
Journal of Signal and Information Processing, 2018, 9, 36-62 
http://www.scirp.org/journal/jsip 

ISSN Online: 2159-4481 
ISSN Print: 2159-4465 

 

DOI: 10.4236/jsip.2018.91003  Feb. 13, 2018 36 Journal of Signal and Information Processing 
 

 
 
 

The Response to Arbitrarily Bandlimited 
Gaussian Noise of the Complex Stretch 
Processor Using a Conventional 
Range-Sidelobe-Reduction Window 

John N. Spitzmiller 

Simulation & Integration Services, Parsons Government Services, Inc., Huntsville, AL, USA 

 
 
 

Abstract 
This paper derives a mathematical description of the complex stretch proces-
sor’s response to bandlimited Gaussian noise having arbitrary center fre-
quency and bandwidth. The description of the complex stretch processor’s 
random output comprises highly accurate closed-form approximations for the 
probability density function and the autocorrelation function. The solution 
supports the complex stretch processor’s usage of any conventional range- 
sidelobe-reduction window. The paper then identifies two practical applica-
tions of the derived description. Digital-simulation results for the two identi-
fied applications, assuming the complex stretch processor uses the rectangu-
lar, Hamming, Blackman, or Kaiser window, verify the derivation’s correct-
ness through favorable comparison to the theoretically predicted behavior. 
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1. Introduction 

Stretch processing [1]-[6] in radar uses relatively narrowband techniques to 
process wideband pulses with linear frequency modulation (LFM). Basic stretch 
processing [2] [3] (i.e., with no range-sidelobe-reduction window) yields the 
same fine range resolution and the same relatively high range-sidelobe levels 
produced by matched filtering. To reduce the range-sidelobe levels produced by 
basic stretch processing of LFM pulses, a practical stretch processor may apply a 
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multiplicative window (e.g., a Hamming window) prior to the final Fourier- 
analysis stage [4] [5] [6].  

Radar texts addressing noise in stretch processors [3] [4] typically consider 
only the case of broadband noise (e.g., receiver thermal noise). References [7] 
and [8] respectively characterized the response to bandlimited Gaussian noise 
(BLGN) having arbitrary center frequency and bandwidth of the complex stretch 
processor having no range-sidelobe-reduction window and the complex stretch 
processor employing a Hamming or Hann window. This paper extends the work 
in [7] [8] to characterize the output noise’s probability density function (PDF) 
and autocorrelation function when the complex stretch processor uses any con-
ventional multiplicative window to reduce the range-sidelobe levels. The output 
noise’s PDF and autocorrelation function provide sufficient information for 
high-fidelity simulation of the complex stretch processor’s output noise via 
standard techniques. Since the complex stretch processor is a linear system, a 
radar modeler may simply add the simulated noise to the complex stretch pro-
cessor’s simulated response to targets and clutter. 

The derivation assumes the BLGN has arbitrary center frequency and band-
width. Therefore, the results can describe the output noise due to input receiver 
thermal noise, broadband-noise jamming, spot-noise jamming, or even spec-
trally offset narrowband interference. The paper specifies a mathematical form 
for the window which can exactly represent the commonly used rectangular, 
Hamming, Hann, and Blackman windows and can closely approximate all other 
conventional windows. 

Section 2 firstly specifies a simplified functional model of a radar employing a 
complex stretch processor with a range-sidelobe-reduction window. Section 2 
then describes the processor’s response to target-return signals. Section 3 derives 
a mathematical description, comprising the PDF and the autocorrelation func-
tion, of the complex stretch processor’s theoretical response to arbitrarily band- 
limited Gaussian noise. Section 4 presents simulation results which verify the 
derived expressions for two practical applications. Section 5 summarizes the 
technical approach, presents key findings, and suggests additional research. 

2. Review of Complex Stretch Processing 

This section reviews the fundamental operations of a radar using complex 
stretch processing. Figure 1 shows a simplified block diagram of the basic func-
tional elements of a monostatic, pulsed radar employing complex stretch 
processing. This section’s discussion uses the mathematical notation shown in 
Figure 1 which pictorially represents the complex stretch processor’s stimula-
tion by a target-return signal. For analytical convenience we assume the complex 
stretch processor comprises exclusively continuous-time (CT) subsystems. 

2.1. Transmitted Signal 

The radar’s transmitter sends a single pulse, 
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Figure 1. Block diagram of monostatic radar using complex stretch processing. 

 

( ) ( ) ( )cos 2π ,T T RF i ps t A f t t tφ τ= + ∆ Π                 (1) 

where TA  is the pulse amplitude in volts, RFf  is the center radio frequency 
(RF) in hertz, t  is time in seconds, pτ  is the pulse duration in seconds, and 

( )i tφ∆  is the instantaneous phase deviation in radians, to the transmit antenna. 
The transmit antenna radiates the pulse to a stationary point target at a slant 
range R  meters from the radar. In Equation (1) 

( ) 1, 1 2
0, otherwise

x
x

 ≤
Π = 


                     (2) 

is the dimensionless unit-pulse function, and 

( ) ( )2π d
t

i it fφ β β
−∞

∆ = ∆∫                      (3) 

where, for an up-chirped LFM pulse with sweep bandwidth B  hertz, 

( ) ( ) ( )i p pf t B t tτ τ∆ = Π                      (4) 

is the transmitted pulse’s instantaneous frequency deviation in hertz. We substi-
tute Equation (4) into Equation (3) and evaluate for Equation (1) to obtain 

( ) ( ) ( )2 2cos 2π π 4 .T T RF p p ps t A f t B t tτ τ τ = + − Π           (5) 

2.2. Received Signal 

The stationary point target instantaneously reradiates the incident pulse, so the 
receive antenna produces the voltage signal 

( ) ( ) ( )

( ){ } ( )2 2cos 2π 2π π 4 .

R R T T d

R RF RF d d p p d p

s t A A s t

A f t f B t t

τ

τ τ τ τ τ τ

= −

   = − + − − Π −  
  (6) 

In Equation (6) 

2d R cτ =                           (7) 

is the round-trip propagation delay, and c  is the speed of light. The ra-
dar-range equation [9] determines the dimensionless ratio R TA A . 

2.3. Quadrature Demodulator’s Output 

Using reference frequency RFf , the receive system’s quadrature demodulator 
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[10] produces the complex envelope 

( ) ( ) ( ) ( ) ( ){ }
{ } ( )

2 22π π 2π π π 4

2 cos 2π 2 sin 2π

e .RF d p d p d p p

QD R RF R RF

j f Bt B t B B
R d p

s t LPF s t f t j LPF s t f t

A t
τ τ τ τ τ τ τ

τ τ
− + − + −

= + −      

 = Π − 

   (8) 

In Equation (8) ( )•LPF  indicates the operation of an ideal lowpass filter hav-
ing a dimensionless passband gain of unity and a cutoff frequency between 2B  
and 2 2RFf B− . Thus, the quadrature demodulator’s output has units of volts.  

