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Abstract 
The Linear Gaussian white noise process is an independent and identically 
distributed (iid) sequence with zero mean and finite variance with distribution 

( )20,N σ . Hence, if 1 2, , , nX X X  is a realization of such an iid sequence, 

this paper studies in detail the covariance structure of 1 2, , , , 1, 2,d d d
nX X X d =  . 

By this study, it is shown that: 1) all powers of a Linear Gaussian White Noise 
Process are iid but, not normally distributed and 2) the higher moments (va-

riance and kurtosis) of , 2,3,d
tX d =   can be used to distinguish between 

the Linear Gaussian white noise process and other processes with similar co-
variance structure. 
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1. Introduction 

The objective of estimation procedures is to produce residuals (the estimated 
noise sequence) with no apparent deviations from stationarity, and in particular 
with no dependence among these residuals. If there is no dependence among 
these residuals, then we can regard them as observations of independent random 
variables; there is no further modeling to be done except to estimate their mean 
and variance. If there is significant dependence among the residuals, then we 
need to look for the noise sequence that accounts for the dependence [1]. 

In this paper, we examine the covariance structure of powers of the noise se-
quence when the noise sequence is assumed to be independent and identically 
distributed normal (Gaussian) random variates with mean zero and finite va-
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riance, 2 0σ > . Some simple tests for checking the hypothesis that the residuals 
and their powers are observed values of independent and identically distributed 
random variables are also considered. Also considered are tests for normality of 
the residuals and their powers. 

The stochastic process ,tX t T∈  is said to be strictly stationary if the distri-
bution function is time invariant. That is; 

( ) ( )1 2 1 2
, , , , , ,

m mt t t t k t k t kF x x x F x x x+ + +=              (1.1) 

where 

( ) ( )1 2 1 1 2 2
, , , , , ,

m m mt t t t t t t t tF x x x P X x X x X x= ≤ ≤ ≤         (1.2) 

That is, the probability measure for the sequence tX  is the same as that for 

t kX +  for all k. If a series satisfies the next three equations, it is said to be 
weakly or covariance stationary. 

( )
( )( )

( )( ) ( )1 2

2

2 1

1. , 1, 2, ,

2.

3.

t

t t

t t

E X t

E X X

E X X R t t

µ

µ µ σ

µ µ

= = ∞ 
 − − = < ∞  


 − − = −   



              (1.3) 

If the process is covariance stationary, all the variances are the same and all 
the covariances depend on the difference between 1t  and 2t . The moments 

( )( ) ( ) , 0, 1, 2, .t t kE X X R k kµ µ+ − − = =               (1.4) 

are known as the autocovariance function. The autocorrelations which do not 
depend on the units of measurements of tX  are given by 

( ) ( )
( )

, 0, 1, 2,
0

R k
k k

R
ρ = = 

                   (1.5) 

A stochastic process ,tX t Z∈ , where , 1, 0, 1,Z = −  , is called a white 
noise if with finite mean and variance all the autocovariances (1.4) are zero ex-
cept at lag zero [ ( ) 0R k = , for 0k ≠ ]. In many applications, ,tX t Z∈  is as-
sumed to be normally distributed with mean zero and variance, 2σ < ∞ , and 
the series is called a linear Gaussian white noise process if: 

( )
( )

( )

( )

2

2

0

var

, 0
0, otherwise

1, 0
0, otherwise

t

t

E X

X

kR k

k
k

σ

σ

ρ

=


= 

 =

= 

= =   

                     (1.6) 

and 

( )1 2 1

1, 0
, , , ,

0, otherwisekk t t k t t t k

k
corr X X X X Xφ + + + + −

=
= = 


      (1.7) 

where kkφ  is known as the partial autocorrelation function. For large n, the 
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sample autocorrelations:  

( )
( )( )

( )
1

2

1

ˆ

n k

t t k
t

X n

t
t

X X X X
k

X X
ρ

−

+
=

=

− −
=

−

∑

∑
                (1.8) 

of an iid sequence 1 2, , , nX X X  with finite variance are approximately distri-

buted as 10,N
n

 
 
 

 [1] [2] [3]. We can use this to do significance tests for the  

autocorrelation coefficients by constructing a confidence interval. Here  

1 2, , , nX X X  is a realization of such an iid sequence, about ( )100 1 %α−  of 
the sample autocorrelations should fall between the bounds: 

1
2

Z

n

α
−

±                             (1.9) 

where 
1

2

Z α
−

 is the 1
2
α

−  quartile of the normal distribution. If the null and al-

ternative hypothesis are: 

( ) ( )0 1: 0 0 and : 0 for some 0X XH k k H k kρ ρ= ∀ ≠ ≠ ≠     (1.10) 

where ( )X kρ  are autocorrelations at lag k computed for 1 2, , , nX X X . 
We can also test the joint hypothesis that all m of the ( )X kρ  correlation 

coefficients are simultaneously equal to zero. The null and alternative hypothesis 
are: 

( ) ( ) ( ) ( )0 1H : 1 2 0 and H : 0 for 1,2, ,X X X Xm i i mρ ρ ρ ρ= = = = ≠ =  (1.11) 

The most popular test for (1.11) is the [4] portmanteau test which admits the 
following form 

( ) ( ) 2

1

ˆ
m

BP X
k

Q m n kρ
=

=   ∑                     (1.12) 

where m is the so-called lag truncation number [5] and (typically) assumed to be 
fixed [6]. Under the assumption that 1 2, , , nX X X  is an iid sequence, 

( )BPQ m  is asymptotically a chi-squared random variable with m degree of 
freedom. [7] modified the ( )Q m  statistic to increase the power of the test in fi-
nite samples as 

( )
( ) 2

1

ˆ
( ) 2

m
X

LB
k

k
Q m n n

n k
ρ

=

    = +
 −
 

∑                 (1.13) 

Several values of m are often used and simulation studies suggest that the 
choice of ( )lnm n≈  provides better power performance [8]. 

