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Abstract 
This paper presents a generic procedure to implement a scalable and high 
performance data analysis framework for large-scale scientific simulation 
within an in-situ infrastructure. It demonstrates a unique capability for global 
Earth system simulations using advanced computing technologies (i.e., auto-
mated code analysis and instrumentation), in-situ infrastructure (i.e., ADIOS) 
and big data analysis engines (i.e., SciKit-learn). This paper also includes a 
useful case that analyzes a globe Earth System simulations with the integration 
of scalable in-situ infrastructure and advanced data processing package. The 
in-situ data analysis framework can provides new insights on scientific disco-
veries in multiscale modeling paradigms. 
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1. Introduction 

Earth system models (ESMs) are essential approaches to understand Earth sys-
tem dynamics and to project future climate scenarios. It is well known that the 
validation and verification of Earth system process within EMSs are quite chal-
lenging [1] [2]. Earth system scientists widely adopted post-simulation ap-
proaches to analyze results, ranging from visual exploration to transitional sta-
tistical data analysis. Along with the advances in in-situ infrastructure develop-
ment [3] [4], high performance computing and artificial intelligence [5], 
real-time data analysis becomes an innovative approach to investigate Earth sys-
tem simulation results [6] [7] [8]. 
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Developing an in-situ data analysis platform for Earth System modeling re-
quires several practical solutions, including 1) automated code instrumentation 
of large-scale code to extract appropriate data of interest; 2) efficient packing 
and transfer of highly customized data types; 3) optimal tuning of underlying 
in-situ infrastructure based on the unique characteristics of the applications; as 
well as 4) seamless integration with external data processing and machine learn-
ing packages. 

In this paper, we first present design considerations and key components of a 
data analysis framework for Earth system simulation. We then list the compu-
ting and software environment used in our study. At last, a case study is de-
signed to demonstrate the practical usefulness of the data analysis system and its 
computing performance.  

2. Data Analysis Procedure and Key Components 

The data analysis framework developed in our study consists of four major 
components: 1) source code analysis and data capture; 2) data packing and con-
version tools; 3) in-situ infrastructure; and 4) data analysis packages. The 
work-flow of the framework is illustrated in Figure 1. The main functions and 
objectives of each component are listed in the following sections. 

2.1. Source Code Analysis and Data Capture 

In this step, we analyze the source code dependency using the information ex-
tracted from compilers or language parsers. The main goal is to understand the 
software structure and to capture internal data structure and scientific workflow 
of the source code. For a given function or module of interest, we use program-
ming language parsers to analyze the source code and store the program infor-
mation as an abstract syntax tree (AST). Then, we conduct recursive name reso-
lution through the AST to capture the input and output data streams of the tar-
get function. Finally, we generate a code segment into the original source code to  
 

 
Figure 1. A procedure of in-situ data analysis. 
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package all the data of interest into a continuous memory buffer ready for in-situ 
data transfer. More detailed information on the source code analysis and data 
capture can be found in previous publications [9] [10]. 

2.2. Data Packing and Conversion Tool  

As most scientific codes, Earth system models use highly customized data struc-
tures. As mentioned in the previous section, the data is packed into a continuous 
memory block for efficient data transfer using the underlying in-situ infrastruc-
ture. The internal information on the customized data structure has to be rec-
orded as well, to reconstruct the customized data types after data transferring. It 
is also worth to mention that most in-situ infrastructures use specific data for-
mations to facilitate its performance, therefore, it is convenient to create a soft-
ware tool for the data conversions between applications and in-situ infrastructures. 

2.3. Integration with In-Situ Infrastructure  

By now, several in-situ infrastructure have emerged, including data analysis and 
visualization toolkits (such as ParaView [11] and VisIt [12]) and high perfor-
mance data infrastructure (such as ADIOS and GLEAN). These infrastructures 
enable full capability of in-situ data processing at the benefit of large I/O cost 
savings and better utilization of all available resources. In our study we leverage 
the capabilities with the adaptive IO system developed at ORNL. 

2.4. External Packages for Automated Data Analysis  

There are several comprehensive packages widely used for big data analysis, in-
cluding graph database and machine learning [13] [14] [15]. In this study, we 
use a free, python-based machine learning library (Scikit-learn) for automated 
data processing. Scikit-learn features various classification, regression and clus-
tering algorithms including support vector machines, random forests, gradient 
boosting, k-means and DBSCAN, and is designed to interoperate with the other 
Python libraries. 

