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Abstract 
Vegetation mapping using field surveys is expensive. Distribution modelling, 
based on sample surveys, might overcome this challenge. We tested if models 
trained from sample surveys could be used to predict the distribution of vege-
tation types in neighbourhood areas, and how reliable the spatial transferabil-
ity was. We also tested whether we should use ecological dissimilarity or spa-
tial distance to foresee modelling performance. Maximum entropy models 
were run for three vegetation types based on a vegetation map within a moun- 
tain range. Environmental variables were selected backwards, model complex-
ity was kept low. The models are based on points from a small part of each 
study site, transferred into the entire sites, and then tested for performance. 
Environmental distance was tested using principle component analysis. All 
models had high uncorrected AUC values. The ability to predict presences 
correctly was low. The ability to predict absences correctly was high. The abil-
ity to transfer the distribution model depended on environmental distance, 
not spatial distance. 
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1. Introduction 

Distribution modelling (DM), with the aim of modelling the potential distribu-
tion of a target by relating its distribution to environmental variables (EV), has 
proliferated during the last decades and is increasingly used for spatial predic-
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tions within applied ecology [1] [2]. In contrast to process-based mechanistic 
models used to simulate past, current and future vegetation patterns [3], DM 
methods are correlative and therefore less dependent of causal relationships [4]. 
Most DM studies address the species level, but DM methods are also frequently 
used in studies that focus on the vegetation, habitat or nature type level [5] [6] 
[7], as well as higher levels such as floristic or landscape regions [8] [9]. In this 
paper, we address DM challenges at the vegetation type level. 

Vegetation types represent more or less stable entities of plant communities 
characterized by physiognomy, plant species composition, indicator species, or a 
combination of all three, and they are influenced by a number of ecological 
processes through time and space [10] [11]. Each vegetation type reflects a 
unique ecological space that sums up the ecological processes which structure 
the pattern of vegetation at the spatial scale of the applied mapping system [12]. 
An ecologically well-defined vegetation type is usually found within ecologically 
similar locations throughout a given geographical domain. A vegetation map 
therefore represents a spatial generalization of the vegetation structure, classified 
according to predefined types that intend to mirror the underlying ecological 
processes at a given spatial scale [6]. 

All DM methods are based on spatially explicit presence-points, but some 
methods also include absence-points (e.g. GLM and GAM). The EVs however, 
always appear as wall-to-wall maps, with a specified resolution (grain size) and 
extent [13]. The goal of DM is therefore to fit a model by use of spatially explicit 
points and EVs to provide wall-to-wall predictions of the potential distribution 
of the target. In this study, we implement a presence-only (P-O) method which 
is frequently used for DM, maximum entropy modelling [14]. 

Only small fractions of the earth have been mapped through field surveys [11]. 
On the other hand, the number of coarse-scaled wall-to-wall land cover maps 
with fewer classes based on remote sensing (RS) has increased tremendously 
over the last three decades [15] [16]. RS methods have so far not been able to 
map vegetation types according to the acquired accuracy and level of informa-
tion for many biodiversity management purposes [17] [18]. This is in particular 
true for mountain regions at high latitudes where topography, low sun-angle, 
frequent clouds and a short growing season combine to make RS difficult. Much 
of the present detailed mapping of vegetation, forest and landscape types is 
therefore performed by area frame surveys using field work and/or aerial photo 
interpretation [19] [20] [21] [22]. 

Since area frame surveys mostly consist of representative samples, today’s 
usages are mainly restricted to non-spatial statistical purposes and area re-
source estimates, e.g. use of small area estimation methods [23] [24]. However, 
area frame surveys can also serve as DM training sites for vegetation types, if 
the knowledge of spatial transferability of DM predictions is well consolidated 
by empirical studies, and errors and uncertainties [25] [26] [27] are well inter-
preted. 
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The main aim for this study was to assess spatial transferability of DMs trained 
by sample P-O points from survey vegetation maps. More specifically, we set out 
to analyse the following challenges: Can we use DM, fitted with MaxEnt and 
trained with P-O points generated from a gridded plot-sample survey, to predict 
the distribution of vegetation types in neighbourhood areas (areas outside the 
training plot)? How reliable is the spatial transferability of the DM when con-
fronted with independent evaluation data? How and why are prediction per-
formance decreasing as a response to increasing spatial or ecological distance 
from training plots (within a spatial domain) when DM is applied? Based on en-
vironmental indicators representing areas of similar size as the survey plots, but 
located at increasing spatial distances, can we in advance (by analyses of the 
ecological space) detect areas of low DM performance? 