Another Portmanteau test formulated by [9] can be used as a further test for 
iid hypothesis, since if the data are iid, then the squared data are also iid. It is 
based on the same statistic used for the Ljung-Box test as 
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( ) ( )
( )2

2

1

ˆ
2

m
X

ML
k

k
Q m n n

n k

ρ

=

    = +  − 
 

∑                (1.14) 

where the sample autocorrelations of the data are replaced by the sample auto-
correlations of the squared data, ( )2ˆ

X
kρ . 

According to [6], the methodology for testing for white noise can be roughly 
divided into two categories: time domain tests and frequency domain tests. Oth-
er time domain tests include the turning point test, the difference-sign test, the 
rank test [1]. Another time domain test is to fit an autoregressive model to the 
data and choosing the order which minimizes the AICC statistic. A selected or-
der equal to zero suggests that the data is white noise [1].  

Let 

( ) ( ) [ ]
0

1 e , π, π
2π

ik
x x

k
f k ωω ρ ω

∞

=

= ∈ −∑               (1.15) 

be the normalized spectral density of ,tX t Z∈ . The normalized spectral density 
function for the linear Gaussian white noise process is 

( ) [ ]1 , π, π
2πxf ω ω= ∈ −                    (1.16) 

The equivalent frequency domain expressions to H0 and H1 are 

H0: ( ) [ ]1 , π, π
2πxf ω ω= ∈ −  and H1: ( ) [ ]1 , π, π

2πxf ω ω≠ ∈ −      (1.17) 

In the frequency domain, [10] proposed test statistics based on the famous 

pU  and pT  processes [6], and a rigorous theoretical treatment of their limiting 
distributions was provided by [11]. Some contributions to the frequency domain 
tests can be found in [12] and [13], among others. This study will concentrate on 
the time domain approach only.  

A stochastic process ,tX t Z∈  may have the covariance structure (1.6) even 
when it is not the linear Gaussian white noise process. Examples are found in the 
study of bilinear time series processes [14] [15]. Researchers are often con-
fronted with the choice of the linear Gaussian white noise process for use in 
constructing time series models or generating other stationary processes in si-
mulation experiments. The question now is, “How do we distinguish between 
the linear Gaussian white noise process from other processes with similar cova-
riance structure”? Additional properties of the linear Gaussian white noise 
process are needed for proper identification and characterization of the process 
from other processes with similar covariance structure. Therefore, the ultimate 
aim of this study is on the use of higher moments for the acceptability of the li-
near Gaussian white noise process. The first moment (mean) and second or 
higher moments (variance, covariances, skewness and kurtosis) of powers of the 
linear Gaussian white noise process was established in Section 2. The methodol-
ogy was discussed in Section 3, the results are contained in Section 4 while Sec-
tion 5 is the conclusion. 
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2. Mean, Variance and Covariances of Powers of the Linear  
Gaussian White Noise Process 

2.1. Mean of Powers of the Linear Gaussian White Noise Process 

Let , 1, 2,3,d
t tY X d= =  , where ,tX t Z∈  is the linear Gaussian white noise 

process. The expected value of ,tY t Z∈  ( ) ( )d
t tE Y E X =   are needed for the 

effective determination of the variance and covariance structure of tY . Lemma 
2.1 gives the required result. 

Lemma 2.1: Let ,tX t Z∈  be a linear Gaussian white noise process with 
mean zero and variance 2 0σ >  ( tX  follows iid ( )20,N σ ), then 

( ) ( )2 2 1 !!, 2 , 1, 2,
0, 2 1, 0,1,2,

m
d
t

m d m m
E X

d m m
σ − = == 

= + =





            (2.1) 

where [16] 

( ) ( ) ( )
1

2 1 !! 1 3 5 7 2 1 2 1
m

k
m m k

=

− = × × × × × − = −∏           (2.2) 

Proof: 
Let ( )2~ 0,tX Z N σ= , then 

( )
2

2 221 e ; ; 0
2π

z

f z zσ σ
σ

−

= −∞ < < ∞ >              (2.3) 

Note that 

( ) ( )dd dE Z z f z z
∞

−∞
= ∫                      (2.4) 

2

221 e d
2π

z
dz zσ

σ

−
∞

−∞
= ∫                      (2.5) 

1) Case 1: ( )2 evend m=  
Equation (2.5) reduces to 

( )
2

22
0

12 e d
2π

z
d dE Z z zσ

σ

−
∞

= ∫                  (2.6) 

Let ( )
12

2 2 2
2 2 2

2
zy z y z yσ σ
σ

= ⇒ = ⇒ =  

( )
1 1 1 1
2 2 2 2d 1 2 12

d 2 2 2 2
z y y y y
y

σσ σ σ
− − − −     

= ⋅ ⋅ = = =           
 

1
2

d d
2

yz yσ
− 

 =  
 
 

                       (2.7) 

( )
121 2

2
0

12
2

0

2 2 e d
2π 2

2 e d
π

m
d y

m m m y

yE Z y y

y y

σσ
σ

σ

−
∞ −

−∞ −

 
   =    
   

 

=

∫

∫

           (2.8) 
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The integral in Equation (2.8) is a gamma function ( )1
0

e dt ww w t
∞ − − = Γ  ∫  

[17] and by definition 

( )
22 1

2π

m m
dE Z mσ  = Γ + 

 
                   (2.9) 

( )

( )

( )

11 3 5 7 2 1
1 2
2 2

1 3 5 7 2 1 π
2

π 2 1 !!
2

m

m

m

m
m

m

m

 × × × × × − Γ       Γ + = 
 

× × × × × −  =

× −
=





          (2.10) 