3. Case Study: An In-Situ Data Analysis System for the  
E3SM Land Model 

Energy Exascale Earth System Model (E3SM) is a national effort to address the 
challenging and demanding climate-change research imperatives. Within the 
E3SM modeling framework, E3SM Land Model (ELM) is a process-based model 
that represents the energy-water-biogeochemistry interactions between the at-
mosphere and the terrestrial landscape. We implement an in-situ data analysis 
system for the ELM and focus on key biogeophysical and biogeochemical func-
tions. 

Due to the complexity of ELM, the validation and verification of the terrestrial 
system process are quite challenging. Scientists routinely use post-simulation 
approaches to analyze results. Generating data for post-simulation earth system 
process investigation quickly becomes a cumbersome task once a simulation 
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reaches a fairly large scale with a huge amount of data and daunting in-
put/output cost. A previous pilot effort focused on demonstrating a concept and 
small-scale (pointwise) prototype [8]. Our current effort is to process global si-
mulations with the integration of scalable in-situ infrastructure and advanced 
data processing package. 

3.1. Computing Platform  

The platform used in this study is a Linux cluster within the Computing and 
Data Environment for Science (CADES) at Oak Ridge National Laboratory. The 
cluster has 48 nodes of Cray CS400 machines. Each node contains 2 Intel E5-2698v3 
16-core (total of 32 per node), 128 GB RAM, Dual port mellanox-FDR IB and 
10GbE and 250 GB local hard drive. The cluster shares a Petascale parallel file 
system with other clusters within CADES. External users can access these ORNL 
HPC clusters via two dedicated login nodes. 

3.2. Software System Implementation  

The ELM used in the study comes from the newest version of E3SM code in 
2017. In the past, we have developed two methods for parsing and analyzing the 
ELM code based on KGEN and PGI Fortran compiler [9]. In this study, we fur-
ther enhanced our code parsing and analysis capability using KGEN to better 
handle the global, nested and customized ELM data structure. Since KGEN is 
written in Python, we developed our own python script to extract information 
from KGEN and generate FORTRAN code segments into the ELM source code 
for data packing. The underlying in-situ infrastructure used in our study is the 
Adaptive IO system (ADIOS) [3]. We use ADIOS with the ELM code as an ex-
ternal module. We developed a data writer that uses two different in-situ me-
chanisms available in ADIOS, FlexPath and Data Spaces, depending on the cha-
racteristics of specific ELM variables. On the data analysis side, we developed a 
data reader using the ADIOS C API and then converted it into a shared library 
with SWIG. This way we can access this staged reading function through other 
applications, such as python-based data analysis packages. In our study, Sci-
kit-learn is used to handle the data streams from ELM simulations. Technically, 
we used the ADIOS reader in C to retrieve the data streams from ADIOS infra-
structure, and converted the data into python arrays which can be integrated 
with Scikit-learn functions. We can also dump the data into disk using the native 
ADIOS data format and then connect to other applications, such as Visit, for 
further applications. The procedure and high-level implementation of our sys-
tem is illustrated in Figure 2. 

4. Analysis of Total Leaf Area Index within Global  
Terrestrial Ecosystem Simulations  

4.1. Simulation System Configuration 

In this study, we configure the global ELM simulation on a 0.5 × 0.5 degree grid.  
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Figure 2. Software system implementation of the in-situ data analysis for earth system simulation. 

 
The simulation starts at the spinup stage, driven by the climate datasets of 
1920 - 1948, developed by the Climatic Research Unit in the United Kingdom. It 
also runs assuming a constant CO2 and land use in 1850. For the purpose of 
testing our approach, the spinup only runs for 320 years, long enough to dem-
onstrate how plants evolve in warm regions such as the tropics, without in-situ 
Data Analysis Tools plugged in. Then the simulation restarts from the end of the 
spinup run and continues for a transit run (1850 to 2010). The transit run is 
configured to simulate the historic Earth system behavior since the industrial 
revolution. It is one of commonly used simulation configurations for future sce-
nario projections. 

4.2. Total Leaf Area within Terrestrial Ecosystem Modeling  

For the demonstration, we capture and analyze the values of Total Leaf Area In-
dex (TLAI) through the half year global terrestrial ecosystem simulations and 
calculate the data characteristics (such as statistics and primary components) of 
TLAI during the real-time simulations using built-in function from Sci-
Kit-Learn. Leaf area index (LAI), i.e. projected one-side foliage area over ground 
surface, is a dimensionless quantity that characterizes the vegetation foliage size 
and thus its function in the Earth system model to predict photosynthetic pri-
mary production, evapotranspiration, and it can be regarded as an indicator for 
plant growth or greenness. As such, LAI plays an essential role in theoretical 
production ecology. In ELM, LAI is simulated for total 17 individual vegetation 
types in a grid cell. Then, with the consideration of the actual vegetation cover-
age of each grid cell, these individual LAIs are fraction weighted to calculate total 
LAI (TLAI) at each grid cell on the land section of the Earth. 