2.4. Complex Multiplier’s Output 

Assuming the stretch processor considers target slant ranges from minR  to 

maxR , the slant ranges on this interval correspond to round-trip propagation delays 
from 

2min minR cτ =                          (9) 

to 

2 .max maxR cτ =                        (10) 

To support processing on slant ranges from minR  to maxR , the complex multi- 
plier of Figure 1 multiplies ( )QDs t  with the dimensionless complex signal 

( ) ( ) ( ) ,Mp t w t x t=                       (11) 

where 

( ) ( ) ( )e Mj t
M avg Mx t t Tφ τ∆  = Π −                  (12) 

is a complex heterodyne signal and ( )w t  is a sidelobe-reduction window. In 
Equation (12)  

( ) 2,avg min maxτ τ τ= +                      (13) 

,M max min pT τ τ τ= − +                      (14) 

and 

( ) ( )2 2 2π 2π π 4 π .M avg M avg pt Bt B t BT Bφ τ τ τ∆ = − + + −         (15) 

Note that Equation (15) is the instantaneous phase deviation corresponding to 
the instantaneous frequency deviation 

( ) ( )( ) ( )M p avg avg Mf t B t t Tτ τ τ ∆ = − − Π −             (16) 

which sweeps down through a bandwidth of 

.M M pB BT Bτ= >                       (17) 

Thus, 

( ) ( )
22

2 2π πππ
4

e .
avg avgM

p p p p

B BBTBj t t

M avg Mx t t T

τ τ

τ τ τ τ
τ

 
 − + + −
 
   = Π −          (18) 

In Equation (11) ( )w t  is identically zero outside 2 2avg M avg MT t Tτ τ− ≤ ≤ + . 
Mathematically, 
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( ) ( ) ( ) ,p avg Mw t w t t Tτ = Π −                   (19) 

where 

( ) ( ) ,  2 2p avg M avg Mw t w t T t Tτ τ= − ≤ ≤ +             (20) 

and ( )pw t  can have any form outside – 2 2avg M avg MT t Tτ τ≤ ≤ + . 
Equation (18) and Equation (19) have the common time-limiting factor 

( )avg Mt Tτ Π −   whose nonzero portion always fully overlaps the nonzero 
portion of ( )d pt τ τ Π −   in Equation (8). We can therefore express the com-
plex multiplier’s output voltage signal as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )2π

e ,avg d p

CM QD p M QD

j B t
R d p p

s t p t s t w t x t s t

A t w t
τ τ τ θ

τ τ
 − + 

= =

 = Π − 
         (21) 

where 

( )2 22 π ππ
2π .

4 4
avg d pM

RF d
p p

B BBT f
τ τ τ

θ τ
τ τ

−
= − − −            (22) 

Assuming 

( ) ( ) 2πe dj ft
p pW f w t t

∞
−

−∞

= ∫                    (23) 

exists, the Fourier transform of Equation (21), having units of volt∙seconds or 
volts/hertz, is 

( )

( ) ( ) ( ){ }2π
e e sinc ,avg d p d

CM

j f Bj
R p p p avg d p

S f

A W f f B
τ τ τ τθτ τ τ τ τ

 − − −   = ∗ − − 
  (24) 

where ∗  in Equation (24) denotes linear convolution. Thus, we desire a mathe- 
matical form for ( )pw t  which equals ( )w t  on  

2 2avg M avg MT t Tτ τ− ≤ ≤ +  and has a convenient Fourier transform. The pe-
riodic extension of ( )w t  outside 2 2avg M avg MT t Tτ τ− ≤ ≤ +  satisfies these 
two criteria. Mathematically, 

( ) ( ).p M
k

w t w t kT
∞

=−∞

= −∑                     (25) 

Since this ( )pw t  is periodic with period MT , we can express it as the Fourier 
series  

( ) [ ] ( )2πe ,Mj n T t
p p

n
w t W n

∞

=−∞

= ∑                   (26) 

where the Fourier series’ coefficients are 

[ ] ( ) ( ) ( ) ( )
2 2

2π 2π

2 2

1 1e d e d .
avg M avg M

M M

avg M avg M

T T
j n T t j n T t

p p
M MT T

W n w t t w t t
T T

τ τ

τ τ

+ +
− −

− −

= =∫ ∫    (27) 

Since ( )avg Mt Tτ Π −   temporally limits ( )w t , we can also express Equation 
(27) as 

[ ] ( ) ( ) ( )2π1 1e d ,Mj n T t
p M

M M

W n w t t W n T
T T

∞
−

−∞

= =∫           (28) 

https://doi.org/10.4236/jsip.2018.91003


J. N. Spitzmiller 
 

 

DOI: 10.4236/jsip.2018.91003 41 Journal of Signal and Information Processing 
 

where 

( ) ( ) 2πe d .j ftW f w t t
∞

−

−∞

= ∫                     (29) 

The Fourier transform of Equation (26) is 

( ) [ ] ( ),p p M
n

W f W n f n Tδ
∞

=−∞

= −∑                 (30) 

where δ  denotes the continuous-variable Dirac delta (impulse) function.  
Substituting Equation (30) into Equation (24) gives us 

( ) [ ] ( )

( ) ( ){ }

[ ]
( )

( )

2π

2π

e

e sinc

e e

sinc ,

avg d p d

avg d
d

M p

j
CM R p p M

n

j f B
p avg d p

Bnj f
Tj

R p p
n

avg d
p

M p

S f A W n f n T

f B

A W n

Bnf
T

θ

τ τ τ τ

τ τ
τ

τθ

τ δ

τ τ τ τ

τ

τ τ
τ

τ

∞

=−∞

 − − − 

 −
 − − −∞  
 

=−∞

 = − 
 

 ∗ − − 

=

  −  × − − 
    

∑

∑
    (31) 

where 

( ) ( ) ( )sinc sin π π .x x x=                     (32) 

For any conventional window, the peak magnitude of Equation (31) occurs ei-
ther exactly or very nearly at frequency 

( ) ,peak avg d pf B τ τ τ= −                     (33) 

which maps to slant range 

( )( ) ( )2 2 .peak p peak avg dR c f B c Rτ τ τ= − + = =            (34) 

The slant-range interval min maxR R R≤ ≤  maps to the frequency interval 
( ) ( )max minf R f f R≤ ≤ , where 

( ) ( ) 0max avg max pf R B τ τ τ= − <                  (35) 

and 

( ) ( ) ( ) 0.min avg min p maxf R B f Rτ τ τ= − = − >            (36) 

3. Complex Stretch Processor’s Theoretical Response to BLGN 

This section mathematically characterizes the complex stretch processor’s theo-
retical response to BLGN having arbitrary bandwidth and center frequency. We 
firstly describe the BLGN. We then determine the PDF and autocorrelation 
function of the receive system’s response to the BLGN. Specifically, we show the 
complex stretch processor’s output is complex, zero mean, and Gaussian with 
independent real and imaginary parts. We then derive the autocorrelation func-
tion of the complex stretch processor’s output. From the autocorrelation func-
tion, we find the variance to complete the PDF’s description. This section’s dis-
cussion uses the mathematical notation shown in Figure 2 which pictorially  
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Figure 2. Complex stretch processor stimulated by arbitrarily bandlimited Gaussian noise. 

 
represents the complex stretch processor’s stimulation by arbitrarily bandlimited 
Gaussian noise. 