Thus 

( ) ( ) ( )
2

2π 2 1 !!2 2 1 !!
2π

m m
d m

m

m
E Z mσ σ

−
= ⋅ = −           (2.11) 

2) Case II: ( )2 1 oddd m= +  

( )
2

2

2 2

2 2

2 2

2 2

2

0 2 2
0

2 2
0 0

1 e d
2π

1 1e d e d
2π 2π

1 1e d e d 0
2π 2π

z
d d

Z z
d d

z z
d d

E Z z z

z z z z

z z z z

σ

σ σ

σ σ

σ

σ σ

σ σ

−∞

−∞

− −∞

−∞

− −∞ ∞

=

= +

= − =

∫

∫ ∫

∫ ∫

      (2.12) 

Thus 

( ) ( ) ( )2 2 1 !!, 2 , 1, 2,
0, 2 1

m
d d

t
m d m m

E Z E X
d m

σ − = == = 
= +



 

2.2. Variances of Powers of the Linear Gaussian White  
Noise Process 

Theorem 2.2: Let ,tX t Z∈  be a linear Gaussian white noise process with 
mean zero and variance 2 0σ >  ( tX  follows iid ( )20,N σ ), then 

( ) ( )
( ) ( )

( ) ( )

22
4

1 1

2 1
2 2 1

1

2 1 2 1 , 2
Var Var

2 1 , 2 1

m m
m

k kd
t t

m
m

k

k k d m
Y X

k d m

σ

σ

= =

+
+

=

    − − − =      = = 


− = +


∏ ∏

∏
 (2.13) 

Proof: 
Let ( )2~ iid 0,tX N σ , then the expected value of , 1, 2,3,d

t tY X d= =   is 
given by Equation (2.1). 

Case I: 2 , 1,2,3,d m m= =   (d even) 
Now 

( )2 22 2 2 4md m d m
t t t t t t tY X X Y X X X= = ⇒ = = =  
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From Equation (2.1) 

( ) ( )2

1
2 1

m
m

t
k

E Y kσ
=

= −∏                     (2.14) 

and 

( ) ( )
2

2 4

1
2 1

m
m

t
k

E Y kσ
=

= −∏                    (2.15) 

( ) ( ) ( )

( ) ( )

( ) ( )

2 2

22
4 2

1 1

22
4

1 1

Var

2 1 2 1

2 1 2 1

t t t

m m
m m

k k

m m
m

k k

Y E Y E Y

k k

k k

σ σ

σ

= =

= =

= −

 = − − −  
  = − − −  

   

∏ ∏

∏ ∏

          (2.16) 

Case II 2 1, 0,1,2,d m m= + =   (d odd) 
( )2 2 12 1 2 2 md m d

t t t t t tY X X Y X X ++= = ⇒ = =  

From Equation (2.1) 

( ) 0tE Y =  

( ) ( ) ( )
2 1

2 2 12

1
2 1

m
m

t
k

E Y kσ
+

+

=

= −∏                  (2.17) 

and 

( ) ( ) ( ) ( )
( ) ( )

2 2 2

2 1
2 2 1

1

Var

2 1

t t t t

m
m

k

Y E Y E Y E Y

kσ
+

+

=

= − =

= −∏
             (2.18) 

Generally 

( ) ( )
( ) ( )

( ) ( )

22
4

1 1

2 1
2 2 1

1

2 1 2 1 , 2
Var Var

2 1 , 2 1

m m
m

k kd
t t

m
m

k

k k d m
Y X

k d m

σ

σ

= =

+
+

=

    − − − =      = = 


− = +


∏ ∏

∏
   (2.19) 

Table 1 summarizes the mean and variances of , 1, 2,3, ,10d
t tY X d= =  . The 

standard deviation of , 1, 2,3, ,10d
t tY X d= =   is also included when 1.0σ = . 

A plot of ( )var
ty tYσ =  against d for fixed 1σ =  is given in Figure 1. From 

Figure 1, we note that for fixed σ , increase in d leads to an exponential in-
crease in the standard deviation.  

The specific objective of this paper is to investigate if powers of ,tX t Z∈  are 
also iid and to determine the distribution of , 1, 2,3,d

t tY X d= =  , especially for 
2d = . The analytical proofs are provided in Section 2.3. 

2.3. Covariances of Powers of the Linear Gaussian White  
Noise Process 

Theorem 2.3: If ,tX t Z∈  is a linear Gaussian white noise process then  
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Figure 1. Plot of standard deviation of ( )t

d
t t YY X σ=  against power (d) for fixed σ = 1. 

 
Table 1. Mean, variance and standard deviation of , 1,2,3, ,10d

t tY X d= =  . 

d  tY  ( )
tt YE Y µ=  ( ) 2var

tt YY σ=  when 1.0
tYσ σ =  

1 tX  0 2σ  1.0000 

2 2
tX  2σ  42σ  1.4142 

3 3
tX  0 615σ  3.8730 

4 4
tX  43σ  896σ  9.7980 

5 5
tX  0 10945σ  30.7409 

6 6
tX  615σ  1210170σ  100.8464 

7 7
tX  0 14135135σ  367.6071 

8 8
tX  8105σ  162016000σ  1419.8591 

9 9
tX  0 1834459425σ  5870.2151 

10 10
tX  1010395σ  20653836050σ  25570.2180 

 
higher powers of ( ), 1, 2,3,d

t tY X d= = 
 are also white noise processes (iid) 

but not normally distributed. 
Proof: 
Since ,tX t T∈  are iid and , 1, 2,3,d

t tY X d= =  , we consider for 0k ≠ . 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

cov cov

0, 0

d d
y t t k t t k

d d d d
t t k t t k

d d d d
t t k t t k

R k Y Y X X

E X X E X E X

E X E X E X E X k

− −

− −

− −

= =

= −

= − = ≠

 

However, for 0k = , ( ) ( ) ( )0 var var d
y t tR Y X= = . Hence 
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( )