2. Materials and Methods 
2.1. Study Area 

The study area covers 941 km2 of the Rondane mountain region in south-central 
Norway (centre coordinate 548857N/686140E, in WGS84/UTM32N). The to-
pography varies from gently undulating mountain plateaus to high alpine peaks 
and ranges in elevation from 441 to 2176 m.a.s.l. The mean annual temperature 
at the closest weather station, Venabu, Ringebu (930 m.a.s.l.), is −0.3˚C (1980- 
1990), and mean annual precipitation is 842 mm (2005-2011). The bedrock is 
completely dominated by acidic Precambrian rocks which are partly covered by 
thin and discontinuous layers of glacial till [28]. The alpine-boreal vegetation of 
the study area reflects the continental climate and the varying altitude [29]. The 
climatic forest line reach 1200 m a.s.l. [30], but the north boreal zone appear 
regularly below approximately 1000 m a.s.l. 

2.2. Vegetation Map 

The vegetation map of the study area was compiled into a seamless map, using 
results from mapping projects performed between 1980 and 1992 [31]. The 
guidelines for mapping remained practically unchanged throughout the project 
period [32] [33]. In the field-guide, there are detailed instructions for a number 
of difficult aspects [34]. The classification was based on a combination of ho-
mogenous species composition, indicator species and vegetation physiognomy. 
The mapping was validated with extensive field-work and recently updated us-
ing high-resolution orthophotos from 2010. The map includes 28 vegetation 
types and 7 other land cover types (Appendix 1). The seamless map was con-
verted into raster format of 10 m resolution and joined with a digital elevation 
model (DEM) of equal resolution. 

2.3. Vegetation Type Targets 

Three vegetation types were chosen as targets; dwarf shrub heaths, tall forb 
meadows and fens. The choice was based on three requirements; divergent pre- 
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valence within the study area (rare, intermediate and widespread), a widespread 
distribution pattern, and finally divergent ecology related to well-known EVs 
that proxies can be generated for. Dwarf shrub heath is very common through-
out the study area, whereas fen is broadly distributed, but generally with lower 
prevalence and smaller occurrences. Tall forb meadows are relatively rare and 
appear scattered along narrow zones. 

2.4. Study Design 

The study area was covered by a grid with primary statistical units (PSU) of  
1500 m × 600 m, each covering 0.9 km2. This grid is in accordance with the 
Norwegian area frame survey of land cover and outfield land resources [21]. The 
three vegetation types were treated independently throughout the study.  

For each vegetation type, five sites were randomly positioned within the study 
area, but restricted to avoid spatial overlap within each targeted vegetation type. 
Each site was 10,500 m × 9600 m (100.8 km2), consisting of a matrix of 7 × 16 
PSUs. A random PSU, including the targeted vegetation type, in one of each site 
corner was chosen as the model PSU (Figure 1).  

Based on the model PSU two transects were created along the outer edge of 
the sites in two directions, resulting in 105 test PSUs for each vegetation type.  

Sets of P-O training points were generated from the vegetation map, one set of 
the target vegetation type for each of the different model PSUs. To avoid spatial 
autocorrelation, the training points were extracted from a grid with a mesh size 
of 20 × 20 m [35]. However, points that include vegetation types in mosaic 
polygons or in polygons with additional signs originating from a different eco-
system than the vegetation type targeted for modelling were excluded (Appen-
dix 2). 

Presence-absence evaluation data were generated from the vegetation map for 
each PSU using a grid with a mesh size of 10 × 10 m.  

For each model PSU the following data is available: Training P-O points used 
for modelling, presence-absence (P-A) points used for evaluation, sets of EVs, 
and a DM based on output from MaxEnt. Except for the training points, similar 
data sets were prepared for all test PSUs. Each PSU contains a total of 9000 
points, attributed with P-A and the characteristics for the EVs. 

2.5. Environmental Variables (EV) 

A DEM, and ten EVs derived from the DEM was used in the study (Table 1). 
The derived EVs were generated in ArcGIS® 10.1 using Spatial Analysis. These 
EVs are widely used in ecological studies [36], and have been reported as rele-
vant for DM of vegetation types in previous studies [6] [37]. The EVs has a 
resolution of 10 × 10 m. Aspect was used as an ordinal variable, all the other EVs 
were continuous. 

The EVs were tested for correlation (Pearson’s r) and only EVs correlated less 
than ±0.7 were used in the final DMs (Appendix 3). 
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Figure 1. The study area in Norway. For each vegetation type; dwarf shrub heath, tall forb meadow and fen, five different 
non-overlapping study sites were prepared (covering 100.8 km2). The vegetation map, used for evaluation, is shown in the back-
ground. Inside each of the study sites a model PSU (0.9 km2), containing the given vegetation type, was chosen randomly located 
in one of the corners (marked with blue). From the model PSU two transects were created along the outer edge of the study sites 
(marked with arrows).  
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Table 1. Environmental variables (EV) considered in the modelling and the ecological fac-
tors they were intended as proxies for. EVs finally implemented are marked with grey 
shading.  

