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Abstract 
We present an intuitively satisfying geometric proof of Fermat’s result for 
positive integers that 1 1pa − ≡  for prime moduli p, provided p does not di-
vide a. This is known as Fermat’s Little Theorem. The proof is novel in using 
the idea of colorings applied to regular polygons to establish a number-theo- 
retic result. A lemma traditionally, if ambiguously, attributed to Burnside 
provides a critical enumeration step.  
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1. Historical Background 

Pierre de Fermat wrote his friend Frénicle de Bessy in 1640 stating that he had 
discovered that 1 1pa − ≡  for prime moduli p, provided p did not divide a, but 
his proof was overlong, so he did not bother to include the details. One might 
wish that Fermat had been more generous in recording his notes both in this 
instance and that famous “margin too small to contain∙∙∙ (his proof of Fermat’s 
Last Theorem)”. Leibniz appears to have proved the theorem prior to 1683 
without publishing it, and then Euler reprised Leibniz’ work in a published 
version. This result, christened Fermat’s Little Theorem by Kurt Hensel in 1913, 
is the basis for a convenient method for detecting primality, or more correctly, 
compositeness [1] [2] [3]. If p does not divide a and 1pa −  is not congruent to 
1mod p , then p must be composite. Modular arithmetic, particularly with the 
aid of a computer, makes short work of calculating the residues of high powers 
of a needed to check this condition. Unfortunately, the invalidity of the converse 
to Fermat’s Little Theorem (if 1 1modna n− ≡  with a and n coprime, then n is 
prime) forces it to be used in a probabilistic way for detecting primality. If 
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1 1modna n− ≡  for lots of different admissible choices of n, then it looks more 
and more like n is probably prime. But there are many a for which  

1 1modna n− ≡  and yet n is composite. Such a are called “Fermat Liars” and the 
n that go with them are termed pseudoprimes to the base a. A pseudoprime to 
every base, and they do exist but are relatively rare, is called a Carmichael 
number. Carmichael numbers completely defeat the usefulness of the theorem as 
a primality test. There is certainly no shortage of simple proofs of Fermat’s Little 
Theorem. It may be proved with a straightforward induction on the base a to 
show that 1 1pa − −  is divisible by p, or by using a modular arithmetic argument. 
We present a proof of this useful theorem from an intuitively appealing direc- 
tion based on coloring the vertices of regular polygons with prime numbers of 
sides. 

2. Burnside’s Lemma [4] 

If G is a group of permutations acting on a set S, then for a particular Gπ ∈ , 
the invariant set of π  is the collection of all elements of S that are fixed points 
of π , i.e. ( )s sπ = . The orbit of some s S∈  is the collection of elements 
obtained by letting every permutation in G act on that s. Intuitively, there is a 
broad inverse size relationship between orbits and invariant sets. If most 
elements are not moved by most permutations, invariant sets will be large and 
orbits will be small, but more numerous. In 1897, the British mathematician 
William Burnside published the result, with attribution to Frobenius [5], that if 
G is a group of permutations acting on the finite set S, then the number of orbits  

of S under G is given by ( )1
G inv

G π π
∈∑ , where ( )inv π  is the size of the  

invariant set of the permutation Gπ ∈ . Burnside’s Lemma is a direct conse- 
quence of the Orbit/Stabilizer Theorem [1] [2] [3] and was known at least as 
early as Cauchy, hence it is sometimes called “the lemma that is not Burnside’s” 
[6]. We will color the elements of S, specifically the vertices of a regular polygon 
with a prime number of sides, and adapt Burnside’s/Not Burnside’s Lemma to 
the problem of enumerating distinct colorings. 

3. Colorings 

A coloring χ  is a mapping from the finite set S of objects to be colored to the 
finite set P, consisting of the “pallette” of colors. This is just a fanciful way of 
thinking about the rather dry notion of an arbitrary function between two finite 
sets. Colorings had their origin in the effort to establish the Four-Color Theorem, 
and they pop up in many seemingly unrelated combinatorial settings [7] [8]. If 
the group G of permutations shuffles the objects of S, then those permutations 
will likewise shuffle the possible colorings of S. So a given Gπ ∈  can be 
regarded as a mapping from the set of P-colorings of S back to itself. More 
mathematically, there is a group of induced maps G∗  that form an action on 
the set of colorings SP . Each Gπ ∈  gives rise to a companion mapping 
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Gπ ∗ ∗∈  that determines what happens to the available colorings whenever the 
underlying objects in S are permuted by π . It is clear that G∗  is a group with 
the same order as G. 

Just as the elements of S can be put into equivalence classes on the basis of 
whether they are in the same orbit under the action of G or not, colorings can be 
put into equivalence classes depending on whether they are in the same orbit 
under the action of G∗  or not. Orbits of colorings are called patterns. Two 
colorings 1χ  and 2χ  are equivalent, or represent the same pattern, if there is a 

Gπ ∈  such that for all s S∈  we have ( ) ( )( )1 2s sχ χ π= . For example, if 
( )1 redaχ = , ( )1 whitebχ = , and ( )1 bluecχ = , then if the permutation  
( )a b c Gπ = ∈ , 1χ  and 2χ  are equivalent provided ( )2 blueaχ = ,  
( )2 redbχ = , and ( )2 whitecχ = . You can see that  

( ) ( )( ) ( )1 2 2red a a bχ χ π χ= = = , and so forth. We would write ( )1 2π χ χ∗ =  to 
signify this situation. 

4. Proof 

If we have a symmetrical object with a coloring, we can apply Burnside’s Lemma 
to enumerate the number of distinct patterns possible for the object. Let us 
consider a regular p-gon, where p is prime, and color the vertices with a pallette 
consisting of a colors, where p does not divide a. We will admit the digon to 
handle the case 2p = . Now we are not going to tear or fold the polygon, so the 
only permutations of colorings allowed are going to be those induced by the 
rotation group of the polygon, namely the cyclic group p . The invariant set of 
a particular π ∗  induced by an element of this group is easy to characterize. The 
zero rotation has pa  colorings fixed by it, namely the total number of possible 
paint jobs or mappings from the vertices to the pallette. Every non-zero element 
of p  carries each pure coloring (every vertex the same color) into itself, so 
there would be a such colorings fixed by the action of those rotations. But none 
of these 1p −  non-zero rotations can carry a non-pure coloring back to itself 
due to the indivisibility of p. Burnside’s Lemma then gives us the total count of 
possible distinct patterns as  

( ) ( )( ) ( )( )11 1 1 1p p
G

ainv a a p a p
p pG π π∗ ∗

∗ −
∈∗

= + − = + −∑ . Evidently this is a  

positive integer, and since p does not divide a, it must divide ( )( )1 1pa p− + − . 
But this means ( )( )1 11 1 0 modp pa p a p− −+ − ≡ − ≡ , which is Fermat’s Little 
Theorem. 

5. Conclusion 

We have established Fermat’s Little Theorem by coloring the vertices of a 
regular polygon and then finding the patterns that are stable under various 
rotations of the polygon. When the number of vertices is prime, the set of such 
invariant patterns is necessarily limited. This process lends itself to intuitively 
satisfying visualization. Burnside’s Lemma then enumerates the relatively sparse 
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number of invariant patterns and gives a formula that is equivalent to the 
modular expression of Fermat’s Little Theorem. An interesting further application 
of this idea would be to search for other number-theoretic results using 
colorings of more complicated geometric objects and more general pattern 
enumeration methods, for example Polya’s Counting Theorem. 
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