3.1. BLGN Description 

The BLGN at the complex stretch processor’s input is a real random-voltage 
signal having mathematical form 

( ) ( ) ( ) ( ) ( )cos 2π sin 2π ,R I y Q yy t y t f t y t f t= −             (37) 

where yf  is the BLGN’s center RF. As given in [11], ( )Iy t  and ( )Qy t  are 
real, independent, lowpass, zero-mean, Gaussian, wide-sense-stationary (WSS) 
random signals having common power spectral density (PSD) 

( ) ( ) ( ) ,I Qy y y yS f S f N f B= = Π                 (38) 

where yB  is the BLGN’s RF bandwidth. Since ( )Ry t  is a voltage signal, Equa- 
tion (38) and yN  have units of volts2/hertz. We assume y yf B , so ( )Ry t  is 
a narrowband, zero-mean, Gaussian, WSS random signal having PSD 

( ) ( ) ( ){ }1
2Ry y y y y yS f N f f B f f B   = Π − +Π +            (39) 

as depicted in Figure 3. 

3.2. Quadrature Demodulator’s Output 

The quadrature demodulator applies the mathematical action of Equation (8) to 
( )Ry t  to produce the complex random-voltage signal 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }

cos 2π ( )sin 2π

sin 2π ( )cos 2π .

QD I y RF Q y RF

I y RF Q y RF

y t y t f f t y t f f t

j y t f f t y t f f t

   = − − −   

   + − + −   

   (40) 

Since ( )Iy t  and ( )Qy t  are zero mean and Gaussian, ( )QDy t  is also zero 
mean and Gaussian [12]. Straightforward analysis of Equation (40) establishes 
the fact that ( )QDy t  is WSS with PSD 

( ) ( ){ }2 .
QDy y y RF yS f N f f f B = Π − −               (41) 

 

 

Figure 3. Power spectral density of arbitrarily bandlimited Gaussian noise. 
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3.3. Fourier Transform’s Output 

The Fourier transform of the complex multiplier’s output 

( ) ( ) ( )CM QDy t p t y t=                      (42) 

is 

( ) ( ) ( ) ( )2π 2πe d e d .j ft j ft
CM CM QDY f y t t p t y t t

∞ ∞
− −

−∞ −∞

= =∫ ∫         (43) 

Since ( )QDy t  is a time-domain random process having units of volts, ( )CMY f  
is a frequency-domain random process having units of volt∙seconds or volts/ 
hertz. Straightforward but tedious mathematics show the real and imaginary 
parts of ( )CMY f  to be uncorrelated and to have equal variances. For a specific 
value of f  (say, 1f ), ( )CMY f  is the complex Gaussian random variable (RV) 
[12] 

( ) ( ) ( ) ( )1 12π 2π
1 e d e d .j f t j f t

CM CM QDY f y t t p t y t t
∞ ∞

− −

−∞ −∞

= =∫ ∫         (44) 

Since the real and imaginary parts of ( )1CMY f  are uncorrelated and Gaussian 
RVs, the RVs are also independent. Since ( )1CMY f  is a complex Gaussian RV, 
the mean, correlation, and variance of its real and imaginary parts completely 
specify the complex RV’s PDF (i.e., the joint PDF of the RV’s real and imaginary 
parts [13]). The RV has mean 

( ) ( ) ( ) 12π
1 1e d 0 ,j f t

CM QDE Y f p t E y t t f
∞

−

−∞

 = = ∀    ∫          (45) 

where ( )E Z  denotes the expected value of the generally complex RV Z. Thus, 
the mean of both the real and imaginary parts of ( )1CMY f  is zero. Since the real 
and imaginary parts are independent and zero mean, their correlation is zero. 
We find the variance of the RV’s real and imaginary parts by finding the auto-
correlation function of ( )CMY f , setting both frequency arguments equal to 1f , 
and dividing the result by two. 

The autocorrelation function of ( )CMY f  is 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

*
1 2 1 2

2π 2π* *

2π 2π* *

2π 2π*

,

e d e d

e e d d

e e d d .

CM

QD

Y CM CM

j f t j f
QD QD

j f t j f
QD QD

j f t j f
y

R f f E Y f Y f

E p t y t t p y

p t E y t y p t

p t R t p t

γ

γ

γ

γ γ γ

γ γ γ

γ γ γ

∞ ∞
−

−∞ −∞

∞ ∞
−

−∞ −∞

∞ ∞
−

−∞ −∞

 =  
 

=  
 

 =  

= −

∫ ∫

∫ ∫

∫ ∫

   (46) 

Since ( )QDy t  is WSS, its autocorrelation function is the inverse Fourier trans-
form of its PSD, so 

( ) ( ) ( )2πe d .
QD QD

j f t
y yR t S f fγγ

∞
−

−∞

− = ∫                (47) 

Therefore, we can write Equation (46) as 
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( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

1 2

2π 2π 2π*

2π 2π2π * 2π

*
1 2

,

e d e e d d

e e d e e d d

d ,

CM

QD

QD

QD

Y

j f t j f t j f
y

j f t j fj ft j f
y

y

R f f

p t S f f p t

S f p t t p f

S f P f f P f f f

γ γ

γ γ

γ γ

γ γ

∞ ∞ ∞
− −

−∞ −∞ −∞

∞ ∞ ∞
− −

−∞ −∞ −∞

∞

−∞

 
=  

 
   

=    
   

= − −

∫ ∫ ∫

∫ ∫ ∫

∫

    (48) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2π 2π

2π

e d e d

e d

d .

j ft j ft
M

j ft
p M p M

p M

P f p t t w t x t t

w t x t t W f X f

W X fβ β β

∞ ∞
− −

−∞ −∞
∞

−

−∞
∞

−∞

= =

= = ∗

= −

∫ ∫

∫

∫

         (49) 

Substituting Equation (30) into Equation (49) gives us 

[ ] ( ) ( )

[ ] ( ) ( )

[ ] ( )

( ) d

d

.

p M M
n

p M M
n

p M M
n

P f W n n T X f

W n n T X f

W n X f n T

δ β β β

δ β β β

∞ ∞

=−∞−∞
∞∞

=−∞ −∞
∞

=−∞

= − −

= − −

= −

∑∫

∑ ∫

∑

          (50) 

In a practical stretch processor, the heterodyne signal’s time-bandwidth 
product M MB T  very greatly exceeds unity, so [7] 

( ) ( )2 2π 4 2π π π 4
e .M p avg pj BT f f B p

M
M

fX f
B B

τ τ τ τ − + −   
≈ Π 

 
        (51) 

Substituting Equation (51) into Equation (50) gives (after simplification)  

( )

[ ] ( ) ( ) ( )22π 4 2π π π 4
e .M p M avg p Mj BT f n T f n T B p M

p
n M

P f
f n TW n

B B
τ τ τ τ∞  − − + − −  

=−∞

 −
≈ Π 

 
∑  

(52) 

All conventional windows have energy spectral densities concentrated around 
0f =  [14], so 

[ ] 0,  ,p WW n n N≈ >                      (53) 

for some positive integer WN . Therefore, we can make the further approxima-
tion  

( )

[ ] ( ) ( ) ( )22π 4 2π π π 4
e .