Environmental variables (EV) 

Environmental variable Abbreviation Proxy for 

Digital elevation model DEM Temperature, topographic variation 

Slope Slope Soil moisture, soil nutrients, soil characteristics 

Aspect Aspect Slope direction, sun exposure 

Solar radiation Solar_rad Insolation 

Curvature Curvature Exposure to wind, water and soil nutrient runoff direction 

Relative relief 3 × 3 Rel_3 Large scale topographic differences, 30 × 30 meters 

Relative relief 6 × 6 Rel_6 Large scale topographic differences, 60 × 60 meters 

Relative relief 9 × 9 Rel_9 Large scale topographic differences, 90 × 90 meters 

Wetness index Wet_ind Groundwater 

Profile curvature Prof_curv 
Affects the acceleration or deceleration of flow across the 

surface 

Planform curvature Plan_curv 
Relates to the convergence and divergence of flow across a 

surface 

2.6. Distribution Modelling Method 

Maximum entropy modelling (MaxEnt version 3.3.3k,  
http://www.cs.princeton.edu/~schapire/maxent/) was used in this study. It is 
described as a machine learning method [38], but can also be explained as a 
maximum likelihood method [39]. Based on P-O records of a specific target and 
EVs for the study area, MaxEnt creates a prediction model for the distribution of 
the target using the EVs in the presence-cells as auxiliary support [40] [41]. 

The vegetation types was modelled and extrapolated using common MaxEnt 
modelling strategies, described for instance in [42]. The default settings were 
overrode and we strived for models that balanced the contradiction between: 1) 
a low number of parameters by removing features that resulted in high lambdas, 
2) as high training AUC values as possible and 3) as few EVs as needed but 
without removing variables known to be important for modelling of the vegeta-
tion types. The goal was to make parsimonious MaxEnt models suitable for spa-
tial transferability [40] [42]. 

Based on experiences with the dataset, only linear and quadratic features [14] 
[38] [41] were allowed. This prevented over-fitted models. Models fit for differ-
ent number of background samples was compared and the number of back-
ground points was set to 1000. The regularization multiplier was set to 0, after 
testing different options. With just two features and a relatively high number of 
training points (Table 2) we found this acceptable. Visual inspection of the re-
sponse curves also indicated smooth curves. For all other settings we used de-
fault values. 

A backward step-wise selection using the area under the curve values (AUC) 
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[38], percent contribution of the EVs to the model and jackknife was used to se-
lect the included EVs in the final models [39] [43]. 

The maximum training sensitivity plus specificity, based on the logistic output 
format [14], was used as threshold rule for two reasons; to create a vegetation 
map that provides presence or absence for all locations of all vegetation types [12] 
[44], and as a part of the model evaluation process. The maximum training sen-
sitivity plus specificity was chosen based on the results from several other studies 
[7] [45] [46]. All relative probability of predicted presence (RPPP) above the 
threshold was assumed to be the given vegetation type, and the score of correct 
classification was calculated based on the presence-absence points.  

One MaxEnt model was fitted to each of the fifteen different study sites as de-
scribed above. The MaxEnt models from the different model PSUs were used for 
projection (transferability) into the adjacent test areas by means of EVs recorded 
for the latter area. 

2.7. Evaluation of the Spatial Transferability 

The model output from MaxEnt was evaluated against the P-A evaluation data 
from the wall-to-wall vegetation map, with the same resolution as the model 
data from MaxEnt. 

The model precision was calculated based on four categories; correct pre-
dicted absence, incorrect predicted absence, correct predicted presence and in-
correct predicted presence. The accuracy of the MaxEnt models was calculated 
as the percentage of correct predicted absence and presence against the actual 
absence and presence. The classification accuracy and error rate was calculated 
by a confusion matrix using the total number of points inside the four different 
categories for each of the three different vegetation types. 

We tested if the DM could be used to predict absence and presence for the 
three given vegetation types using the ± standard error interval (SE). The null 
hypothesis (H0) was that the percentage of each of the four categories used for 
evaluation of the MaxEnt models was zero. 

Potential difference in the accuracy of prediction for absence and presence 
were tested by the 95% confidence interval (CI) of the difference between correct 
predicted absence and correct predicted presence. 

2.8. Ecological Distance 

The ecological distance was based on the EVs used in the MaxEnt models for the 
different study areas (Table 2). A dissimilarity metrics based on the results from 
Principal Component Analysis (PCA) [47] was used as a measure for ecological 
similarity between the test PSUs and the model PSU.  

PCA is an indirect ordination method aimed at restructuring complicated 
data into a manageable format [48]. For PCA we only included EVs used in the 
MaxEnt model for each vegetation type, and we could not detect convincing 
arch or horseshoe effects [49]. The different EVs represent units measured on  
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Table 2. Descriptions of the most important model parameters and the percent contribu-
tion of EVs in the final five DM models run for each vegetation type.  