( ) ( )

( ) ( )

22
4

1 1

2 1
2 2 1

1

2 1 2 1 , 2 , 0

2 1 , 2 1, 0

0, 0

m m
m

k k

my m

k

k k d m

R
k d m

σ

σ

= =

+
+

=

    − − − = =  
    = 

− = + =

 ≠

∏ ∏

∏









     (2.20) 

It is clear from Equation (2.20) that when ,tX t Z∈  are iid, the powers 
, 1, 2,3,d

t tY X d= =   of ,tX t Z∈  are also iid. That is, 

( ) ( )var , 0
0, 0

t
y

Y
R

 == 
≠







                     (2.21) 

The probability distribution function (p.d.f) of , 1, 2,3,d
t tY X d= =   can be 

obtained to enable a detailed study of the series. Theorem 2.4 gives the p.d.f of 
2

t tY X=  
Theorem 2.4: If ,tX t Z∈  is a linear Gaussian white noise process, then 

2
t tY X=  has the p.d.f 

( )
2

1
221 e , 0

2π
0, otherwise

y

y yg y
σ

σ

−−
< < ∞= 




               (2.22) 

Proof: 
If ( )2~ 0,tX X N σ=  and 2 2

tY X X= = , the distribution function of Y is, 
for 0y ≥  , 

( ) ( ) ( )
2 2

2 2

2

2 2
0

1 1e d 2 e d
2π 2π

x x
y y

y

G y P X y P y X y

x xσ σ

σ σ

− −

−

= ≤ = − ≤ ≤

= =∫ ∫
 

Let x v= , then since 
1d d

2
x v

v
 

=  
 

, we have 

( ) 2 2
1

2 22
0 0

1 1 12 e d e d
2π 2 2π

v v
y y

G y v v v
v

σ σ

σ σ

− −− 
= ⋅ = 

 
∫ ∫  

Of course ( ) 0G y = , where 0y < . The p.d.f of Y is ( ) ( )g y G y′=  and by 
one form of the fundamental theorem of calculus [17]  

( )
2

1
221 e , 0

2π
0, otherwise

y

y yg y
σ

σ

−−
< < ∞= 




 

Note that the p.d.f of 2
t tY X=  is the p.d.f of a gamma distribution with pa-

rameters 21 , 2
2

α β σ= = . That is, ( )2 21~ , , , 2
2t tY X G α β α β σ= = = .  

However, for a more detailed study on the behavioral of the linear Gaussian 
white noise process, the coefficient of symmetry and kurtosis for powers of the 
process are provided in Section 2.4. 
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2.4. Coefficient of Symmetry and Kurtosis for Powers of the  
Linear Gaussian White Noise Process 

Non-normality of higher powers of ,tX t Z∈  ( 2,3,d =  ) can also be con-
firmed by the coefficient of symmetry and kurtosis defined by 

( )
( )( )
3

1 3 2
2

d

d

µ
β

µ
=                        (2.23) 

( )
( )( )

4
2 2

2

d

d

µ
β

µ
=                        (2.24) 

where 

( ) ( )( ) ( )2

2 vard d d
t t td E X E X Xµ  = − =  

             (2.25) 

( ) ( )( )3

3
d d
t td E X E Xµ  = −  

                (2.26) 

and 

( ) ( )( )4

4
d d
t td E X E Xµ  = −  

               (2.27) 

Note that 

( ) ( ) ( ) ( ) ( )3 2 3
3 3 2d d d d

t t t td E X E X E X E Xµ = − +         (2.28) 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 3 2 2 4
4 4 6 3d d d d d d

t t t t t td E X E X E X E X E X E Xµ = − + −  (2.29) 

The kurtosis for 1,2,3,4,5d =  and 6 are given in Table 2. A plot of  
( )
( )( )

4
2 2

2

d

d

µ
β

µ
=  against 1,2,3,4,5d =  is given in Figure 2. From Figure 2, we 

note that increase in d leads to an exponential increase in the kurtosis. 
 

 
Figure 2. Plot of kurtosis coefficient against power of the linear Gaussian white noise 
process. 
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Table 2. Coefficient of symmetry and kurtosis for , 1,2,3, ,6d
t tY X d= =  . 

d  tY  
( )tE Y  

( )yµ  

( )2 dµ  

( )( )var tY  
( )3 dµ  ( )4 dµ  1β  2β  

1 tX  0 2σ  0 43σ  0 3.000 

2 2
tX  2σ  42σ  68σ  860σ  2.828 15.000 

3 3
tX  0 615σ  0 1210395σ  0 46.200 

4 4
tX  43σ  896σ  129504σ  161907712σ  10.104 207.00 

5 5
tX  0 10945σ  0 20654729075σ  0 733.159 

6 6
tX  615σ  1210170σ  1833998400σ  11 243.142 10 σ×  33.150 3037.836 

3. Methodology 
3.1. Checking for Normality 

If the noise process is Gaussian (that is, if all of its joint distributions are normal), 
then stronger conclusions can be drawn when a model is fitted to the data. We 
have shown that all powers of the linear Gaussian process are non-normal. The 
only reasonable test is the one that enables us to check whether the observations 
are from an iid normal sequence. The Jarque-Bera (JB) test [18] [19] [20] for 
normality can be used. The JB test is based on the assumption that the normal 
distribution (with any mean or variance) has skewness coefficient of zero, and a 
kurtosis coefficient of three. We can test if these two conditions hold against a 
suitable alternative and the JB test statistic is 

 ( )2
2

21
ˆ 3ˆ

6 24
JB n

ββ
 − = + 
 
 

                    (3.1) 

where 

( )

( )

3

1
1 3/2

2

1

1

ˆ
1

n

t
t

n

t
t

X X
n

X X
n

β =

=

−
=
 − 
 

∑

∑
                   (3.2) 

( )

( )

4

1
2 2

2

1

1

ˆ
1

n

t
t

n

t
t

X X
n

X X
n

β =

=

−
=
 − 
 

∑

∑
                   (3.3) 

n  is the sample size while, 1̂β  and 2β̂  are the sample skewness and kurto-
sis coefficients. The asymptotic null distribution of JB is 2χ  with 2 degrees of 
freedom. 

