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Abstract 
One of the classical approaches in the analysis of a variational inequality 
problem is to transform it into an equivalent optimization problem via the 
notion of gap function. The gap functions are useful tools in deriving the error 
bounds which provide an estimated distance between a specific point and the 
exact solution of variational inequality problem. In this paper, we follow a 
similar approach for set-valued vector quasi variational inequality problems 
and define the gap functions based on scalarization scheme as well as the one 
with no scalar parameter. The error bounds results are obtained under fixed 
point symmetric and locally α-Holder assumptions on the set-valued map de-
scribing the domain of solution space of a set-valued vector quasi variational 
inequality problem.  
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1. Introduction 

Let : n nK    be a set-valued map such that ( )K x , for any nx∈ , is a 
closed convex set in n . Let : , 1, ,n n

iF i m=    be set-valued maps such 
that ( ) , 1, ,iF x i m=   is convex and compact for all nx∈ . Denote by  

( ){ }1, , | 0, 1, ,n n
n iy y y y i n+ = = ∈ ≥ =    

( ){ }1, , | 0, 1, ,n n
n iint y y y y i n+ = = ∈ > =    

The set-valued vector quasi variational inequality (SVQVI) problem asso-
ciated with , 1, ,iF i m=   and K, denoted by ( ), 1, , ;iSVQVI F i m K=  , con-
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sists of finding an ( )* *x K x∈  such that there exists  

( )* * , 1, ,x
i if F x i m∈ =   

and 

( ) ( )* * ** * * *
1 2, , , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

where ,⋅ ⋅  denotes the inner product in n . 
Throughout this work, we denote the solution set of ( ), 1, , ;iSVQVI F i m K=   

by ( )( ), 1, , ;isol SVQVI F i m K=  . 
When the set ( )K x  is a constant set K  on n  then  

( ), 1, , ;iSVQVI F i m K=   reduces to the following strong vector variational in-
equality ( ), 1, , ;iSVVI F i m K=   in [1]. 

Find an *x K∈  such that there exists ( )* * , 1, ,x
i if F x i m∈ =   and 

( )* * ** * *
1 2, , , , , , , .x x x m

mf y x f y x f y x int y K+− − − ∉− ∀ ∈   

Note that if each , 1, ,iF i m=   is a single-valued map, and K is a constant 
map K , then ( ), 1, , ;iSVQVI F i m K=   reduces to the weak Stampacchia 
vector variational inequality problem ( )wSVVI  studied in [2]. 

Quasi variational inequality (QVI) problems started with a pioneer work of 
Bensoussan and Lions in 1973. The terminology quasi variational inequality was 
coined by Bensoussan et al. [3]. A QVI QVI is an extension of a variational in-
equality (VI) [4] in which the underlying set K depends on the solution vector x. 
For further details on QVI and its applications in various domains, the readers 
can refer to [5] [6] [7] [8] and the references therein. 

In 1980, Giannessi [9] introduced and studied vector variational inequality 
(VVI) in finite-dimensional Euclidean space. Chen and Cheng [10] studied the 
VVI in infinite-dimensional spaces and applied it to vector optimization prob-
lem. Lee et al. [11] [12], Lin et al. [13], Konnov and Yao [14], and Daniilidis and 
Hadiisawas [15] studied the generalized VVI and obtained some existence re-
sults. Very recently, Charitha et al. [2] presented several scalar-valued gap func-
tions for Stampacchia and Minty-type VVIs. A good source of material on VVI 
is a research monograph [16]. Motivated by the extension of VI to VVI, several 
researchers initiated the study of QVI for vector-valued functions, known as 
vector quasi variational inequalities (VQVI); see, for instance [11] [12] [13] [14] 
[15] and the references therein. 

In this paper, we first proposed a gap function for ( ), 1, , ;iSVQVI F i m K=   
using a scalarization scheme and then developed another scalar-valued gap func-
tion for the same problem but without involving any scalar parameter. Under 
certain monotonicity conditions and fixed point symmetric assumptions, we 
developed the error bound results for both kinds of gap functions and their re-
gularized counterparts. Further, we relaxed and replaced the fixed point symme-
tric condition by a locally α-Holder condition and obtained the same error 
bound results. 
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We now briefly sketch the contents of the paper. In Section 2, we present a 
scalarization scheme. In Section 3, we develop the classical gap function and the 
regularized gap function for ( ), 1, , ;iSVQVI F i m K=   with the help of set-valued 
scalar quasi variational inequality (SSQVI). In Section 4, we introduce another 
scalar gap function and its regularized version for ( ), 1, , ;iSVQVI F i m K=  , 
both free of any scalar parameter. We also develop the error bounds using fixed 
point symmetric hypothesis on the underlying map K. In Section 5, we showed 
that the same error bounds results can be obtained by relaxing the fixed point 
symmetric property by the α-Holder type hypothesis on K. 