Dwarf shrub heath Model 1 Model 2 Model 3 Model 4 Model 5 

Training-AUC 0.707 0.930 0.796 0.896 0.744 

Threshold value 0.388 0.315 0.331 0.199 0.483 

#Parameters 13 8 17 6 9 

#Training points 452 122 546 409 564 

Percent contribution of EVs (%) in the dwarf shrub heath DM models 

DEM 36.1 - 32.9 9.1 - 

Aspect 37.8 82.8 52.1 - 57.0 

Rel_6 - 8.6 2.3 32.2 - 

Rel_9 7.9 8.6 4.9 58.7 14.1 

Wet_ind 18.2 - 7.8 - 28.9 

Total 100 100 100 100 100 

Tall forb meadow Model 1 Model 2 Model 3 Model 4 Model 5 

Training-AUC 0.900 0.807 0.813 0.911 0.922 

Threshold value 0.197 0.379 0.454 0.197 0.197 

#Parameters 13 17 13 11 13 

#Training points 81 345 173 93 110 

Percent contribution of EVs (%) in the tall forb meadow DM models 

DEM - 16.3 23.3 69.7 - 

Slope - - 25.2 - - 

Aspect 66.3 35.9 39.1 21.8 71.9 

Rel_6 4.6 6.9 - 8.5 - 

Rel_9 29.1 11.1 - - 21.2 

Wet_ind - 29.8 12.4 - 6.9 

Total 100 100 100 100 100 

Fen Model 1 Model 2 Model 3 Model 4 Model 5 

Training-AUC 0.999 0.884 0.958 0.889 0.901 

Threshold value 0.719 0.26 0.205 0.222 0.169 

#Parameters 4 14 11 12 12 

#Training points 4 223 67 149 132 

Percent contribution of EVs (%)in the fen DM models 

DEM - 20.0 40.8 38.1 45.7 

Aspect 32.5 35.8 33.1 17.6 50.6 

Rel_6 67.5 40.7 - - - 

Rel_9 - 3.5 19.9 27.4 - 

Wet_ind - - 6.2 - 3.7 

Plan_curv - - - 16.9 - 

Total 100 100 100 100 100 
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unequal scales, so we normalized all variables using division by their standard 
deviations. Furthermore, we used eigenvalue scales, created 95% concentration 
ellipses for each PSU (run site by site) and used the information from those el-
lipses in the further analyses of dissimilarity among PSUs. We used metrics from 
the 95% ellipses representing the first two PCA axes; mean x and mean y.  

To express the dissimilarity among PSUs provided by the PCAs, we used 
standard Euclidean dissimilarity and distance metrics [48]. 

2.9. Evaluation of the Ecological and Spatial Distance 

The coherence between the predictions/correct predictions and the ecological 
and spatial distance was analysed. Spatial distance was set as the Euclidean dis-
tance between the midpoint of the model PSU and the midpoint of each of the 
test PSUs. Ecological distance is described in the above chapter. The correlation 
between the predicted presence for the three different vegetation types and the 
ecological and spatial distance was analysed using linear regression analysis. The 
correct predicted absence and presence data were analysed in the same way. 

3. Results 
3.1. Descriptions of the Models 

A model for each of the different study sites was fitted. Between two and five 
different EVs were used, see Table 2 for details about the model parameters. 

A correlation between the number of training points and the training-AUC 
value was observed, with a decrease in training-AUC value with an increase in 
the number of training points (R2 = 0.69, p = 1.1e−4) (Appendix 4).  

The predicted presence of the types varied widely between the PSUs inside the 
study sites. The mean predicted percentage coverage for dwarf shrub heath was 
19% of the study sites, and the mean predicted percentage coverage for tall forb 
meadow and fen was 26% and 16%, respectively. The amount of predicted pres-
ence for the three different vegetation types ranged from 0% to >98% coverage 
of the test PSUs (Appendix 5). 

3.2. Evaluation of the Spatial Transferability 

The percentage predicted absence verified as correct is high for all the vegetation 
types; 90.0% for dwarf shrub heath, 96.9% for tall forb meadow and 97.7% for 
fen. The percentage predicted presence verified as correct is low; 23.4% for dwarf 
shrub heath, 1.9% for tall forb meadow and 6.1% for fen (Table 3; Appendix 
6).The classification accuracy based on the confusion matrix varies between 76% 
and 84% for the three different vegetation types.  

The H0 was rejected for correct predicted absences and incorrect predicted 
presences, but was not rejected for correct predicted presences, e.g. the ±SE in-
cluded zero. There is a significant difference of the model performance between 
the correctness of prediction of absence and presence for all the vegetation types. 
The 95% CI of the margins between the amounts of correctly predicted absence  
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Table 3. Statistics from the verification of the MaxEnt models.  