W M p M avg p M

W

N j BT f n T f n T B p M
p

n N M

P f

f n TW n
B B

τ τ τ τ − − + − −  

=−

 −
≈ Π 

 
∑  

(54) 

For practical stretch processors, the sweep bandwidth MB  very greatly ex-
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ceeds 1 MT , so 

( ) ( ) ,  ,M M M W Wf n T B f B N n NΠ − ≈ Π − ≤ ≤            (55) 

assuming 

.W M MN T B                        (56) 

Equation (55) and Equation (56) permit the further approximation 

( ) [ ] ( ) ( ) ( )22π 4 2π π π 4
e .

W M p M avg p M

W

N j BT f n T f n T Bp
p

n NM

fP f W n
B B

τ τ ττ  − − + − −  

=−

 
≈ Π 

 
∑ (57) 

From Equation (57) we immediately obtain 

( )

[ ] ( ) ( ) ( )22
1 1

1

π 4 2π π π 41 e
W M p M avg p M

W

N j BT f f n T f f n T Bp
p

n NM

P f f

f f W n
B B

τ τ ττ  − − − + − − −  

=−

−

 −
≈ Π 

 
∑

(58) 

and 

( )

[ ] ( ) ( ) ( )22
2 2

*
2

π 4 2π π π 4*2 e .
W M p M avg p M

W

N j BT f f n T f f n T Bp
p

n NM

P f f

f f W n
B B

τ τ ττ  − − − − + − − −  

=−

−

 −
≈ Π 

 
∑

(59) 

Substituting Equation (41), Equation (58), and Equation (59) into Equation 
(48) gives us 

( )
( )

[ ] ( ) ( ) ( )

[ ] ( ) ( ) ( )

22
1 1

22
2 2

1 2
1 2

π 4 2π π π 4

π 4 2π π π 4*

2
,

e

e

CM

W M p M avg p M

W

W M p M avg p M

W

y RFy p
Y

y M M

N j BT f f n T f f n T B

p
n N

N j BT f f m T f f m T B

p
m N

f f fN f f f fR f f
B B B B

W n

W m

τ τ τ

τ τ τ

τ ∞

−∞

 − − − + − − −  

=−

 − − − − + − − −  

=−

 − −    − −
 ≈ Π Π Π   
      

  × 
  
×

∫

∑

∑

( )

[ ] [ ] ( ) ( )21 1

1 2

2π π*

d

2

e
W W M avg p M

W W

y RFy p

y M M

N N j f f n T f f n T B

p p
n N m N

f

f f fN f f f f
B B B B

W n W m
τ τ

τ ∞

−∞

 − − − + − −  

=− =−




  
 − −    − − = Π Π Π   
      

×

∫

∑ ∑

 

( ) ( )

( ) ( )

[ ] [ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2
2 2

2 2
1 21 2

2 2 2

1 2 1 2

2π π

π2π

π2π*

2π 2π 2π

1

e d
2

e e

e e

e e e

M avg p M

pavg

W W
p Mavg M

W W

p M p M p

j f f m T f f m T B

j f f Bj f fy p

N N j n m BTj n m T
p p

n N m N

j nf mf BT j n m f BT j f f f B

y RF

y

f
N
B

W n W m

f f f f f
B

τ τ

ττ

ττ

τ τ τ

τ

 − − − − + − −  

−− −

−−

=− =−

∞
− − − − −

−∞

×

=

×

×

 − − − ×Π Π
  

∑ ∑

∫

2 d .
M M

f f f
B B

   −
Π   

   

      (60) 
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The variance of the output noise at frequency 1f  is 

( ) ( )

[ ] [ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2

1

1 1 1

π2π*

2π 2π 1

var ,
2

e e

e e d .

CM

W W
p Mavg M

W W

p M p M

CM Y
N N j n m BTj n m Ty p

p p
n N m N

y RFj f n m BT j n m f BT

y M

Y f R f f
N

W n W m
B

f f f f f f
B B

ττ

τ τ

τ −−

=− =−

∞
− − −

−∞

=  

≈

 − −  −
 × Π Π 
    

∑ ∑

∫

 (61) 

For values of 1f  outside the frequency interval 

1 , ,
2 2 2 2

y yM M
y RF y RF

B BB BI f f f f
 

= − − − − + + 
 

          (62) 

the two Π  functions in the integrand of Equation (61) have no nonzero over-
lap, so the output-noise variance is zero, meaning the BLGN does not corrupt 
the Fourier transform’s output at frequencies outside 1I . Since the stretch pro-
cessor only considers frequencies on ( ) ( ),max minf R f R   , the BLGN only cor-
rupts the stretch processor’s output from 

( )max 2 2,a y RF y M maxf f f B B f R = − − −             (63) 

to 

( )min 2 2, .b y RF y M minf f f B B f R = − + +             (64) 

Now, we respectively define 

( )1 2 1 2, max ,  ,  
2 2 2

y M M
l y RF

B B Bf f f f f f f
 

= − − − − 
 

         (65) 

and 

( )1 2 1 2, min ,  ,  
2 2 2

y M M
u y RF

B B Bf f f f f f f
 

= − + + + 
 

         (66) 

as the lower and upper frequency boundaries of the nonzero overlap of the three 
Π  functions in the integrand of Equation (60). Note: If ( ) ( )1 2 1 2, ,l uf f f f f f> , 
the product of the three Π  functions is zero for all f , so Equation (60) is 
practically zero for all ( )1 2,f f  such that ( )1 2,lf f f  exceeds ( )1 2,uf f f . As-
suming values of ( )1 2,f f  such that ( ) ( )1 2 1 2, ,l uf f f f f f< , we determine the 
autocorrelation function to be 

( ) ( ) ( )

[ ] [ ] ( )

( ) ( ) ( ) ( )

( )
( )

2 2
1 21 2

2 2 2
1 2

1 2

π2π
1 2

2π*

π 2π

2π
1 2

1 2

2
, e e

e

e e

,
e d .

