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Abstract 
This paper analyzed the security of constant dimensional subspace code 
against wiretap attacks. The security was measured in the probability with 
which an eavesdropper guessed the source message successfully. With the 
methods of linear algebra and combinatorics, an analytic solution of the 
probability was obtained. Performance of subspace code was compared to 
several secure network coding schemes from the perspective of security, flex-
ibility, complexity, and independence, etc. The comparison showed subspace 
code did not have perfect security, but it achieved probabilistic security with 
low complexity. As a result, subspace code was suitable to the applications 
with limited computation and moderate security requirement.  
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1. Introduction 

Wiretap attacks on networks denote an eavesdropper, named by Eve, intends to 
resolve the source message by wiretapping network transmissions. A wiretap at-
tack is imperceptible since it does not disturb normal communications. For a 
communication network, the security performance against wiretap attacks is 
tightly related to the underlying transmission mechanisms. There are two types 
of transmission mechanisms of communication networks: routing and network 
coding. Traditional routing networks operate in the way of store and forward. A 
relay node is only allowed to faithfully forward the received packets. According-
ly, if Eve intercepts a routing packet, he will obtain the containing message. On 
the contrary, a linear network coding (LNC) system operates in the way of store, 
encode, and forward. In the LNC realm, an intermediate node is allowed to 
combine received packets to generate and pass on novel output packets. As a re-
sult, if Eve intercepts a LNC packet, he cannot resolve the source message except 
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he can successfully decode. Two necessities are required for successful LNC de-
coding by a legal subscriber or Eve [1]: 
 Enough received packets. 
 Full knowledge of coding rules, such as local coding vectors (LCV) or global 

coding vectors (GCV). 
Both necessities demand stronger capabilities with Eve in LNC networks than 

in routing networks. Thus, LNC is inherently more secure than routing. In this 
paper, we name the intrinsic secure nature of LNC by basic security. An example 
of routing and LNC is shown in Figure 1.  

Definition 1. (Wiretap Network Model) [2]: The wiretap network model 
(WNM) is a quadruple (G, S, R, A). 
 A directed acyclic graph G = (V, E), with V and E representing the sets of 

nodes and edges, respectively. 
 A source node S ∈ V. 
 A set of receiver nodes { }:i iR r r V= ∈ . 
 A collection of wiretap channel sets { }:A A A E= ⊂ . An enemy can wiretap 

only one instance of A. 
If the number of wiretapped edges is limited, say |A| ≤ r, i.e., there are r wire-

tapped edges at most, but the wiretap pattern A is not fixed, it is called r-WNM 
[3]. 

Based on WNM or r-WNM, a variety of secure LNC schemes were proposed. 
According to the protection strength, we classify these schemes into three security 
grades: weak security, perfect security and strong security. Let m = (m1, ∙∙∙, mn) and 
yA denote the source message and the set of symbols intercepted from the wiretap 
pattern A, respectively. Then, weak security [4] aims to protect a source symbol mi 
from being solved. There are two classes of weakly secure LNC schemes. The first 
depends on an elaborately designed LNC algorithm [4] [5]. Its basic idea is to force 
the symbol on network links to be a mixture of (m1, ∙∙∙, mn) so that the knowledge 
of yA with |A| < n is not enough to solve mi. The second leverages classical crypto-
graphy to protect message by encryption [6] [7] [8] [9]. Moreover, [10] developed 
a weakly secure random linear network coding scheme based on the approach of 
one-time pad. To reduce the security which is then generalized seamlessly to in-
ter-generation coding. Perfect security [12] aims overhead, Liu et al. [11] proposed  
 

 
Figure 1. A comparison between routing network and LNC network. The LNC is defined 
over F5 and the coding rule is p3 = l11p1 + l12p2 = 1 × 1 + 1 × 2 = 3, p4 = l21p1 + l22p2 = 1 × 1 
+ 2 × 2 = 0. 
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an intra-generation coding encryption models to protect the information of m 
from leakage, i.e., H(m|yA) = H(m). A perfectly secure LNC scheme can be built 
based on precoding [3] [12], coset code [13], or rank metric code [14]. Strong 
security [15] improves perfect security by reducing information leakage in case 
that perfect security is broken. 

A comparison between perfect security and weak security is shown in Figure 
2. Figure 2(a) shows a case of r = 1 perfect security. The message m consists of a 
symbol x over the finite field of F3. It is concealed by a random symbol k. No 
matter which edge (upper or lower, but not both) is wiretapped, Eve gets no in-
formation about x. Figure 2(b) is an example of r = 1 weak security. The source 
message m is composed of two symbols x1 and x2 over F3. It is easy to check that 
with only one symbol overheard from any edge, Eve can get an amount of in-
formation about m = (x1, x2), but he cannot guess the value of x1 or x2 precisely.  