  
Vegetation type 

Nr 
 

Dwarf shrub heath Tall forb meadow Fen 

1 

Correct predicted absence (% ± SE) 90.03 ± 18.37 96.90 ± 6.06 97.73 ± 5.27 

Incorrect predicted absence (% ± SE) 9.97 ± 18.37 3.10 ± 6.06 2.27 ± 5.27 

Correct predicted presence (% ± SE) 23.42 ± 18.53 1.85 ± 11.29 6.12 ± 8.22 

Incorrect predicted presence (% ± SE) 76.58 ± 18.53 98.15 ± 11.29 93.88 ± 8.22 

2 

Difference correct absence vs. 
correct presence 

66.61 95.05 1.61 

95% CI (±) (% points) 0.18 0.03 0.12 

3 
Classification accuracy (%) 77.29 75.97 84.38 

Error rate (%) 22.71 24.03 15.62 

4 
Predicted absence (%) 80.88 73.59 85.43 

Predicted presence (%) 19.12 26.41 14.57 

5 
Actual absence (%) 87.46 97.23 97.17 

Actual presence (%) 12.54 2.77 2.83 

 
and correctly predicted presence is not close to 0 (Table 3), but is high for all 
three types. 

3.3. Predictions of Vegetation Types vs. Ecological  
and Spatial Distance 

The regression between the amount of predicted presence and ecological and 
spatial distance is presented in Figure 2. The relationship for the amount of pre-
dicted absence is the opposite of the relationship for the amount of predicted 
presence.  

The general tendency is that the number of predicted presence decreases with 
increasing ecological distance. The increase of spatial distance on the other hand, 
does not influence the number of predicted presences. The regression for pre-
dicted presence vs ecological distance is significant (p < 0.005) for dwarf shrub 
heath and fen. However, a tendency for decreasing amount of predicted presence 
with increasing ecological distance is also seen for tall forb meadow (p = 0.07). 
The regression for the number of predicted presence vs. spatial distance is not 
significant for tall forb meadow and fen. There is a trend (p = 0.02) that the 
number of predicted presence decrease with increasing distance from the model 
PSU for dwarf shrub heath. 

For the most common type, dwarf shrub heath, the linear regression between 
the correct classified presences against both the ecological and spatial distance is 
significant (p < 0.005); with a decrease in the amount of correct classified pres-
ence with an increase of ecological or spatial distance (Figure 3).  

The pattern for correct predicted absence is less clear. It is a trend towards a 
positive correlation between correct predicted absence and ecological distance (p  
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Figure 2. Linear regression, with 95% CI, for the relationship between predicted presence and ecological distance and spatial dis-
tance for three vegetation types. ((a), (b)): Dwarf shrub heath. ((c), (d)): Tall forb meadow. ((e), (f)): Fen.  
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Figure 3. Linear regression with 95% CI, for the relationship between correct predicted absence and presence and ecological and 
spatial distance for dwarf shrub heath. 
 

< 0.05), but there is no correlation between correct predicted absence and spatial 
distance. 

The number of correct predicted absence for tall forb meadow shows only a 
weak tendency for correlation with ecological distance (p < 0.1) and no correla-
tion with spatial distance (Appendix 7). The correct predicted presence shows a 
significant negative correlation with both ecological and spatial distance (P ≤ 
0.005). 

There is a significant (p < 0.005) positive correlation between the number of 
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correct classified absence and ecological and spatial distance for fen (Appendix 
8). A trend for negative correlation between the number of correct predicted 
presence and the ecological and spatial distance is seen (P < 0.1). 

4. Discussion 
4.1. Spatial Transferability of Vegetation Types Using DM 

The distribution models resulted in fairly high training AUC-values. Following 
Araújo, Pearson, Thuiller and Erhard [50], all the resulting DMs should thus be 
interpreted as having good predictive ability. In an interpolation setting, a ran-
dom proportion of the P-O points could have been used as a test data set for 
evaluation of the model [41]. In studies of spatial transferability, i.e. in an ex-
trapolation setting, such testing is not possible, since there are no P-O points in 
the projected areas. With the lack of evaluation data it is not possible to state 
anything certain about the transferability of the models, given that training 
AUC-values only report the ability of a model to explain the distribution of the 
training points. When confronted with independent P-A evaluation points from 
the projected neighbourhood areas, the results revealed several important as-
pects, but first we need to discuss the specific DM design used in this study. 

4.2. Setting the Scene for Spatial Transferability in DM 

Provided that the goal of spatial transferability in DM studies is to project the 
targets relationship to EVs from an informed area into an uninformed area, it is 
a prerequisite to avoid model over-fitting [51]. This seems to be a general state-
ment valid also for temporal transferability in DM [52] [53] [54]. Therefore, in-
stead of maximizing the fit to the particular training P-O points of each PSU, we 
reduced the model fit and complexity. In transferability studies, such choices 
depend on a priori knowledge with the DM method [14], the ecology of the tar-
get and the environmental variation within the area for projection [27]. In ret-
rospect, given the results of implementing the P-A evaluation points, it is of 
course unproblematic to acknowledge that changes in for example model fitting 
or binary threshold rules could have improved the results. However, we have not 
included any a posteriori corrections according to the results, since the goal was 
to test the spatial transferability using a real dataset and a realistic departure 
point for DM, rather than to train for the ‘best’ modelling setup as an iterative 
process [55]. 