,

pavg
CM

W W
avg M

W W

p M p M

p

M

j f f Bj f fy p
Y

N N
j n m T

p p
n N m N

j n m BT j nf mf BT

n mj f f f
B T c

eq

N
R f f

B

W n W m

f f f f
f

B f f

ττ

τ

τ τ

τ

τ −− −

−

=− =−

− − −

 −∞ − − − 
 

−∞

≈

×

×

 −
× Π  

  

∑ ∑

∫

    (67) 

In Equation (67) 
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( ) ( ) ( )1 2 1 2 1 2, , , 2c l uf f f f f f f f f= +                 (68) 

and 

( ) ( ) ( )1 2 1 2 1 2, , ,eq u lB f f f f f f f f= −                (69) 

respectively represent the center frequency and spectral width of the three Π  
functions’ nonzero product. Finally, we evaluate the integral in Equation (67) to 
obtain 

( ) ( ) ( ) ( )

[ ] [ ] ( ) ( ) ( )

( ) ( ) ( )

( )

2 2
1 21 2

2 2 2

1 2 1 2
1 2

π2π1 2
1 2

π2π*

2π ,
2π

1 2 1 2

2 ,
, e e

e e

e e

sinc ,

pavg
CM

W W
p Mavg M

W W

p
c

p M M

j f f Bj f fy p eq
Y

N N j n m BTj n m T
p p

n N m N

n mj f f f f f
j nf mf BT B T

p
eq

M

N B f f
R f f

B

W n W m

n mB f f f f
B T

ττ

ττ

τ
τ

τ

τ

−− −

−−

=− =−

 −
− − − − −  

≈

×

×

  −
× − −  

   

∑ ∑
 

( ) ( ) ( ) ( ) ( )

[ ] [ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2 2
1 21 2 1 2 1 2

2 2 2

1 2 1 2

π2π 2π ,1 2

π2π*

2π 2π ,

1 2 1 2

2 ,
e e e

e e

e e

sinc , .

pavg p c

W W
p Mavg M

W W

p M p c M

j f f Bj f f j f f f f f By p eq

N N j n m BTj n m T
p p

n N m N

j nf mf BT j n m f f f BT

p
eq

M

N B f f
B

W n W m

n mB f f f f
B T

ττ τ

ττ

τ τ

τ

τ

−− − − −

−−

=− =−

− − −

=

×

×

  −
× − −  

   

∑ ∑
    (70) 

Analysis of Equation (70) reveals two sufficient conditions for WSS ( )CMY f . 
Firstly, ( )1 2,eqB f f  is either constant or a function of only 1 2f f− . Secondly, 

( ) ( )1 2 1 2, 2cf f f f f= + . 

4. Simulation Results 

To demonstrate the correctness and utility of Equation (70), we simulate a radar 
having the parameter values listed in Table 1. With these parameters a 1-kHz 
frequency separation in the Fourier transform’s output maps to a 1.5-m slant- 
range separation. 

To achieve various compromises between Rayleigh range resolution [2] and 
peak sidelobe levels [14], the radar can use the CT rectangular, Hamming, 
Blackman, and Kaiser windows, mathematically described by [15] 

( ) ( ) ,R avg Mw t t Tτ = Π −                     (71) 

( ) ( )( ){ } ( )0.54 0.46cos 2π 1 ,H M avg avg Mw t T t t Tτ τ   = + − Π −        (72) 

( ) ( )( ){
( )( ) } ( )

0.42 0.5cos 2π 1

0.08cos 2π 2 ,

B M avg

M avg avg M

w t T t

T t t T

τ

τ τ

 = + − 

   + − Π −   

     (73) 

and 
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Table 1. Parameters of simulated radar system. 

Parameter Value 

B  10 MHz 

pτ  100 μs 

minR  19.5 km 

maxR  25.5 km 

2min minR cτ =  130 μs 

2max maxR cτ =  170 μs 

( ) 2avg min maxτ τ τ= +  150 μs 

( ) ( )min avg min pf R B τ τ τ= −  2 MHz 

( ) ( )max avg max pf R B τ τ τ= −  −2 MHz 

M max min pT τ τ τ= − +  140 μs 

M M pB BT τ=  14 MHz 

 

( )
( )
( ) ( )

2

0

0

1 2
,

avg M

K avg M

I t T
w t t T

I

β τ
τ

β

  − −     = Π −         (74) 

respectively. In Equation (74) 0I  is the zeroth-order modified Bessel function 
of the first kind with shaping parameter 0β ≥ . We choose  

4β =                            (75) 

to specify a Kaiser window having a temporally broader characteristic than the 
Hamming and Blackman windows, as shown in Figure 4. 

Table 2 shows the key performance characteristics corresponding to these 
four windows, assuming the returned pulse is temporally centered in each win-
dow. 

 

 
Figure 4. Windows used by simulated radar system. 
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Table 2. Characteristics of available windows. 

Window 
Rayleigh Range  
Resolution (m) 

Maximum Sidelobe Level below Peak  
Response (dB) 

Rectangular 15.0 13.3 

Hamming 20.2 23.0 

Blackman 26.4 35.7 

Kaiser ( 4β = ) 18.6 20.0 

 
For convenience of simulation, we set yN  to 1 V2/Hz. We pass complex 

white, Gaussian noise with independent, equal-variance real and imaginary parts 
through a fifth-order Butterworth lowpass filter with bandwidth 2yB  and 
then spectrally translate the output noise by y RFf f−  to obtain complex noise 
with a PSD closely approximating Equation (41). For each considered case, 
10,000 Monte-Carlo runs produce the data used to simulate the PDFs (through 
histograms) and the autocorrelation functions (through sample averages). We 
simulate two types of BLGN having practical significance. 

4.1. Case 1: Wideband Noise 

For this case we set 

,y RFf f=                           (76) 

and we choose 

( )20 MHz 2 18 MHzy M maxB B f R= > − =             (77) 

to guarantee the BLGN’s PSD always fully fills the complex stretch processor’s 
“passband,” i.e., the interval ( ) ( ),max minf R f R   . This noise could represent 
internal receiver thermal noise or external broadband-noise jamming. Using 
Equation (63) and Equation (64), we determine that the BLGN corrupts the 
complex stretch processor’s output from 2 MHzaf = −  to 2 MHzbf =  (i.e., 
all output frequencies of interest to this complex stretch processor). Thus, we 
will only consider values of 1f  and 2f  on [ ]2 MHz,2 MHz− . Equation (65) 
and Equation (66) then respectively give 

( ) ( )1 2 1 2, max , 7 MHzlf f f f f= −                 (78) 

and 

( ) ( )1 2 1 2, min , 7 MHz.uf f f f f= +                 (79) 

Substituting Equation (78) and Equation (79) into Equation (68) and Equa-
tion (69) respectively gives 

( ) ( )1 2 1 2, 2cf f f f f= +                     (80) 

and 

( )1 2 1 2, 14 MHz .eqB f f f f= − −                 (81) 

Clearly, Equation (80) and Equation (81) satisfy the sufficient condition for 
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( )CMY f  being WSS. By substituting Equation (80) and Equation (81) into Equa- 
tion (70), we can approximate the autocorrelation function as 

( ) ( ) ( )( )

[ ] [ ] ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ){ }
( )

4
1 2

2 2 6
1 2

2π 1.5 1011 6
1 2 1 2

π 1960 π 14 102π 15 14*

6 11 4
1 2 1 2

1 2

, 2 10 14 10 e

e e e

sinc 14 10 10 1.4 10

.

