, σ  and ε  are an even function (see Equations 
(35) and (36)) relative to ω . 
 

 
Figure 2. Capacitance with a leak current fI . In Fourier frequency space, the voltage 

difference V and the current density j obey [ ] e
Vi
d

σ ωε= +j  when the electric parame-

ters do not depend on frequency. d is the distance between the arms of the capacitor. The 
density of the leak current is given by  f ej Vσ=  that of the capacitive current is 

cj i Vωε= . We also have f fI j A=  and c cI j A=  where A is the area of the arms. 
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It is important to note that, for the apparent parameters, as defined in Equa-
tions (35) and (36), we have the following properties. First, the apparent con-
ductivity is equal to the electric conductivity when 0ω = , or when the imagi-
nary part of the electric permittivity is zero. Second, the apparent permittivity 
becomes infinitely large for 0ω =  when the imaginary part of the electric con-
ductivity is different from zero. Third, if the imaginary parts of both electric con-
ductivity and permittivity are zero, then the apparent parameters are identical to 
electric parameters. Finally, if the physical effects associated to the electric per-
mittivity (density of induced charges) are negligible compared to that of electric 
conductivity, then the apparent conductivity is approximately given by the real 
part of electric conductivity, and the apparent permittivity is approximately to 
the imaginary part of electric conductivity divided by ω . 

3. Applications 

In this section, we consider models of different known media to illustrate the 
consequences of the relations outlined in the theoretical part. All models consi-
dered are built within the quasistatic approximation of the linear electromagnet-
ic theory of Maxwell-Heaviside. In other words, we do not consider physical 
phenomena associated to electromagnetic induction ( 0∇× =E ). In such condi-
tions, we can apply the Kramers-Kronig relations (or Hilbert transform) over the 
approximated electric parameters11. 

3.1. Constraints on the Conductivity Given by the Kramers-Kronig 
Relations 

3.1.1. First Example 
As a first example, we consider an isotropic medium where the base volume of 
the mean-field does not depend on position. We suppose that the medium is such 
that eσ  depends on frequency with a null imaginary part, and that lim e k

ω
σ

→∞
=  

is real and frequency independent. This model would correspond to a heteroge-
neous and isotropic medium where the conductivity depends on frequency ν  
according to a law ( ) ( ) ( ) ( )2πe e e eiσ ω ν σ ω σ ω σ ω′ ′′ ′= = + = . 

In this case, according to Equation (26b), we must have 

( ) ( )e kσ ω σ′ = ∞ =                      (37) 

because 0eσ ′∆ =  when 0eσ ′′∆ = . Therefore, according to Kramers-Kronig re-
lations, eσ ′  would not depend on frequency, which is contradictory with the in-
itial hypothesis. 

Thus, a model of this kind is not acceptable, because we have a contradiction 
with the causality principle because the Kramers-Kronig relations are a direct con-
sequence of this principle in a linear system. 

For example, it is impossible to have a conductivity law of the form  
ex c

e kωσ ω −= +  where x is arbitrary. One must add an imaginary part, which 

 

 

11By “approximated” parameters, we mean the electric parameters within the quasistatic electric ap-
proximation. They constitute an excellent approximation for low frequencies, <~10 kHz. 
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implies that the phase is non-zero. Thus, a model with a frequency-dependent 
conductivity but a null phase is physically impossible in a model where conduc-
tivity becomes resistive or if the phase becomes zero at high frequencies. Note 
that, in general, the electric conductivity is not necessarily real for large frequen-
cies. It was shown before that the linear approximation of a physical system with 
ionic diffusion gives an electric conductance of the form ( )a ibω +  [7]. Thus, 
the asymptotic behavior of the electric conductivity at high frequencies is very 
different from the electric permittivity, because the latter tends to the permittiv-
ity of vacuum, which is real. 

For example, let us consider a model of a medium in which the electric con-
ductivity is frequency-dependent, but the permittivity is constant. According to 
above, such a medium is physically impossible, because it would violate the 
principle of causality. It is important to note that the standard model of a resis-
tive extracellular medium and the capacitive effects are neglected. 

This model is asymptotically resistive at high frequencies ( lim e k
ω

σ
→∞

= ), and 
thus, we can conclude that, if the conductivity depends on frequency, one must 
necessarily have both real and imaginary parts different from zero for the model 
to be physically plausible. 