4.3. Ecological Dissimilarity—Not Spatial Distance 

A fundamental assumption in spatial analysis (sensu lato) is Tobler’s first law of 
geography [56] [57]. A priori, we therefore expected a gradually decreasing DM 
performance with increasing distance from the training PSUs, in accordance 
with the results of other studies [e.g. [51]].  

In this study, the overall proportion of predicted presences did not change 
much with increasing spatial distance (Figure 2), but the variation was high. The 
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high variation indicate high environmental turnover within and among the PSUs, 
which was better described by the ecological distance provided by PCA. Thus, 
instead of defining spatially coherent domain(s) for DM projection at re-
gional-to-global scale [e.g. 51], the ecological dissimilarity within each cell 
should define ecologically coherent domain(s) (Figure 4). We recommend ex-
cluding all cells that are ecologically too dissimilar compared with the ecology of 
the training site, regardless of spatial distance. 

Elith, Kearney and Phillips [58] warned against using DM in environmental 
novel areas outside the range of training values by implementing a measure of 
environmental similarity (MESS). We used the variation along the first two axes 
of PCA to extract the most structuring environmental novelty, which in DM of-
ten is well described by a very limited number of EVs [35], to evaluate the spatial 
transferability. The methods have differences, but in our opinion, the strong 
correlation between correctly predicted cells and ecological distance in our study, 
strongly supports the warning of Elith et al. [58] and others [59]. 

4.4. Confronting DMs with Independent P-A Evaluation Data 

Confronting the predictions with independent evaluation data reveals that the 
specificity is high, but the sensitivity is low. The total classification accuracy is 
relatively high for the three vegetation types (Table 3), which we judge to be a 
result of high specificity and large areas with absence of the targets. Given that 
the DMs identify areas of true absence, it should be a logical consequence that it 
was also able to identify areas of true presence. However, our results point at the 
fact that we have a precise modelling of absence, but an un-precise modelling of  

 

 
Figure 4. Visualization of potential domains based on spatial distance (a) and ecological distance (b). 
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presence. The DM is thus guiding us to the relevant areas of potential presence, 
but with a low spatial accuracy. If we had implemented a different binary 
threshold rule and kept the same model settings, the RPPP values and DM re-
sults would not have changed, but it could have displayed the proportions of 
predicted absence and presence differently. Having the results of the independ-
ent test, the negative correlation between the amount of correctly predicted pre- 
sence and the ecological and spatial distance, enables the possibility to use a bi-
nary threshold rule that increase the sensitivity of the models. However, without 
the independent test, we would not have known a priori which of the binary 
threshold rules to implement. 

The effects of ecological and spatial distance changes when the predictions are 
confronted with independent evaluation data. The correctly predicted presence 
for all types is negatively correlated with the ecological as well as the spatial dis-
tance. No such clear pattern is observed for the correctly predicted absence. The 
correlation between the predicted presence and ecological and spatial distances 
(Figure 2) gives a picture based on the MaxEnt models alone; the EVs and the 
training data. The real situation, when the model data are confronted with the 
evaluation data, reveals a more complex picture, where undetected ecological 
factors influence the results. The absence of the vegetation types can be seen as a 
diverse group, whereas the presence is more homogeneous. 

4.5. Sources of Error and Uncertainties 

Although topographic EVs derived from DEMs have been found to be highly 
useful for DM studies [1] and have shown to explain the local distribution of 
some vegetation types [6] [60], they do not represent the entire ecological signa-
ture needed to predict the vegetation types in question. In the absence of high 
resolution climate data, we have used altitude as a collective climate proxy, well 
aware of the uncertainties related with the use of this confounding EV [61]. We 
believe the DM presented in this study could have been improved by adding 
several relevant EVs, such as snow cover, temperature, precipitation (sensu lato), 
and soil macronutrients. These EVs however, was not available or only available 
at irrelevant resolution. For the purpose of DM, we acknowledge that several 
missing EVs could have improved the in situ model fit, but they would most 
likely not have improved the spatial transferability. The main source of error for 
spatial transferability of DMs is in our opinion the lack of environmental varia-
tion represented by the training P-O points in relation to a more varied envi-
ronment within the area intended for projection. 

The overall results for the three vegetation types were congruent, but some 
differences were identified. The locally common vegetation type fen performed 
best of the tested vegetation types. The distribution of fens is clustered, and the 
total cover is relatively low. Dwarf shrub heath is the most common vegetation 
type, both in extent and distribution, and the internal variability is high [62]. 
The extrapolation of the vegetation type achieved an intermediate result, but was 
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more accurately modelled than seen in earlier studies [6]. The locally and overall 
rare tall forb meadow resulted in the lowest accuracy model, and was largely 
overestimated. We acknowledge two main reasons for this. First; the vegetation 
type requires plenty of soil nutrients and moisture [33]. Second; it is a possibility 
that the vegetation type has too low prevalence to be predicted precisely. Based 
on only three vegetation types with varying prevalence and ecology, we would 
warn about drawing too general conclusions. 