3.2. White Noise Testing 

We have shown that the sample autocorrelations of 1 2, , , , 1, 2,3,d d d
nX X X d =  . 
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are those of the white noise series if the sample autocorrelations of 1 2, , , nX X X  
are also iid. We will adopt the Ljung-Box test by replacing the sample autocorre-
lations of the data 1 2, , , nX X X  with those of 1 2, , , , 1, 2,3,d d d

nX X X d =   
and use the statistic 

( ) ( )
( )

2

*

1

ˆ
2

dm
X

k

k
Q m n n

n k

ρ

=

    = +  − 
 

∑                 (3.4) 

The hypothesis of iid data is then rejected at level α  if the observed ( )*Q m  

is larger than the 1
n
α

−  quartile of the ( )2 mχ  distribution. 

3.3. Determining the Optimal Value of d 

Figure 1 suggests two growth models: 1) the quadratic growth model and 2) ex-
ponential growth model. We are going to use the behavior of the variance and 
kurtosis coefficient to determine the optimal value of d. The optimal value is that 
value of d that gives a perfect fit for either the quadratic or exponential growth 
curves. Using the standard deviation for 5 10d≤ ≤ , the exponential growth 
curve performs better than the quadratic growth curve. The quadratic growth 
curve fitted negative values to positive values at the different data points while 
the exponential curve fitted only positive values. However, the residual of the 
resulting exponential curve is very large as measured by the following accuracy 
measures [21]. 

Mean Absolute Error (MAE) 

1

1 ˆMAE
m

i
i

e
m =

= ∑                        (3.5) 

Mean Absolute Percentage Error (MAPE) 

1

ˆ1MAPE 100
m

i

i i

e
m Z=

 
= × 
  
∑                   (3.6) 

Mean Squared Error (MSE) 

2

1

1MSE
m

i
i

e
m =

= ∑                        (3.7) 

where m is the value of d used in the trend analysis and, 

2 2

ˆ for the standard deviation of
ˆ

ˆ for the Kurtosis coefficient of
t t

d
y y t t

i d
t t

Y X
e

Y X

σ σ

β β

 − == 
− =

    (3.8) 

Table 3 gives the accuracy measures for the trend analysis of the standard 
deviation of d

t tY X=  when 1σ =  while Table 4 gives detailed results for op-
timality. 

When 4d = , the quadratic growth curve performs better than the exponen-
tial curve with minimal residual. Both curves fitted positive values at different 
data points. We also observed from Table 3 that with 3d = , the quadratic  
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Table 3. Summary of accuracy measures for the exponential and quadratic curves using 
the standard deviation of d

t tY X=  for 3,4, ,10d = 
. 

Exponential Curve 

d 10 9 8 7 6 5 4 3 

MAD 1192.79 270.02 63.70 15.80 4.14 1.44 0.43 0.29 

MAPE 30.28 27.92 25.50 22.58 19.87 18.42 14.92 15.17 

MSE 1,1265,334.00 518,067.00 25291.80 1385.29 75.87 5.70 0.31 0.10 

Quadratic Curve 

d 10 9 8 7 6 5 4 3 

MAD 3136.76 697.92 154.93 36.78 7.94 1.73 0.14 0.00 

MAPE 91,218.00 11,088.40 3059.10 872.67 240.26 63.46 7.10 0.00 

MSE 14,342,392.00 664,288.00 31,868.30 1610.77 74.10 3.66 0.03 0.00 

 
Table 4. Fitting exponential and quadratic curves to the standard deviation of powers of 
linear Gaussian white noise process when 1σ =  and 3,4d = . 

d* tYσ  

( )1σ =  

Fit to 4 points Fit to 3 points 

Exponential Quadratic Exponential Quadratic 

Fits Residual Fits Residual Fits Residual Fits Residual 

1 1.0000 0.8333 0.1667 1.0711 −0.0711 0.8957 0.1043 1.0000 0.0000 

2 1.4142 1.8276 −0.4134 1.2010 0.2132 1.7627 −0.3485 1.4142 0.0000 

3 3.8730 4.0084 −0.1354 4.0862 −0.2132 3.4690 0.4040 3.8730 0.0000 

4 9.7980 8.7916 1.0064 9.7269 0.0711     

5 30.7409         

6 100.8464         

7 367.6071         

8 1419.8591         

9 5870.2151         

10 25,570.2180         

MAPE  14.9181  7.1044  15.1664  0.0000 

MAD  0.4305  0.1422  0.2856  0.0000 

MD  0.3075  0.0253  0.0986  0.0000 

*Exponential and Quadratic trend analysis cannot be possible for 2d =  or 1d = . 

 
growth curve performs optimally than the exponential growth curve. The re-
sulting quadratic curve yielded zero residual. The implication of the result is that 
we obtain a perfect fit for the data point when 3d =  for the quadratic curve 
only. Hence, the optimal value of d is 3 when we use the standard deviation 
curve. 

Figure 2 also suggests two growth models: 1) the quadratic growth model and 
2) exponential growth model. Using the kurtosis coefficient for 4 6d≤ ≤ , the 
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exponential growth curve performs better than the quadratic growth curve. The 
quadratic growth curve fitted negative values to positive values at the different 
data points while the exponential curve fitted only positive values. 