CM

W W

W W

CM

j f f
Y

N N j n m j n m f fj n m
p p

n N m N

Y

R f f f f

W n W m

f f f f n m

R f f

−− − ×−

− − + − ×−

=− =−

− −

≈ × × − −

×

 × × − − − − − × 
= −

∑ ∑
  (82) 

As expected, Equation (82) depends on only 1 2f f− , so the output noise is WSS 
for this case, regardless of the specific window employed.  

4.1.1. Case 1a: Rectangular Window 
By substituting Equation (71) into Equation (28), we obtain 

[ ] 1, 0
0, otherwisep

n
W n

=
= 


                    (83) 

as the exact Fourier coefficients necessary to evaluate Equation (82). After sig-
nificant simplification we obtain  

( ) ( ) ( )( )

( ) ( )

4
1 22π 1.5 1011 6

1 2 1 2

6 11
1 2 1 2

2 10 14 10 e

sinc 14 10 10

CM

j f f
YR f f f f

f f f f

−− − ×−

−

− ≈ × × − −

 × × − − − 

     (84) 

as the final expression for the output’s theoretical autocorrelation function. In 
agreement with [3] [4], for any frequency considered by the complex stretch 
processor, the output noise will have a variance of 

( ) ( )1 1 4 2 22 , 2
0 2 2.8 10 V Hz .

CM

y p eq y p M
Y y M

N B f f N B
R N T

B B
τ τ −≈ = = = ×   (85) 

Figure 5 shows overlays of the theoretical and numerically approximated  
 

 
Figure 5. Theoretical and simulated PDFs for Case 1a. 
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PDFs of the real and imaginary components of the complex stretch processor’s 
output at 1 2 0f f− = . The theoretical PDFs are Gaussian with mean zero and  
variance ( )4 2 2 4 2 20.5 2.8 10 V Hz 1.4 10 V Hz− −× = ×  (since we expect the real 
and imaginary components to each have half the total noise variance). Clearly, 
the simulated output’s real and imaginary components both closely follow a 
Gaussian characteristic having the theoretically predicted mean and variance. 
The numerically approximated correlation coefficient for the simulated output’s 
real and imaginary components is −0.00073. Since this value is practically zero, 
the real and imaginary components are practically uncorrelated. Since the real 
and imaginary components are also Gaussian, they are practically independent, 
as previously stated. 

Figure 6 shows excellent agreement between the theoretical and simulated 
autocorrelation functions. We conventionally consider output-noise compo-
nents separated in frequency by a minimum of about 8.62 kHz (the 3-dB width 
of the main lobe of the autocorrelation function’s magnitude) to be practically 
uncorrelated. The 8.62-kHz frequency difference maps to a slant-range separa-
tion of 12.93 m which is below this radar’s Rayleigh range resolution of 15 m (10 
kHz). Thus, if the radar samples the stretch processor’s output every 15 m (10 
kHz), the BLGN-related components should be practically uncorrelated from 
one range sample to the next. 

The complex correlation coefficient [16] 
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

*

*

*

*

,
cov

var var

var var

var var
,

, ,
CM

CM CM

CM CM

CM CM

CM CM CM CM

CM CM

CM CM

CM CM

Y

Y Y

f f f
Y f f Y f

Y f f Y f

E Y f f E Y f f Y f E Y f

Y f f Y f

E Y f f Y f

Y f f Y f
R f f f

R f f f f R f f

ρ + ∆
 + ∆ 

 + ∆    

   + ∆ − + ∆ −         
=

+ ∆      
 + ∆ =

+ ∆      
+ ∆

=
+ ∆ + ∆



   (86) 

quantitatively characterizes the correlation between samples of ( )CMY f  at fre-
quencies f f+ ∆  and f . Since ( )CMY f  is WSS for this case, 

( )
( )

( ) ( )
( )
( ) ( ), .
00 0

CM CM

CMCM CM

Y Y

YY Y

R f R f
f f f f

RR R
ρ ρ

∆ ∆
+ ∆ = = = ∆       (87) 

We evaluate Equation (84) at 10 kHzf∆ =  and 0f =  and substitute the re-
sults into Equation (87) to obtain 

( )
( )

( )
10 kHz

10 kHz 0.2160 0.0000.
0

CM

CM

Y

Y

R
j

R
ρ = ≈ +           (88) 

Since ( )10 kHzρ  is approximately 0.2160, the two samples of ( )CMY f  are 
only slightly correlated. 
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Figure 6. Theoretical and simulated autocorrelation functions for Case 1a. 

4.1.2. Case 1b: Hamming Window 
By substituting Equation (72) into Equation (28), we obtain 

[ ]

( )

( )

2π 15 14

2π 15 14

0.23e , 1
0.54, 0

0.23e , 1
0, otherwise

j

p j

n
n

W n
n−

 = −


== 
=




               (89) 

as the exact Fourier coefficients necessary to evaluate Equation (82) in closed 
form. After significant simplification we obtain 

( ) ( ) ( )( )

( ) ( ){ }{
( ) ( )

( )( ) ( ){

4
1 22π 1.5 1011 6

1 2 1 2

2 2 6
1 2

6 11
1 2 1 2

6
1 2

2 10 14 10 e

0.54 2 0.23 cos 2π 14 10

sinc 14 10 10

2 0.54 0.23 cos π 14 10 π 1960

CM

j f f
YR f f f f

f f

f f f f

f f

−− − ×−

−

− ≈ × × − −

 × + − × 

 × × − − − 

 + − × − 

 

( ) ( )
( )

( ) ( ) }
( ) ( ) ( ){

( ) ( ) }}

6 11 4
1 2 1 2

6
1 2

6 11 4
1 2 1 2

2 6 11 4
1 2 1 2

6 11 4
1 2 1 2

sinc 14 10 10 1 1.4 10

cos π 14 10 π 1960

sinc 14 10 10 1 1.4 10

0.23 sinc 14 10 10 2 1.4 10

sinc 14 10 10 2 1.4 10

f f f f

f f

f f f f

f f f f

f f f f

− −

− −

− −

− −

 × × − − − − × 
 + − × + 
 × × − − − + × 

 + × − − − − × 

 + × − − − + × 

   (90) 
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as the final closed-form expression for the output’s theoretical autocorrelation 
function. For any frequency considered by the complex stretch processor, the 
output noise will have a variance of about 

( ) 4 2 20 1.113 10 V Hz .
CMYR −≈ ×                  (91) 

Figure 7 shows overlays of the theoretical and numerically approximated 
PDFs of the real and imaginary components of the complex stretch processor’s 
output at 1 2– 0f f = . The theoretical PDFs are Gaussian with mean zero and   
variance ( )–4 2 2 5 2 20.5 1.113 10 V Hz 5.56 10 V Hz−× = × . Clearly, the simulated 
output’s real and imaginary components both closely follow a Gaussian charac-
teristic having the theoretically predicted mean and variance. The numerically 
approximated correlation coefficient for the simulated output’s real and imagi-
nary components is 0.0047, indicating the two Gaussian components are practi-
cally independent. 