3.1.2. Second Example 
In this section, we suppose that the apparent macroscopic permittivity ε  be-
tween two equipotential surfaces is given by 

2o x

κ
ε ε

ω += +                         (38) 

where ,x κ ∈  and 1x ≥ − , and 0κ ≥  and frequency-independent. Note 
that this model respects the parity of ε  (see Equation (36)) because we have 

( ) ( )ε ω ε ω+ = −  . This simple model corresponds to a physical situation where 
the apparent permittivity diminishes for increasing frequency, and approaches 
that of vacuum for very high frequencies. This situation is often encountered in 
heterogeneous media such as biological tissues (see for example, the experimen-
tal measurements of Gabriel et al. [1]). 

Note that if the apparent permittivity ε  tends to that of vacuum, then the elec-
tric conductivity eσ  must necessarily have a zero phase when frequency tends 
to infinity (see Equation 36) because the real part of the electric permittivity ε  
tends to that of vacuum. 

By applying Equation (30b) and assuming that ay
w
ω

= , we obtain: 

( ) ( ) ( )
1

1 120

2 1 d
π 1x xx

y
y y

κκ
σ ω ωε

ω ω
+∞

+ +∆ = − ∆ = − = −
−∫        (39) 

where we have 

( )1 20

2 1 d
π 1 x

y
y y

κ
κ

+∞
=

−∫ .                     (40) 

Consequently, the phase of the admittance variation is such that 
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( ) ( )
( ) 1

tan
ωε κ

φ
σ κ

∆
= = −

∆




                      (41) 

when 0ω >  and 
1

κ
κ

+  for 0ω < . Note that 1κ  depends on the value of the  

exponent x. Also note that the phase of the admittance variation γ∆  does not 
depend on frequency in this type of model. 

We now calculate the phase for different values of the exponent x. The prin-
cipal part of the integral in expression (40) is explicitly given by the following 
expression: 

( ) ( )
1 1

1 2 210

1 1lim d d
1 1x x

y y
y y y y

δ δ

δ δδ
κ

−

+→

 
 = +
 − − 
∫ ∫        (42) 

where 0δ > . 
Case x = 0. 
For 0x = , Equation (42) becomes 

1 0

2 1 1 2 lim ln 0
π 2 1 1δ

κ δ δ δ δ
κ

δ δ δ δ→

− + − + = ⋅ ⋅ ⋅ = − − + 
.          (43) 

It follows that the phase of the admittance variation is given by π
2

φ = −  for 

( 0ω > ), and π
2

φ =  for ( 0ω < ). 

Moreover, we see that the variations of apparent conductivity with frequency 
are such that 0σ∆ = . Thus, in this model, the apparent conductivity is equal 
to the real part of the electric conductivity because, for infinite frequencies, the 
imaginary part of electric permittivity ε ′′  tends to zero and ε ′  tends to that of  

vacuum. Thus, we have 2o
κ

ε ε
ω

= +  and ( )eσ σ ω′= →∞ . Consequently, if  

we assume that the medium is resistive for very high frequencies, then we see 
that the phase is necessarily frequency-dependent because the phase of the  

admittance γ  is given by ( )
0

tan
e

κωε
ωφ

σ

+
=

′
 for 0ω > . 

Case 1 2x = ± . 
In this case, the primitives of the integrals in expression (42) are: 

111 ln tg
2 1

y
y

y
−

 −
 
+  


.                        (44) 

It follows that 

1 0

1 12 1 1 1 1 1 lim ln 
π 1 1 1 1 1 1 1

t t
δ

δκ δ δ δ
κ

δ δ δ δ→

 −− − + + +
= ⋅ ⋅ ⋅ + = 

+ + − + − +  
     (45) 

where 

1 1 1 1

0

2  lim tg 1 tg tg 1 tg 1
π

t
δ

κ
δ δ δ δ κ− − − −

→
 = − − + − + =   . 
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Thus, the phase (Equation (41)) of the admittance variation is given by  
π
4

φ = ± , because we have 

( ) ( )
( )

tan 1
ωε

φ
σ

∆
= = ±

∆




.                     (46) 

Consequently, the admittance variation γ∆   is such that  

( )( )1 iγ σ∆ = ∆ −   and ( )( )1 iγ σ∆ = ∆ +   when we have, respectively,  

3 2o
κ

ε ε
ω

= +  and 5 2o
κ

ε ε
ω

= + . 

This result is interesting for the following reason: we note that if we consider 
the case where the exponent equals −3/2 for ε∆  , then we have 0σ∆ < . This 
corresponds to a situation where conductivity increases with frequency. On the 
other hand, if the exponent equals −5/2, then the apparent conductivity decreas-
es with frequency. The first case seems in agreement with experimental mea-
surements (see [1]). 