When 3d = , the quadratic growth curve performs optimally than the expo-
nential growth curve. The resulting quadratic curve yielded zero residual as that 
of the standard deviation curve. The implication of these results is that we obtain 
a perfect fit for the data point when 3d =  for the quadratic curve only. Hence, 
the optimal value of d is 3. Therefore, we recommend that in order to stop the 
variance from exploding, the order of the data points should not be raised to 
power greater that three. 

3.4. On the Use of Higher Moment for the Acceptability of the  
Linear Gaussian White Noise Process 

We have shown that if ,tX t Z∈  is a linear Gaussian white noise process, 
; 1, 2,d

t tY X d= =   is also iid but not normally distributed. Using the variances 
and kurtosis of d

t tY X= , we were able to establish that the optimal value of d is 
three. Variances and kurtosis of d

t tY X=  have been given in Table 5 and Table 
6 respectively. It is also clear from Equation (2.24) that the kurtosis itself is a 
function of variances. We, therefore, insist that for a stochastic process to be ac-
cepted as a linear Gaussian white noise process, the following variances must be 
true: 

( ) 2var tX σ=                         (3.9) 

( )2 4var 2tX σ=                       (3.10) 

and 

( )3 6var 15tX σ=                       (3.11) 

 
Table 5. Summary of accuracy measures for the exponential and quadratic curves using 
the Kurtosis Coefficient of d

t tY X=  for 3,4,5,6d = . 

Exponential 

*d 6 5 4 3 

MAD 4.14 1.44 0.43 0.29 

MAPE 19.87 18.42 14.92 15.17 

MSE 75.87 5.70 0.31 0.10 

Quadratic 

d 6 5 4 3 

MAD 7.94 1.73 0.14 0.00 

MAPE 240.26 63.46 7.10 0.00 

MSE 74.10 3.66 0.03 0.00 

*Exponential and Quadratic trend analysis cannot be possible for 2d =  or 1d = . 
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Table 6. Fitting exponential and quadratic curves to the kurtosis coefficient of powers of 
linear Gaussian white noise process when 1σ =  and 3,4d = . 

d 2β  

( )1σ =  

Fit to 4 points Fit to 3 points 

Exponential Quadratic Exponential Quadratic 

Fits Residual Fits Residual Fits Residual Fits Residual 

1 3.000 3.21 −0.2188 8.52 −5.52 3.2523 −0.2523 3.0 0.0 

2 15.000 12.829 2.1708 −1.56 16.56 12.7630 2.2370 15.0 0.0 

3 46.200 51.134 −4.9342 62.76 −16.56 50.0855 −3.8855 46.0 0.0 

4 207.000 203.808 3.1922 201.48 5.52     

5 733.157         

6 3037.836         

MAPE  8.4966  83.2277  10.5780  0.00 

MAD  2.6290  11.0400  2.1229  0.00 

MD  9.8239  152.3520  6.7217  0.00 

 
In view of these, we suggest that the two following null hypothesis be tested 

before a stochastic process is accepted as a linear Gaussian white noise process: 

( )2 4
01 0: var 2tH X σ=                     (3.12) 

and  

( )3 6
02 0: var 15tH X σ=                    (3.13) 

Then, the chi-square test statistic [22] for testing (3.12) is 

( ) 2
2

2
4
0

1

2
tX

cal

n S
χ

σ

−
=                      (3.14) 

while that for (3.13) is 

( ) 3
2

2
6
0

1

15
tX

cal

n S
χ

σ

−
=                      (3.15) 

where 2
2

tX
S  and 3

2

tX
S  are the estimated variance of the second and third power 

of the stochastic process, 2
0σ  is the null value for the true variance of the sto-

chastic process and n is the number of observations of the random digits. The 
null hypothesis is rejected at level α  if the observed value of 2

calχ  is larger  

than 1
2
α

−  quartile of the chi-square distribution with 1n − . Degree of free-

dom.  

4. Results 

For an illustration, six (6) random digits were simulated using Minitab 16 series 
(see Appendix). The simulated series met the following conditions: 1) The si-
mulated series ( )tX  are normal and 2) Powers of , 1, 2,3, 4,5d

tX d =  are 
shown to be iid but not normally distributed (see Table 7). 
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Table 7. Descriptive statistics and estimate of the test statistic for rejecting the null hypothesis of equality of the variance of higher 
moment for six simulated series, ( ), ~ 0,1t t tX e e N= , as linear Gaussian white noise process. 

Series 
S/No 

Statistic Mean Median 

True 
Value 

Estimated 
Value 

Min Max 

Skewness Kurtosis 
JB 

value 
Q* 

Estimate of Test Statistic 
Decision 

at 
5% level 2σ  2S  1γ  2γ  

( ) 2
2

4
0

1
ˆ2

tX
n S

σ

−
 
( ) 3

2

6
0

1
ˆ15

tX
n S

σ

−
 

1 

tX  0.0000 −0.0011 1.0000 1.0000 −2.05 2.39 0.11 −0.60 1.70 1.05 - - 
Do not 
Reject 

2
tX  0.9900 0.5866 2.0000 1.3546 0.00 5.71 1.82 3.60 109.21 6.33 67.05 - 

3
tX  0.1079 0.0000 15.0000 7.8106 −8.60 13.66 1.63 8.73 361.84 2.55 - 51.55 

2 

tX  0.0000 0.0131 1.0000 1.0000 −2.09 2.43 0.08 −0.69 2.09 0.43 - - 
Do not 
Reject 

2
tX  0.9900 0.4951 2.0000 1.2681 0.00 5.90 1.72 3.39 97.19 5.04 62.77 - 

3
tX  0.0753 0.0000 15.0000 7.1472 −9.12 14.32 1.05 9.38 384.98 0.21 - 47.17 

3 

tX  0.0000 0.2008 1.0000 1.0000 −2.29 2.07 −0.16 −0.61 1.98 3.25 - - 
Do not 
Reject 