In this paper, we aim to analyze the security performance of subspace code 
against wiretap attacks. Subspace code is a kind of source coding strategy com-
bined with random LNC. It was utilized and analyzed by Kötter and Kschi-
schang [16] for error correction. But the security performance of subspace code 
against wiretap attacks, to the best of our knowledge, is still missing. This paper 
addresses the basic security of subspace code. That is to say only a raw LNC sys-
tem using subspace code is considered and no extra mechanisms, such as en-
cryption or source coding, are included. With the method of combinatorics, we 
calculate the probability with Eve to precisely guess the sending message by 
wiretapping packets from network links. To the best of our knowledge, this is 
the first quantitative analysis being done on the security performance of sub-
space network coding against wiretap attacks so far.  

The remainder of the paper is organized as the following: Section II introduces 
the concept of subspace code and its application on error correction; Section III 
presents detailed analysis to the security of subspace code against wiretap attacks. 
Some quantitative results are obtained; In Section IV, we compared subspace code 
with several LNC schemes; Finally, we summarize the conclusion in Section V.  

2. Subspace Code 

Subspace code belongs to the family of array code [17], which represents messages 
by matrices. Instead of mapping a message into a scalar or a vector, subspace De-
note the overall space over the finite field Fq by n

qF . See Figure 3 as an example. 
code represents a source message by a subspace of a given n-dimensional space. 
 

 
Figure 2. Perfect security and weak security. (a) perfect security; (b) weak security. 
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The overall space is 4
5F . Figure 3 shows the transmission of the message ‘A’ as 

an example. When the source node S sends ‘A’, it maps ‘A’ into the 
3-dimensional subspace spanned by {(1000), (0100), (0010)} and injects the 
three basis vectors into the network. After the transportation with random LNC, 
a sink node R receives three independent vectors, say {(1000), (0020), (0300)}. It 
decodes ‘A’ by identifying the corresponding subspace. 

Subspace code is based on the vector space preserving property of LNC [16]. If 
the dimension of subspaces is constant for all code words in a codebook, it is 
called constant dimensional subspace code. This type of code plays an important 
role in subspace code due to low complexity of encoding and decoding. Sub-
space code fulfills noncoherent communications, i.e., the source and sink nodes 
do not need to care about the network topology, so it is very suitable for a to-
pology variable network.  

Kötter and Kschischang [16] utilized subspace code to make error and erasure 
control for random LNC. They modeled a random LNC system as a subspace 
operator channel, whose input and output are two subspaces U and V, respec-
tively. In the context of constant dimension code, U and V are both k dimen-
sional subspaces of n

qF . Due to errors and/or erasures, U and V may be differ-
ent. To make error correction, Kötter and Kschischang defined a subspace dis-
tance metric ( )S ,d U V  as 

( ) ( ) ( )S , dim dimd U V U V U V= + −                  (1) 

where the sum space { }: ,U V u v u U v V+ = + ∈ ∈  is the smallest subspace con-
taining both U and V, and the intersection space U V  is the biggest subspace 
contained in both U and V. A minimum distance decoding rule is defined in 
terms of ( )S ,d U V . 

( )S
 code book

ˆ arg min ,
V

V d U V
∈

=                      (2) 

If subspace code is implemented in a hostile environ, the designer and users 
may care about its security performance against various attacks. In this paper, 
we address the security of subspace code against wiretap attacks. 
 

 
Figure 3. An example of subspace coding. The message ‘A’ is encoded into a subspace 
spanned by {(1000), (0100), (0010)}. After transmission with the random LNC network, 
the sink R received three vectors {(1000), (0300), (0020)}, which spans the same subspace 
to the one spanned by {(1000), (0100), (0010)}, so R decodes the message ‘A’ by identify-
ing the subspace. 
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3. Security Analysis of Subspace Code 

In a random LNC network [18], LCVs are generated locally and randomly at in-
termediate nodes during transmission, and GCVs are attached with code words 
in the packets. If a packet is intercepted, the code words and corresponding 
GCV will be exposed simultaneously, so random LNC is potentially weak. Sub-
space code takes a random LNC network as the underlying transportation. But 
in a subspace code network, receivers do not depend on GCVs to decode, so that 
only code words are contained in packets. From this point, subspace code is su-
perior to random LNC against wiretap attacks. Next, we make detailed analyses 
to the security of subspace code against wiretap attacks. 