4.3. A Snap Shot of TLAI Map at the Beginning of Simulation 

Figure 3 contains a snapshot of simulation result on the Total Leaf Area (TLAI)  
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Figure 3. A snapshot of simulation result: the map of TLAI values at the beginning of 
global simulations. 
 
at the very beginning of simulation (12 am GWT, January 1, 1850). The TLAI at 
each grid around the globe (total 360 × 720 cells) is calculated as a weighted 
summarization of LAI on each vegetation type (called patch) times the percen-
tage of vegetation area within each grid cell. Obviously, TLAI values of tropical 
cells, such as Amazon and other low altitude, well vegetated areas, are much 
higher than TLAI at other places. It is also noticeable from the TLAI map that 
the beginning simulation is a winter time at north hemisphere, since the TLAI is 
low at these middle-latitude areas in the north hemisphere. 

4.4. Automated Global TLAI Clustering  

This test is designed to demonstrate the automated data processing using a ma-
chine learning package, SciKit-learn. After the data of interest is extracted and 
transferred from the simulation, transferred data arrays are transformed into 
numpy arrays that can be accessed by a Python application. In our test, we use 
the built-in statistical functions of Scikit-learn to classify TLAI values during the 
simulation, so that the seasonal global vegetation greenness pattern can be rec-
ognized dynamically. Figure 4 shows the automated clustering of TLAI values 
(into 9 group) at a single half-hour time-step during the simulation. The clus-
tering was carried out by using k-means in Scikit-learn. 

The high-resolution snapshot of raw model data output, like the one in Figure 
3, usually shows too much detailed information to recognize its patterns or  
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Figure 4. The spatial pattern of automated global classification of high-resolution TLAI at a single half-hour time-step during 
simulation. The classes are categorized by mean plus or minus fractional SD. 

 
changes. Post data analysis, such as classification in Figure 4, allows for more 
clear spatial patterns (with less noise). This is very beneficial for modelers to 
understand and interpret results. 

4.5. Performance Analysis  

Two sets of experiments have been conducted to understand simulation perfor-
mance. We first record the walltime used for data collection, packing and trans-
fer. The pie chart of time division is illustrated in the left graph of Figure 5. We 
do not directly compare the original E3SM configuration with filesytem opera-
tions since it is just too slow to be useful in practice. The walltime of E3SM 
shown in Figure 5 is used for computation only. Data transfer via ADIOS takes 
about 7.4%, while the data packing and convert via KGEN takes more than 25% 
of time. We will need to further investigate and improve the performance of data 
packing. In this study, we also investigate how to achieve best performance with 
different process placement strategies. The time of running E3SM on different 
configurations is illustrated in the right-side chart of Figure 5. The performance 
of the data transfer can be optimized by mapping each pair of ADIOS reader and 
writer on the same compute node, shown as ADIOS_SAMESOCKET, instead of 
on different nodes, shown as ADIOS_DIFFNODE. ADIOS_BP shows the time to 
write the data back into disk. Since we can save a lot of disk IO time using the 
in-situ infrastructure, both ADIOS_SAMESOCKET and ADIOS_DIFFNODE 
are much faster than ADIOS_BP. 

5. Conclusion and Suggestions  

We have presented design considerations of a data analysis framework for Earth  
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Figure 5. Performance analysis. 
 
system simulation based on automated source code instrumentation, in-situ in-
frastructure and real-time data processing. We have designed a case study of 
Earth system simulation to demonstrate the practical usefulness of the data 
analysis system and its computing performance. With the integration of external 
data processing package, such as Scikit-Learn, SPACK and TensorFlow, we can 
easily apply novel machine learning approaches to study simulation results in on 
the fly. We believe the in-situ processing is a feasible way to investigate large 
scale climate simulations without intensive human interaction and it avoids the 
prohibitive IO cost of post-processing on high performance computing plat-
forms. Future efforts will have two directions. We will focus on tuning the per-
formance on high end computers, such as Titan and Summit-Dev at the Nation-
al Center for Computational Science at Oak Ridge National Laboratory. We will 
also work to integrate our data analysis system with other external packages, 
such as TensorFlow, for further large-scale Ecosystem simulation data analysis 
on hybrid architectures. Science efforts will focus on relationship identifications 
between the extreme weather events and long term ecosystem behaviors. 
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