4.6. Practical Implications 

In this study we have only tested local transferability of a DM based on sample 
survey data. The results did not support our initial intention to use the DM 
framework as a substitute for vegetation mapping, since the models were better 
at recognizing absences than presences. However, if sample survey data were to 
be implemented as a practical part of DM for vegetation mapping, presence data 
from all sampled survey plots would be activated simultaneously. That would 
imply a shift from DM based on local spatial extrapolation sensu stricto, to DM 
based on interpolation among plots in the interior of the extent. This alternative 
approach raises several new research questions that needs to be addressed, such 
as; are the provided density (or size) of survey plots high enough to represent 
both the total and the continuously environmental variation of the vegetation 
types within the extent, and are rare vegetation types clustered in space 
(non-random distribution) well represented in the gridded sample survey. These 
questions will have to be accounted for, before any conclusions can be drawn 
regarding implementation of DM as a method for vegetation mapping based on 
area frame survey data. 

5. Conclusions 

This study has demonstrated several aspects of caution that needs to be handled 
when DMs of vegetation types, trained with survey data and fitted with MaxEnt, 
are used for spatial transferability: 
• Area frame surveys of vegetation types, where sample plots are assumed to be 

representative for a larger spatial domain, should be used with caution in 
transferability studies using DM.  

• The training P-O points have to be representative for the environmental 
variation in the area intended for projection.  

• The parameterization, selection of EVs, and model specification will influ-
ence the ability to transfer the DM. Based on the low ability to correctly 
model presences; we believe that under-fitting is influencing the results. It is 
therefore important to balance the model fit and complexity between the two 
contrasting goals: to enable a spatial projection of the DM (low model fit), 
but at the same time, keep a high predictability of presences (high model fit).  

• The transferability of the DMs did not depend on the spatial distance, but 
correlated well with PCA-indicators of ecological distance among the test 
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sites. The challenge of DM transferability is therefore not primarily to define 
a spatial domain, but a matter of defining an ecological domain suitable for 
spatial projection. 

• The reliability of a spatially projected DM can only be addressed thoroughly 
when tested against independent evaluation data. The training AUC-values 
from the DMs, did not provide a good estimate of the true modelling per-
formance. 

This research was deliberately limited in scope to an examination of data from 
an existing area frame survey of vegetation types with respect to the spatial 
transferability of DM fitted with MaxEnt. The focus on the chosen vegetation 
type data, DM method, EVs and spatial scale however, provides only a certain 
part of the challenges involved in DM transferability. Nevertheless, as high qual-
ity vegetation maps remain a key tool for nature management [43], and field- 
work mapping is time-consuming and expensive, we need a better understand-
ing of how to model the distribution of vegetation types from existing data, such 
as area frame surveys [21]. Spatial modelling techniques, such as the DM meth-
ods (e.g. MaxEnt), are increasingly accessible to researchers and should be used 
to explore the potential for modelling the distribution of vegetation types in ar-
eas not yet mapped by traditional methods [6]. 
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Appendix 1 

Distribution of vegetation types within the study area used for model evaluation. The vegetation type classification is 
based on reference1. Vegetation types used for DM are marked with grey shading. The occurrence of each type is 
given in km2 and the proportion in percent. 

Name of vegetation type Code Area (km2) % of area 

Cultivated land 11a 2.9 0.31 

Pasture 11b 2.44 0.26 

Soil and gravel 12a 0.39 0.04 

Boulder field 12b 156.78 16.66 

Exposed bedrock 12c 74.97 7.96 

Glaciers and perpetual snow 12g 0.68 0.07 

Moss snow-bed 1a 5.05 0.54 

Sedge and grass snow-bed 1b 37.44 3.98 

Dry grass heath 2b 73.97 7.86 

Lichen heath 2c 210.88 22.4 

Mountain avens heath 2d 0.11 0.01 

Dwarf shrub heath 2e 112.53 11.96 

Low herb meadow 3a 1.84 0.2 

Tall forb meadow 3b 12.15 1.29 

Lichen and heather birch forest 4a 45.84 4.87 

Bilberry birch forest 4b 37.32 3.96 

Meadow birch forest 4c 15.96 1.7 

Flood-plain scrubs 4f 0.58 0.06 

Pasture land forest 4g 0.47 0.05 

Lichen and heather pine forest 6a 58.22 6.18 

Bilberry pine forest 6b 11.05 1.17 

Meadow pine forest 6c 3.19 0.34 

Pine forest on lime soil 6d 0.05 0.01 

Lichen and heather spruce forest 7a 3.34 0.35 

Bilberry spruce forest 7b 1.48 0.16 

Meadow spruce forest 7c 0.37 0.04 

Damp forest 8a 0.02 0 

Bog forest 8b 0.5 0.05 

Poor swamp forest 8c 1.14 0.12 

Bog 9a 19.23 2.04 

Deer-grass fen 9b 0.03 0 

Fen 9c 32.84 3.49 

Mud-bottom fens and bogs 9d 0.57 0.06 

Sedge marsh 9e 0.99 0.1 

Water wa 15.95 1.7 

  
941.28 100 

 

 

1Rekdal, Y. (1994) Vegetasjonskart, Rondane nasjonalpark. Korrigert utgave [Vegetation Map, Rondane National Park. Corrected Edi-
tion].Norwegian Institute of Land Inventory, Ås. 
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Appendix 2 

List of additional information codes used in the vegetation mapping in Norway2. Additional information included in 
the model points are listed first and additional information not included in the model points are listed last.  