3.1. System Model 

Consider an error free random LNC network using k dimensional subspace code 
over n

qF . The eavesdropper Eve wiretaps l network links and tries to restore the 
source message. Assume Eve masters the full knowledge of the subspace code, 
i.e., he knows the finite field Fq, the dimension parameters n and k, and the code 
book, etc. Thus, Eve behaves just like a valid subscriber except that he can only 
collect l vectors from the network. Obviously, l measures his wiretap capability. 
Specifically, if l = k, he can decode the source message just like a legal subscriber; 
If l < k, the number of intercepted packets is not enough to precisely identify the 
sending subspace, so Eve cannot decode the message correctly. However, he can 
guess the k dimensional sending subspace with the knowledge of l intercepted 
vectors. The method of guess is also used in [4]. The probability of a successful 
guess measures the security of subspace code. With the method of combinator-
ics, we make detailed analyses to the probability in the following. 

3.2. Guess Probability 
Before analyses, we introduce a counting result of a constant dimensional sub-
space code. The number of k dimensional subspaces of n

qF  is denoted by 

q

n
k
 
 
 

, which is called Gaussian coefficient in combinatorics [19]. It is equal to 

( )( ) ( )
( )( ) ( )

1 1

1

1 1 1

1 1 1

n n n k

k k
q

q q qn
k q q q

− − +

−

− − − 
= 

− − − 





                 (3) 

WLOG, denote the l wiretapped vectors by 1, , lV V , ( 1l k≤ − ). Then, we have 
Theorem 1: Within the vector space n

qF , the number of distinct k dimen-
sional subspaces containing 1, , lV V  equals 

( )( ) ( )
( )( ) ( )

1 1

1

1 1 1

1 1 1

n l n l n k

k l k l

q q q
M

q q q

− − − − +

− − −

− − −
=

− − −





                (4) 

Proof: Assume the basis vectors of the k dimensional subspace are 1, , lV V , 

1, ,l k+ V V . Because Vl+1 must take a value other than any linear combination of 

1, , lV V , the number of possible choices of Vl+1 should be n lq q− . Similarly, 
we get the number of possible choices for Vi ( 1l i k+ ≤ ≤ ) and denote it by N(.). 
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It is listed below. 

( ) ( ) ( )1 1
1 2, , ,n l n l n k

l l kN q q N q q N q q+ −
+ += − = − = −V V V       (5) 

Thus, the number of possible k dimensional bases containing 1, , lV V  
should be 

( )( ) ( )1 1n l n l n kq q q q q q+ −− − −                   (6) 

Next, consider a specific k dimensional subspace Si containing 1, , lV V . If 
we still denote the basis of Si as 1 1, , , , ,l l k+ V V V V , then the number of possi-
ble choices of Vi ( 1l i k+ ≤ ≤ ), denoted by N'(.), should be 

( ) ( ) ( )1 1
1 2, , ,k l k l k k

l l kN q q N q q N q q+ −
+ +′ ′ ′= − = − = −V V V       (7) 

That is to say for the specific k dimensional subspace Si, the number of possi-
ble choices of 1 1, , , , ,l l k+ V V V V  is 

( )( ) ( )1 1k l k l k kq q q q q q+ −− − −                  (8) 

Connecting (6) and (8), the number of distinct k dimensional subspaces con-
taining 1, , lV V  equals 

( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

1 1 1 1

1 1 1

1 1 1

1 1 1

n l n l n k n l n l n k

k l k l k k k l k l

q q q q q q q q q
M

q q q q q q q q q

+ − − − − − +

+ − − − −

− − − − − −
= =

− − − − − −

 

 

 (9) 

One may notice that (3) is a special case of (4) with l = 0. To calculate the 
guess probability, we assume the source messages are uniformly distributed, i.e., 
all k dimensional subspaces are equiprobable. With this assumption, the enemy 
can successfully guess the sending subspace with the probability of 

( )( ) ( )
( )( ) ( )

1

1 1

1 1 11
1 1 1

k l k l

n l n l n k

q q q
P

M q q q

− − −

− − − − +

− − −
= =

− − −





            (10) 

With the setting of (n = 8, q = 2, k = 6), the probability P is calculated and 
shown in Figure 4, which shows the probability increases with l. This is an in-
tuitive result, since the more vectors Eve intercepts, the easier for him to guess 
the correct subspace.  
 

 
Figure 4. Guess probability P increases with l. 
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To observe the relation between P and k, set l = k − 1. This is corresponding 
to the case that the number of wiretapped vectors is just one less than the di-
mension of the subspace code. With this setting, P reduces to 

( )
( )1

1
1n k

q
P

q − +

−
=

−
                        (11) 

The curve related to (11) is delineated in Figure 5. It shows that P is an in-
creasing function of k. This means the dimension of subspace code should be set 
as small as possible. 