2
tX  0.9900 0.5060 2.0000 1.3493 0.00 5.25 1.79 2.74 84.68 4.84 66.79 - 

3
tX  −0.1592 0.0096 15.0000 7.7045 −12.03 8.93 −0.74 6.30 174.50 5.80 - 50.85 

4 

tX  0.0000 −0.0543 1.0000 1.0000 −3.07 −2.88 −0.06 0.41 0.76 0.45 - - 
Do not 
Reject 

2
tX  0.9900 0.4760 2.0000 2.3030 0.00 9.44 3.27 13.81 972.87 2.56 114.00 - 

3
tX  −0.0627 −0.0002 15.0000 19.0055 −28.99 23.90 −1.32 28.04 3305.05 0.60 - 125.43 

5 

tX  0.0000 0.0399 1.0000 1.0000 −2.75 3.13 −0.03 0.46 0.90 1.64 - - 

Reject 2
tX  0.9900 0.4353 2.0000 2.3529 0.00 9.77 3.30 13.82 977.30 2.80 116.47 - 

3
tX  −0.0284 0.0001 15.0000 19.6277 −20.83 30.54 1.88 27.99 3323.24 2.59 - 129.54 

6 

tX  0.0000 0.1302 1.0000 1.0000 −2.74 3.07 −0.15 0.52 1.50 3.00 - - 

Reject 2
tX  0.9900 0.4605 2.0000 2.4129 0.00 9.42 3.12 11.80 742.41 2.56 119.44 - 

3
tX  −0.1487 0.0023 15.0000 19.5947 −20.47 28.92 1.40 23.91 2414.70 0.23 - 129.33 

 
The value of the chi-square test statistic for testing (3.12) and (3.13) are also 

shown in Table 7. We observed that the null hypothesis is rejected at level α  
equals 5% for two simulated series and is not rejected for the other four. The re-
sult clearly showed that testing the variance of higher moments for 

, 2,3d
t tY X d= =  is a necessary condition for accepting the linear Gaussian 

white noise process. 

5. Conclusion 

We have been able to show that if ,tX t Z∈  are iid then, all powers of 
,tX t Z∈  are also iid but, non-normal. Hence, we computed the kurtosis of 

some higher powers of ,tX t Z∈  and established that an increase in the powers 
of ,tX t Z∈  leads to an exponential increase on the kurtosis. We recommend 
that stochastic processes (white noise processes) and processes with similar co-
variance structure should be considered for normality, white noise testing and 
for test of the variance of higher moments being equal to the theoretical values 
of Table 1 with 1,2,3d = . 
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Appendix 
Table A1. Six simulated white noise series: ( ), ~ 0,1t t tX e e N=  data. 

S/No 1X  2X  3X  4X  5X  6X  

1 −0.27398 −1.02796 −0.04443 0.67426 −0.84334 0.42972 

2 −1.02993 −0.97605 0.49527 1.43828 −1.89952 1.03306 

3 0.38807 −1.30594 1.95275 −0.40151 0.34148 0.80854 

4 0.68088 0.09151 −1.04181 −3.07185 3.12580 −0.10717 

5 −0.96843 0.62066 −0.57864 0.109 −0.23441 −0.9846 

6 1.39035 1.05129 0.28400 −1.52629 −1.40929 −2.04065 

7 1.81134 −0.6788 −1.40899 −0.53151 −0.17057 1.12873 

8 −1.3766 0.97448 0.89222 1.57008 1.01262 −0.11163 

9 −0.24121 1.77527 0.02342 0.72712 −0.17059 −0.80648 

10 −1.45076 −0.13678 0.29285 −0.10475 0.66291 −1.08512 

11 −0.25423 −0.46946 −1.95159 −0.08747 0.20546 0.07242 

12 0.21163 0.82766 −0.68752 1.07637 −1.34176 −2.50489 

13 1.34799 −0.56029 0.78114 −1.89811 −0.95515 0.17464 

14 −0.29782 0.01628 −0.66970 −0.2508 −0.56939 −0.86345 

15 0.62809 0.20895 −0.44001 0.93703 0.65664 0.77652 

16 −1.6913 −0.946 −0.04784 −0.3515 0.91394 0.49688 

17 0.4933 0.96825 −1.13509 1.44387 −1.35495 0.38705 

18 −0.51967 0.22284 −0.04708 0.48667 0.02011 −0.35363 

19 −0.6396 0.76324 1.23312 0.84948 0.20669 0.37068 

20 −0.82868 0.58037 0.29271 −1.27291 −0.60221 0.51689 

21 −1.11643 0.65455 −0.50167 −0.46987 −0.03738 0.73852 

22 −1.44951 −1.59485 −0.73051 0.31361 0.78300 0.22635 

23 −1.16781 −0.83839 −0.89062 0.86961 1.02946 −0.30452 

24 0.5073 −0.68632 1.32991 −0.62985 −0.48457 0.75797 

25 0.87357 0.52189 0.46167 −1.7023 1.26638 0.58846 

26 0.92886 0.00997 −0.67989 −0.13366 −0.37355 −0.58715 

27 −0.19538 1.14368 −0.64697 0.8744 1.00173 0.39232 

28 −0.89347 −0.27941 0.44869 −0.76926 −1.04180 −1.36701 

29 0.22841 1.19672 −2.29155 −0.98832 −0.03484 0.63325 

30 −0.41321 0.66025 −0.62024 0.81164 −2.27280 0.91453 

31 0.24934 1.75558 −1.96544 0.9269 −2.36826 0.71918 

32 2.24352 0.061 −1.14678 0.23412 0.58710 0.62407 

33 −0.43648 −1.90088 −0.59296 −1.43724 −0.83297 0.91071 

34 −0.47532 1.40511 −1.98847 −0.94486 1.61033 1.14803 

35 −1.26658 −0.24919 1.49152 1.36682 0.39868 −1.06265 
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Continued 