2. Scalarization 

In this section, we investigate ( ), 1, , ;iSVQVI F i m K=   via the scalarization 
approach of Mastroeni [1] and Konnov [17]. We introduce SSQVI for  

( ), 1, , ;iSVQVI F i m K=   and establish an equivalence between them under 
certain conditions. 

Define functions 0 , , :u n nF F F    by following  

 
( ) ( ){ }

( )

0 1, ,

1 1
| , , , 1

i i m

m m
n

i i i i i i
i i

F x conv F x

z z f f F xλ λ λ

=

+
= =

=

 = ∈ = ∈ ∈ = 
 

∑ ∑



 

 

 ( ) ( )
1

m

i
i

F x F x
=

=∏  

 ( ) ( )
1

m
u

i
i

F x F x
=

=


 

Lemma 2.1. Let ( ) , 1, ,iF x i m=   be nonempty subsets of n . Then 

( ) ( ) ( ){ }0
u uF x F x conv F x⊆ =  

where conv  means convex hull.  
Proof. Note that for each 1, ,i m=  , ( ) ( ){ } 1, ,i i i m

F x conv F x
=

⊆


, hence  
( ) ( )0

uF x F x⊆  

Moreover, ( )0F x  is convex, thus,  

( ) ( ){ } ( )0
1

m
u

i
i

conv F x conv F x F x
=

 
= ⊆ 

 


 

Conversely, let ( )0x F x∈ . Then, there exist ( ) ( )
1

, 1, ,
m

i i i
i

x F x F x i m
=

∈ ⊆ = 



 

and 0, 1, ,i i mλ ≥ =   with 
1

1
m

i
i
λ

=

=∑ , such that 
1

m

i i
i

x xλ
=

=∑ , implying  

( )
1

m

i
i

x conv F x
=

 
∈  

 


. Hence the requisite result follows.  

Proposition 2.1. [1] Let ( ) , 1, ,iF x i m=   be nonempty subsets of n . For 
nx∈ , if ( ) , 1, ,iF x i m=   are compact then, ( ) ( ), uF x F x  and ( )0F x  are 

compact. 
The SSQVI associated with set-valued maps 0F  and K, denoted by 

( )0 ,SSQVI F K , consists of finding an ( )* *x K x∈  such that there exists 
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( )* *
0 0
xf F x∈  and  

( )* * *
0 , 0,xf y x y K x− ≥ ∀ ∈  

Throughout this paper, the solution set of ( )0 ,SSQVI F K  is represented by 
( )( )0 ,sol SSQVI F K .  

Theorem 2.1. Consider the following 
1) , 1, ,iF i m=   are nonempty, convex and compact valued maps.  
2) : n nK    is closed, convex valued map.  
Then, for each nx∈ , ( )( ) ( )( )0 , , 1, , ;isol SSQVI F K sol SVQVI F i m K= =  .  
Proof. Let ( )( )*

0 ,x sol SSQVI F K∈ . Then there exist ( )* *
0 0
xf F x∈  such 

that  

( )* * *
0 , 0,xf y x y K x− ≥ ∀ ∈  

By definition of 0F , there exists mλ +∈ , with 
1

1
m

i
i
λ

=

=∑  and  

( )* * , 1, ,x
i if F x i m∈ =  , such that  

( )* * *

1
, 0,

m
x

i i
i

f y x y K xλ
=

− ≥ ∀ ∈∑  

which implies that, for every ( )*y K x∈ , there exists an index yi , such that  
* *, 0

y

x
if y x− ≥  

It follows that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

so, ( )( ) ( )( )0 , , 1, , ;isol SSQVI F K sol SVQVI F i m K⊂ =  . 
Conversely, let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Hence, ( )* *x K x∈ , and 

there exists ( )* * , 1, ,x
i if F x i m∈ =  , such that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

thus, for each ( )*y K x∈ , there exists an index yi  such that  
* *, 0

y

x
if y x− ≥  

Observe that ( )* *
0y

x
if F x∈ , hence for each ( )*y K x∈ , there exist 

( )** *
0 0y

x
if f F x= ∈  such that  

* *
0 , 0f x y− ≤  

Consequently,  

( ) ( )* ** 0 0

* *
0sup min , 0

f F xy K x
f x y

∈∈

− ≤  

Under assumption (1) and by Proposition 2.1, ( )*
0F x  is convex and com-

pact which along with assumption (2) and the minmax theorem, yields  

( ) ( )* * *0 0

* *
0min sup , 0

f F x y K x
f x y

∈ ∈

− ≤  
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Finally, there exists ( )* *
0 0
xf F x∈  such that  

( )* * *
0 , 0,xf y x y K x− ≥ ∀ ∈  

completing the requisite result.  