3.3. Information Leakage 

Finally, with the notation of information theory, we can calculate the amount of 
information leakage. Prior to being wiretapped, all k-dimensional subspaces, i.e., 
all code words, are equiprobable, so the average uncertainty for Eve equals the 
logarithm of the Gauss coefficient. After Eve wiretapped 1, , lV V , only M co-
dewords are left with equal probability, which become potential sending code-
words. So, the average uncertainty reduces to log(M). As a result, the informa-
tion leakage, which is equivalent to the decrease of the average uncertainty, 
equals  

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1

1

; | log log

1 1
log bits vectors

1 1

A A
q

n n l

k k l

n
I H H M

k

q q
l

q q

− +

− +

  
 = − = −    

 − −
 =
 − − 





m y m m y

       (12) 

4. Comparison and Discussion 

Different from perfect security and weak security, the security of subspace code 
is evaluated by the guess probability. Because there is an amount of information  
 

 
Figure 5. Guess probability P increases with k. 
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leakage, subspace code is not perfectly secure. Its security performance is not as 
competent as perfectly secure codes and may be inferior to some weakly secure 
codes. However, we mention that these schemes achieve security at the cost of 
extra operations, such as precoding [3] [12], coset code [13], encryption [6] [7] 
[8] [9], or complicate algorithms [4] [5], etc. 

Take [5] as an example. Adeli and Liu designed a LNC protocol to combat 
to1-WNM, i.e., wiretap on a single edge. Their basic idea is as the following. To 
prevent any symbol mi from being exposed on any edge, it is sufficient to force 
the GCV not to be multiples of a unit vector; Or else, the wiretapped symbol will 
become a multiple of mi. To this end, [5] designed a local strategy by assigning 
LCVs for all intermediate nodes subject to the requirement of no ongoing GCVs 
being multiples of a unit vector. However, this strategy is very heavy due to a 
large number of iterations. Still, it is not suitable for mobile networks since the 
topology has changed before the algorithm converges. More seriously, [5] is only 
effective to 1-WNM. For an r-WNM, say r = 2, [5] is not enough to prevent Eve 
from resolving mi by wiretapping two symbols from network links. 

Compared to [5], subspace code achieves probabilistic security for r-WNM 
with r ≥ 1. In Figure 4, the point (l = 1, P = 0.0004) corresponds to 1-WNM. The 
guess possibility is trivial. Moreover, subspace code is characterized by low com-
plexity. Specifically, the source node just maps a message into a subspace and 
send the basis vectors of the subspace into the network; An intermediate node 
implements linear encoding operations just as a general random network cod-
ing; The sinks need to calculate the subspace spanned by a number of k received 
n dimensional independent vectors. It can be done with the method of Gaussian 
elimination at the complexity of O(kn). The LNC protocol of [5] is compared to 
subspace code in Table 1. 

Except for complexity gains, subspace code is more scalable and flexible than 
many secure coding schemes. For example, most LNC schemes with perfect se-
curity or weak security need a private link to share confidential components, 
such as symmetric key, precoding matrix, hash function or permutation func-
tion, etc. This adds extra cost and may not be implementable in some cases. 
However, there is no need of confidential channels in subspace code. Moreover, 
many secure coding schemes are only effective to fixed networks. On the con-
trary, subspace code can work in both fixed and mobile networks, so it is more 
flexible with the underlying network. The comparison of subspace code with 
some secure LNC schemes is listed in Table 2.  
 
Table 1. Comparison between [5] and subspace code. 

Schemes 
Performance Metrics 

Topology Complexity Feasibility 

[5] Fixed High 1-WNM 

Subspace Code Variable Low r-WNM 
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Table 2. Comparison between secure LNC codes. 

Schemes Security Topology Method Private Link 

[3] [12] [13] [14] Perfect Fixed Precoding Need 

[6] Weak Variable Encryption Need 

[7] Weak Variable Hash function Need 

[5] Weak Fixed LNC algorithm No need 

[8] Weak Variable Permutation Need 

[9] Weak Variable Permutation Need 

Subspace Code Basic Variable None No need 

5. Conclusion 

In this paper, we analyze the security performance of a constant dimensional 
subspace code against wiretap attacks. The analysis is developed with the me-
thod of combinatorics. The attacking capability of the enemy is measured by the 
number of wiretapped packets and the security is measured by the guess proba-
bility. A quantitative solution of the probability is obtained. The result shows 
that subspace code is not perfectly secure, but it gets probabilistic security with 
low complexity. Still, subspace code is characterized by high flexibility, no need 
of private link, and topology independence, etc. In conclusion, subspace network 
coding is suitable to the security applications with limited computation and 
moderate security requirement. It has the properties of low complexity, high 
flexibility and extendibility, as well as little bandwidth consumption, etc. Future 
work can be done on effectively integrating subspace network coding with exist-
ing security techniques, such as encryption, to further strengthen network secu-
rity. 
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