36 0.46604 −0.46125 0.99116 −0.86239 0.84830 0.33544 

37 −0.26797 −0.64382 1.57322 0.97428 −0.28943 −0.90818 

38 −1.8616 −1.20993 0.31967 −1.22535 0.14880 −0.15342 

39 −0.79105 0.60132 0.09620 0.10762 0.05979 −1.01534 

40 −0.7376 −0.12083 −1.23366 −0.80141 −0.13743 −2.73551 

41 −0.54908 −2.08959 −0.96486 1.57005 −0.24971 −0.24047 

42 0.75899 −0.0693 0.98989 −1.94304 1.48971 0.83852 

43 0.87974 0.39937 0.66662 −0.33209 0.11830 −0.13159 

44 −1.56767 −1.2644 0.25153 0.25179 0.57021 0.3024 

45 0.88676 −0.17061 0.73065 −1.12438 0.21618 −0.7871 

46 −0.83478 −0.96567 −1.49011 −0.70519 −0.01597 −0.87175 

47 −0.09571 −0.44299 −0.98312 −0.92953 −0.43570 −0.63546 

48 0.08933 −0.41813 0.61319 −1.00549 1.60558 −1.20903 

49 1.03336 −0.72059 0.91105 −0.04879 −0.88526 0.18635 

50 −1.63874 1.65666 1.05754 −0.10511 −0.73240 0.11214 

51 0.13195 0.24313 0.83947 −0.37358 0.94916 −1.12998 

52 0.13345 1.67588 0.34752 0.23772 −2.75144 0.22946 

53 −0.04943 −0.68234 −0.69456 −0.08023 1.32076 1.74814 

54 −0.18236 0.26408 1.23475 0.47796 −0.55622 0.52767 

55 −0.26388 1.14863 −2.04852 −0.51304 −0.25991 0.17793 

56 −0.12861 0.54258 −0.54983 0.91927 −0.29258 2.04162 

57 −0.70432 −0.65895 0.52073 0.52957 0.27476 −0.26149 

58 −1.72085 −0.08292 1.08228 −0.94107 0.20609 −0.29193 

59 −1.32903 0.13364 1.20236 −0.02343 0.57154 −0.51553 

60 −1.20925 −0.87405 −1.04843 2.88022 0.12533 −1.2401 

61 0.49597 0.02139 0.15003 1.47823 0.67854 −0.15581 

62 0.95511 −0.21064 0.87717 0.33566 0.10858 −0.08128 

63 0.25296 −1.26454 −0.30127 0.73055 0.43881 0.18683 

64 0.81087 1.29401 −1.00489 0.57767 −1.16929 1.07444 

65 2.06072 1.4557 0.32523 −0.32369 −0.54597 −0.8368 

66 2.39035 −0.727 −0.07202 0.41405 1.18591 0.44699 

67 −1.38261 0.97672 0.72710 −0.61505 1.21889 −0.26585 

68 −0.76678 −1.25025 −1.10466 −0.67036 1.72606 1.26778 

69 1.16598 0.66914 −0.49042 −0.40702 −0.98953 0.05222 

70 1.45608 0.22788 −1.19467 0.28835 −0.04517 1.44719 

71 0.03912 −0.64965 0.68138 1.18748 1.77876 −1.28748 

72 0.41341 0.81042 0.46675 −0.86381 0.26484 −1.61369 
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73 0.20976 −1.30694 0.39714 −0.10127 −0.83961 0.53758 

74 0.54664 1.62919 −0.63787 −0.49827 −0.21413 −0.75779 

75 0.2277 1.47017 0.33296 0.38573 1.54837 1.49182 

76 0.43397 2.42827 0.90047 −0.08696 1.11924 0.74011 

77 1.03468 −1.77708 −0.03324 −1.33189 −1.16183 −0.06952 

78 0.92753 0.07674 1.36678 −0.0266 −0.12475 0.8712 

79 −2.04885 0.59972 −0.41621 −0.32919 −1.21666 −0.57515 

80 1.23434 −0.39571 2.07453 1.93271 −0.37863 1.49873 

81 1.74502 −0.67093 0.69519 −0.30482 0.17154 0.52483 

82 −0.3303 −1.15588 −0.91268 1.10958 −1.03211 −1.69178 

83 1.22417 −1.19194 0.60643 0.81764 1.04171 0.14834 

84 −1.39076 0.27032 −0.29833 0.16774 0.90110 1.72858 

85 1.2308 1.00547 1.75159 0.8735 0.06824 −0.76692 

86 −1.01361 0.32435 0.54000 0.19267 0.52393 1.39012 

87 1.31721 0.96086 0.60794 −0.24791 1.59886 −1.60376 

88 0.0169 0.66278 0.45064 −1.2737 −1.18518 −0.51405 

89 0.68989 −1.13499 1.32501 −0.05978 0.21521 −2.13481 

90 −0.44958 −0.61601 0.11542 −1.41891 0.21991 0.04175 

91 −0.89708 1.06236 0.28849 1.87618 0.37278 −0.94765 

92 0.38987 1.84019 −1.67447 −2.01358 −0.97390 0.78005 

93 −0.73121 0.29223 1.03518 −0.88304 −1.43246 0.37597 

94 −0.68488 −1.8725 −1.02913 0.62784 −0.92247 0.32093 

95 −0.01909 −0.4742 −0.89422 0.04727 0.13853 3.06963 

96 1.45817 −1.07199 −1.32477 1.92723 −0.36939 −1.28983 

97 0.89708 −1.69795 −1.37860 0.06466 1.08810 −0.22214 

98 0.79947 −1.33792 0.30006 0.66493 −1.27345 0.51469 

99 −0.76504 1.23803 0.43708 0.75755 −1.22752 0.20206 

100 0.61205 −0.15894 2.02864 −0.0729 −0.02931 0.06008 
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