Figure 8 shows excellent agreement between the theoretical and simulated 
autocorrelation functions. Using the previously stated convention, we consider 
output noise components separated in frequency by a minimum of about 17.3 
kHz to be practically uncorrelated. This frequency difference maps to a slant- 
range separation of 25.9 m which exceeds this radar’s Rayleigh range resolution 
of 20.2 m by about 28%. If the radar samples the stretch processor’s output every 
20.2 m (13.47 kHz), the BLGN-related components in any two adjacent range 
samples will have a complex correlation coefficient of 

( ) ( ) ( )13.467 kHz 13.467 kHz 0 0.1685 0.0209.
CM CMY YR R jρ = ≈ −    (92) 

Since ( )13.467 kHzρ  is approximately 0.1698, the two samples of ( )CMY f  
are only slightly correlated despite the radar’s range-sampling interval being 
somewhat less in extent than the conventionally defined range-decorrelation in-
terval. 

 

 
Figure 7. Theoretical and simulated PDFs for Case 1b. 
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Figure 8. Theoretical and simulated autocorrelation functions for Case 1b. 

4.1.3. Case 1c: Blackman Window 
By substituting Equation (73) into Equation (28), we obtain 

[ ]

( )

( )

( )

( )

2π 15 7

2π 15 14

2π 15 14

2π 15 7

0.04e , 2
0.25e , 1
0.42, 0
0.25e , 1
0.04e , 2
0, otherwise

j

j

p j

j

n
n
nW n
n
n

−

−

 = −


= −
== 
=

 =



               (93) 

as the exact Fourier coefficients necessary to evaluate Equation (82) in closed 
form. Note: For 2WN = , the double summation in Equation (82) produces 
( )22 1 25WN + =  terms; even after significant simplification, the closed-form 
expression for the theoretical autocorrelation function is relatively unwieldy, so 
we omit it. For any frequency considered by the complex stretch processor, the 
complex output noise will have a variance of about 

( ) 5 2 20 8.529 10 V Hz .
CMYR −≈ ×                  (94) 

Figure 9 shows overlays of the theoretical PDFs and the numerically approx-
imated PDFs of the real and imaginary components of the simulated complex 
stretch processor’s output at 1 2 0f f− = . The theoretical PDFs are Gaussian 
with mean zero and variance ( )–5 2 2 5 2 20.5 8.529 10 V Hz 4.264 10 V Hz−× = × . 
Clearly, the simulated output’s real and imaginary components both closely fol-
low a Gaussian characteristic having the theoretically predicted mean and    
variance. The numerically approximated correlation coefficient for the simulated 
output’s real and imaginary components is 0.0085, indicating the two Gaussian  
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Figure 9. Theoretical and simulated PDFs for Case 1c. 

 
components are practically independent. 

Figure 10 shows excellent agreement between the theoretical and simulated 
autocorrelation functions. Using the previously specified convention, we con-
sider output noise components separated in frequency by a minimum of about 
22.3 kHz to be practically uncorrelated. This frequency difference maps to a 
slant-range separation of 33.5 m which exceeds this radar’s Rayleigh range reso-
lution of 26.4 m by about 27%. If the radar samples the stretch processor’s out-
put every 26.4 m (17.6 kHz), the BLGN-related components in any two adjacent  

 

 
Figure 10. Theoretical and simulated autocorrelation functions for Case 1c. 
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range samples will have a complex correlation coefficient of 

( ) ( ) ( )17.600 kHz 17.600 kHz 0 0.1070 0.1293.
CM CMY YR R jρ = ≈ − +   (95) 

Since ( )17.6 kHzρ  is approximately 0.1678, the two samples of ( )CMY f  are 
only slightly correlated despite the radar’s range-sampling interval being somewhat 
less in extent than the conventionally defined range-decorrelation interval. 

4.2. Case 2: Narrowband Interference with Kaiser Window 

We next consider BLGN with center frequency 3 MHzy RFf f= +  and band-
width 2 MHzyB = . This BLGN might represent a relatively narrowband inter-
ference source emitting in the radar’s transmit band. Using Equation (63) and 
Equation (64), we determine the BLGN corrupts the complex stretch processor’s 
output from 2 MHzaf = −  to 2 MHzbf = . Thus, we will only consider values 
of 1f  and 2f  on [ ]2 MHz,2 MHz− . Equation (65) and Equation (66) then 
respectively give 

( )1 2, 2 MHzlf f f =                       (96) 

and 

( )1 2, 4 MHz.uf f f =                      (97) 

For this case the stretch processor uses the Kaiser window specified by Equa-
tion (74) and Equation (75). The previously considered rectangular, Hamming, 
and Blackman windows have only a small number of nonzero Fourier coeffi-
cients, the exact values of which can be obtained from a straightforward applica-
tion of Equation (28). In contrast any Kaiser window with 0β >  generally has 
an infinite number of nonzero Fourier coefficients which can only be approx-
imated (with arbitrary accuracy using numerical integration) by substituting 
Equation (74) into Equation (28). Table 3 shows the Fourier coefficients, 
rounded to seven decimal places, for the specified Kaiser window and 7n ≤ . 

Substituting Equation (96) and Equation (97) into Equation (68) and Equa-
tion (69) respectively gives 

( )1 2, 3 MHzcf f f =                      (98) 

and 

( )1 2, 2 MHz.eqB f f =                       (99) 

Equation (98) does not satisfy the sufficient condition for ( )CMY f  being WSS, 
so we do not expect ( )CMY f  to be WSS. Substituting Equation (98) and Equa-
tion (99) into Equation (70), we approximate the theoretical autocorrelation 
function as 

( ) ( )( ) ( )

[ ] [ ] ( )( ) ( )

( ) ( )( )

4 11 2 2
1 2 1 2

2 2

6
1 2

2π 1.8 10 10 π5
1 2

π 19602π 15 14*

2π 14 10 2π 3 14

5
1 2 5

, 4 10 e e

e e

e e

sinc 2 10 .
14 10

CM
W W

W W

j f f j f f
Y

N N j n mj n m
p p

n N m N
j nf mf j n m

R f f

W n W m

n mf f

− −− − × −−

−−

=− =−
− − × −

−
−

≈ ×

×

×
 −  × × − −  ×  

∑ ∑
  (100) 
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Table 3. Significant Fourier coefficients of the specified Kaiser window. 

n [ ]pW n  [ ]pW n  

−7 −0.0014676 – j 0.0000000 0.0014676 

−6 0.0018014 – j 0.0008675 0.0019994 

−5 −0.0017977 + j 0.0022542 0.0028833 

−4 0.0010050 – j 0.0044031 0.0045163 

−3 0.0017942 + j 0.0078608 0.0080629 

−2 −0.0112846 – j 0.0141504 0.0180991 

−1 0.1901075 + j 0.0915510 0.2110034 

0 0.6036566 0.6036566 

1 0.1901075 – j 0.0915520 0.2110034 

2 −0.0112846 + j 0.0141504 0.0180991 

3 0.0017942 – j 0.0078608 0.0080629 

4 0.0010050 + j 0.0044031 0.0045163 

5 −0.0017977 – j 0.0022542 0.0028833 

6 0.0018014 + j 0.0008675 0.0019994 

7 −0.0014676 + j 0.000000 0.0014676 

 
Since Equation (100) does not depend on only 1 2–f f , the output noise is not 

WSS for this case, as expected. Equation (100) finds practical application in the 
simulation of narrowband interference competing with a target return appearing 
at a particular frequency of the Fourier transform’s output. Specifically, suppose 
a target at slant range tR  appears at corresponding frequency tf  in the Fouri-
er transform’s output. Evaluating Equation (100) with variable f  assuming the 
role of 1f  and fixed value tf  assuming the role of 2f  statistically characte-
rizes the noise at any frequency f  near the target’s frequency tf . We consider 
two target ranges and assume 5WN = . 