It follows that, for the first case (exponent of −3/2), we can write: 

( ) ( )( ) ( )1 iγ γ γ ω σ γ ω= ∆ + = ∞ = ∆ − + = ∞     .         (47) 

We see that if the apparent admittance tends asymptotically to a constant C 
(independent of frequency) for high frequencies, then we have ( )C σ≈ ∆  , so 
there will be a non-negligible phase at low frequencies. We recall that, by  
definition, we have ( )lim 0

ω
σ

→∞
∆ =  (see Equation (28)). 

We also see that if the product ωε  is negligible compared to electric conduc-
tivity, and if the latter tends to a Warburg impedance for high frequencies (as in 
ref. [18]), then, according to the definition of apparent parameters (Equations 
(35) and (36)), we can write: 

( )( ) ( )1e k iγ γ σ ω= = ∆ + ±                (48) 

where eγ  is the electric admittance. 
Case x arbitrary and greater than −1.  
For an arbitrary value of x, we can write 

( ) ( )
( )

tan cst
ωε

φ
σ

∆
= =

∆




                     (49) 

such that we can write 

( ) ( ) ( )( ) ( )1 tan iγ γ γ ω σ φ γ ω= ∆ + = ∞ = ∆ + + = ∞          (50) 

where the phase γ  is frequency dependent because ( )σ∆   depends on fre-
quency. 

Finally, we see that if the electric permittivity varies according to the following 
law: 

2
1

j

N
j

o x
j

κ
ε ε

ω +
=

= +∑                        (51) 
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where 1jx > − , then we can calculate the phase of the apparent electric admit-
tance, by fitting the expression (51) to the measured electric permittivity. Note 
that in these examples, this phase is non-negligible when the electric or apparent 
parameters (admittance, conductivity, permittivity) are frequency dependent. 

4. Discussion 

In this paper, we have re-examined electromagnetism theory in heterogeneous 
media, in particular focusing on the Kramers-Kronig relations, following the Lan-
dau & Lifshitz formalism [8]. Our main finding is that, similar to the well-known 
Kramers-Kronig relations linking the real and imaginary parts of the electric 
permittivity [8], one can also derive similar relations for electric conductivity. Thus, 
in heterogeneous media, the two electric parameters obey symmetric dependen-
cies in Fourier frequency space. This finding is general, and also applies to a ho-
mogeneous medium (which is a particular case of heterogeneous media). We dis-
cuss below the significance of these results. 

As a first example, we considered the model of a medium where electric con-
ductivity is assumed to be frequency-dependent, but with a constant permittivity. 
We showed that, according to Kramers-Kronig relations, this model is physically 
impossible, as it would violate the principle of causality. This model is also asymp-
totically resistive at high frequencies ( lim e k

ω
σ

→∞
= ), and thus, we can conclude that, 

if the conductivity depends on frequency, one must necessarily have both real 
and imaginary parts different from zero for such a model to be physically plausi-
ble. It is important to note that the NEURON simulator [19] used for realistic 
neuronal simulations cannot deal with complex electric parameters (non-negligible 
phase), so cannot be used to simulate physically-plausible non-resistive situa-
tions. 

In a second example, we considered experimental measurements suggesting that 
the extracellular medium around neurons is non-resistive [3] [5]. We showed here 
that these measurements are consistent with Kramers-Kronig relations, and the 
principle of causality. However, other measurements suggesting resistive media [2] 
[4], are also consistent with Kramers-Kronig relations. All these experimental mea-
surements are thus physically plausible and self-consistent. On the modeling point 
of view, the models of non-resistive media [3] [6] [7] [16], as well as those of re-
sistive media [4], are all consistent with Kramers-Kronig relations as well. Note 
that ionic diffusion was proposed as a mechanism to explain the non-resistive mea-
surements [3] [5] [6], and according to this mechanism, the phase of the appar-
ent admittance should tend to π 4  at high frequencies (Warburg impedance). 
This value seems in agreement with phase measurements in cerebral cortex [3] 
[20] and retina [18], and is also consistent with Kramers-Kronig relations. 

A further interesting property, developed Section 2.4, is that the apparent per-
mittivity is far from negligible at very low frequencies when the imaginary part of 
the electric conductivity is non zero, even if it is very small. This property must 
be related to the difficulty of measuring the impedance (or admittance) at low 
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frequencies [1] [2] [3] [20]. This difficulty could be the sign that the apparent per-
mittivity increases rapidly at low frequencies (lower than ~10 Hz). This pheno-
menon should not appear in a resistive medium. 

5. Conclusion 

We conclude that, given the constraints imposed by Kramers-Kronig relations, the 
previous experimental measurements seem internally consistent for frequencies 
larger than 10 Hz, either for resistive [2] [4] or non-resistive media [1] [3]. Fur-
ther experiments are needed to distinguish between these two alternatives, as re-
viewed in detail previously [5]. 
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