Additional information codes 

Additional information included in the model points 

Lichens 
v Areas with 25% - 50% lichen cover 

x Areas with >50% lichen cover 

Salix sp. s Areas with >50% cover of Salix sp. 

Juniperus communis j Areas with >50% cover of Juniperus communis 

Calcareous fen k Fen with plant species demanding lime. 

Additional information not included in the model points 

Combined signatures 
 

Areas where two vegetation types occurs in mosaic. 

Rocks and boulders 
{ Places with 25% - 50% rocks and boulders 

} Places with 50% - 75% rocks and boulders 

Exposed bedrock 
< Places with 25% - 50% exposed bedrock 

> Places with 50% - 75% exposed bedrock 

Tree species 

 
Non-forested land with tree coverage 5% - 25% of the area 

* Norway Spruce 

& Deciduous trees 

+ Scots Pine 

& Deciduous trees 

Appendix 3 

Correlation matrix of the environmental variables considered in the study. Numbers provide Pearson’s product- 
moment coefficient (r). Correlations above 0.7 are shaded. 

Environmental variable Aspect Plan_curv Prof_curv Curvature DEM Rel_3 Rel_6 Rel_9 Slope Solar_rad Wet_ind 

Aspect x 
          

Plan_curv −0.0005 x 
         

Prof_curv 0.0010 −0.3786 x 
        

Curvature −0.0009 0.7763 −0.8773 x 
       

DEM 0.0259 0.0273 −0.0359 0.0386 x 
      

Rel_3 −0.0033 0.0278 0.0043 0.0115 0.3921 x 
     

Rel_6 −0.0401 0.0102 0.0039 0.0026 0.0797 0.4022 x 
    

Rel_9 −0.0073 0.0275 0.0041 0.0115 0.4294 0.9299 0.3933 x 
   

Slope 0.0033 0.0325 0.0004 0.0166 0.4122 0.9567 0.3725 0.9187 x 
  

Solar_rad 0.6695 0.0248 −0.0449 0.0435 0.1475 −0.3155 −0.1937 −0.2942 −0.2966 x 
 

Wet_ind −0.0566 −0.2230 0.1509 −0.2185 −0.2177 −0.4732 −0.1355 −0.4529 −0.4983 0.08153 x 

 

 

2Rekdal, Y. (1994) Vegetasjonskart, Rondane nasjonalpark. Korrigert utgave [Vegetation map, Rondane national park. Corrected edi-
tion].Norwegian Institute of Land Inventory, Ås. 
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Appendix 4 

Correlation between the number of training points in the PSUs used for the modelling of the different study sites and 
the training-AUC values. The linear regression between the number of training points and training-AUC values are 
marked with a straight line. 
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Appendix 5 

The percentage distribution of predicted presences (light grey) and absences (dark grey) for each of the different test 
PSUs inside of the different vegetation types and study sites. (a) Dwarf shrub heath; (b) Tall forb meadow; (c) Fen. 
The test PSUs are sorted in increasing distance from the model PSU.  
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Appendix 6 

The percentage distribution of correct (dark grey) and incorrect (light grey) predicted presences and absences for 
each of the different test PSUs inside of the different vegetation types and study sites. (a) Correct and incorrect pre-
dicted absences for dwarf shrub heath; (b) Correct and incorrect predicted presences for dwarf shrub heath; (c) Cor-
rect and incorrect predicted absences for tall forb meadow; (d) Correct and incorrect predicted presences for tall forb 
meadow; (e) Correct and incorrect predicted absences for fen; (f) Correct and incorrect predicted presences for fen. 
The test PSUs are sorted in increasing distance from the model PSU. Missing bars indicate no predictions for ab-
sences or presences in the given study site.  
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Appendix 7 

Linear regression with 95% CI, for the relationship between correct predicted absence and presence and ecological 
and spatial distance for tall forb meadow. The predicted presence is reported as the percentage in each test PSU. 
Ecological distance is derived by the dissimilarity matrix, based on the PCAs of the EVs used in the MaxEnt model-
ling, and gives the ecological difference between the training points and the test PSUs.  
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Appendix 8 

Linear regression with 95% CI, for the relationship between correct predicted absence and presence and ecological 
and spatial distance for fen. The predicted presence is reported as the percentage in each test PSU. Ecological distance 
is derived by the dissimilarity matrix, based on the PCAs of the EVs used in the MaxEnt modelling, and gives the 
ecological difference between the training points and the test PSUs.  
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