4.2.1. Case 2a: Target Range of 20 km 
Evaluating Equation (100) using the values in Table 2 and 

1 2 1666.26 kHztf f f= = =                   (101) 

gives the variance of the complex stretch processor’s output noise at 20 kmtR =  
as 

( ) 5 2 2, 3.4566 10  V Hz .
CMY t tR f f −≈ ×              (102) 

Figure 11 shows overlays of the theoretical PDFs and the numerically approx-
imated PDFs of the real and imaginary components of the simulated complex 
stretch processor’s output at 1 2 1666.26 kHztf f f= = = . The theoretical PDFs 
are Gaussian with mean zero and variance  

( )–5 2 2 5 2 20.5 3.4566 10 V Hz 1.7283 10 V Hz−× = × . Clearly, the simulated out-
put’s real and imaginary components both closely follow a Gaussian characteris-
tic having the theoretically predicted mean and variance. The numerically  
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Figure 11. Theoretical and simulated PDFs for Case 2a. 

 
approximated correlation coefficient for the simulated output’s real and imagi-
nary components is −0.0047, indicating the two Gaussian components are prac-
tically independent. 

Since we have assumed 5WN = , the double summation in Equation (100) in-
itially produces ( )22 1 121WN + =  terms, indicating that, even after significant 
simplification, the closed-form expression for Equation (100) will certainly be 
mathematically unwieldy. Therefore, we make no attempt to obtain a closed- 
form solution without the double summation. Figure 12 shows excellent agree- 

 

 
Figure 12. Theoretical and simulated autocorrelation functions for Case 2a. 
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ment between the theoretical and simulated autocorrelation functions. Using the 
previously specified convention, we consider output noise components sepa-
rated in frequency by a minimum of about 61.336 kHz to be practically uncorre-
lated. This frequency difference maps to a slant-range separation of 92.0 m 
which greatly exceeds this radar’s Rayleigh range resolution of 18.6 m. If the ra-
dar samples the stretch processor’s output every 18.6 m (12.4 kHz), the BLGN- 
related components in any two adjacent range samples will have a complex cor-
relation coefficient of 

( )
( )

( ) ( )

12.4 kHz,

12.4 kHz,

12.4 kHz, 12.4 kHz ,

0.899 0.094.

CM

CM CM

t t

Y t t

Y t t Y t t

f f

R f f

R f f R f f

j

ρ +

+
=

+ +

≈ −

       (103) 

Since ( )12.4 kHz,t tf fρ +  is approximately 0.9042, the two samples of 
( )CMY f  are highly correlated—an expected result considering the conventional 

range-decorrelation interval’s extent significantly exceeds the radar’s range- 
sampling interval. 

4.2.2. Case 2b: Target Range of 25 km 
Evaluating Equation (100) using the values in Table 2 and 

1 2 1666.26 kHztf f f= = = −                  (104) 

gives the variance of the complex stretch processor’s output noise at 25 kmtR =  
as 

( ) 6 2 2, 7.7327 10  V Hz .
CMY t tR f f −≈ ×              (105) 

Figure 13 shows overlays of the theoretical PDFs and the numerically approx-
imated PDFs of the real and imaginary components of the simulated com-
plex stretch processor’s output at 1 2 1666.26 kHztf f f= = = − . The theoretical  

 

 
Figure 13. Theoretical and simulated PDFs for Case 2b. 
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PDFs are Gaussian with mean zero and variance  

( )–6 2 2 6 2 20.5 7.7327 10 V Hz 3.8644 10 V Hz−× = × . Clearly, the simulated out-
put’s real and imaginary components both closely follow a Gaussian characteristic 
having the theoretically predicted mean and variance. The numerically approx-
imated correlation coefficient for the simulated output’s real and imaginary compo-
nents is 0.0018, implying the two Gaussian components are practically independent. 

Figure 14 shows excellent agreement between the theoretical and simulated 
autocorrelation functions. Using the previously specified convention, we con-
sider output noise components separated in frequency by a minimum of about 
68.2 kHz to be practically uncorrelated. This frequency difference maps to a 
slant-range separation of 102.3 m which greatly exceeds this radar’s Rayleigh 
range resolution of 18.6 m. If the radar samples the stretch processor’s output 
every 18.6 m (12.4 kHz), the BLGN-related components in any two adjacent 
range samples will have a complex correlation coefficient of 

( )
( )

( ) ( )

12.4 kHz,

12.4 kHz,

12.4 kHz, 12.4 kHz ,

0.7603 0.5119.

CM

CM CM

t t

Y t t

Y t t Y t t

f f

R f f

R f f R f f

j

ρ +

+
=

+ +

≈ − −

      (106) 

Since ( )12.4 kHz,t tf fρ +  is approximately 0.9165, the two samples of 
( )CMY f  are highly correlated—an expected result considering the conventional 

range-decorrelation interval’s extent significantly exceeds the radar’s range- 
sampling interval. 

 

 
Figure 14. Theoretical and simulated autocorrelation functions for Case 2b. 
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5. Conclusion 

This paper presented a detailed mathematical development which characterized 
the response to arbitrarily bandlimited Gaussian noise of a complex stretch pro-
cessor using a conventional range-sidelobe-reduction window. The paper speci-
fied the complex stretch processor’s functional structure and the input BLGN’s 
mathematical description. The subsequent development then propagated the 
BLGN through the complex stretch processor’s functional components, charac-
terizing the noise at the key components’ outputs.  

The effort produced four significant findings. Firstly, the final output is com-
plex, zero-mean, Gaussian noise with equal variance in its independent real and 
imaginary components. Secondly, the output noise’s autocorrelation function 
has a highly accurate closed-form approximation readily determined from the 
radar’s and input BLGN’s parameters. Thirdly, the output noise is generally not 
WSS (whereas it is for the case of a matched filter), which may complicate high- 
fidelity modeling. Fourthly, we may determine the correlation between the noise 
components of any two output range samples by evaluating the complex correla-
tion coefficient using the derived autocorrelation function. 

The windows considered in this effort were all conventional (i.e., real, sym-
metric, and lowpass). The described approach also applies to complex and/or 
asymmetric windows so long as those functions have energy spectral densities 
concentrated around 0 Hzf = . In addition the approach readily extends to 
unconventional windows having energy spectral densities concentrated around a 
nonzero frequency. 
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