3. Gap Functions by Scalarization 

One of the classical approaches in the analysis of VI and QVI and its different 
variants is to transform the inequality into an equivalent constrained or uncon-
strained optimization problem by means of the notion of gap function, please 
see, [5] [18] [19] and references cited therein. The gap functions have potential 
to play an important role in developing iterative algorithms for solving the in-
equality, analyzing the convergence properties and obtaining useful stopping 
rules for iterative algorithms. This prompted us to study and analyze different 
gap functions for ( ), 1, , ;iSVQVI F i m K=  .  

Definition 3.1. A function : ng →   is said to be a gap function for a 
( ), 1, , ;iSVQVI F i m K=   on any set n⊆   if it satisfies the following prop-

erties: 
1) ( ) 0,g x x≥ ∀ ∈ , 
2) ( ) ( )( )* * *0, , 1, , ;ig x x x sol SVQVI F i m K= ∈ ⇔ ∈ =  .  

3.1. Classical Gap Function by Scalarization 

Consider the function 0 :F ng →   defined by  

( )
( ) ( )

0

0

inf sup ,
x

F x

f F x y K x
g x f x y

∈ ∈
= −                  (1) 

Theorem 3.1. Consider the following 
1) , 1, ,iF i m=   are nonempty, convex and compact valued maps.  
2) : n nK    is closed, convex valued map.  
Then, 0Fg  defined in (1) is a gap function for ( )0 ,SSQVI F K  on  

( ){ }|nx x K x= ∈ ∈ .  
Proof. Observe that, for ( ),x x K x∈ ∈  which implies ( )0 0Fg x ≥ . 
Next for 0* *, ( ) = 0Fx g x∈  if and only if  

( ) ( )
*

* * *
0

*inf sup , 0
x

x

f F x y K x
f x y

∈ ∈

− =  

By Proposition 2.1, since ( )*
0F x  is compact set on   and *x ∈ , there 

exists 
* *

0 0( )xf F x∈  such that  

( )
*

*

*
0sup , 0x

y K x
f x y

∈

− =  

therefore, we have 

( )* * *
0 , 0, .xf y x y K x− ≥ ∀ ∈  

By invoking Theorem 2.1, ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  .  
The function 0Fg  is not differentiable, in general, an observation that leads 
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to consider the regularized gap function. 

3.2. Regularized Gap Function by Scalarization 

For any 0θ > , consider the function 0 :F ngθ →   defined by  

( )
( ) ( )

0

0

21inf sup ,
2x

F x

f F x y K x
g x f x y x yθ θ∈ ∈

 = − − − 
 

 

If, for nx∈ , each ( ) , 1, ,iF x i m=   is a compact set and ( )K x  is a con-
vex set, then by the minimax theorem  

( )
( ) ( ) ( )

( )0

0

21sup inf , sup ,
2x

F x

f F xy K x y K x
g x f x y x y h x yθ θ∈∈ ∈

 = − − − = 
 

 

where ( )
( )0

21, inf ,
2x

x

f F x
h x y f x y x y

θ∈

 = − − − 
 

. 

Since ( ),h x ⋅  is a strongly concave function in y so has unique maxima over 
closed convex set ( )K x , then follow from [20] (Chapter 4, Theorem 1.7), 0Fgθ  
is differentiable on n . 

Note that if ( )0F x  is a singleton then this gap function reduces to the regu-
larized gap function for QVI proposed by Taji [19].  

Theorem 3.2. Consider the following 
1) , 1, ,iF i m=   are nonempty, convex and compact valued maps.  
2) : n nK    is closed, convex valued map.  
Then, 0Fgθ  is a gap function for ( ), 1, , ;iSVQVI F i m K=   over  . 
Proof. Clearly, for x∈ , ( )0 0Fg xθ ≥ . 
Let ( )0 * 0Fg xθ =  and *x ∈ . Then,  

( ) ( )

*

* * *
0

2* *1inf sup , 0
2x

x

f F x y K x
f x y x y

θ∈ ∈

 − − − = 
 

 

Under assumption (1) and by Proposition 2.1, there exists ( )* *
0 0
xf F x∈  such 

that  
2* * *

0
*( )

1( , ) = 0,sup
2

x

y K x

f x y x y
θ∈

〈 − 〉 − −  

which implies  

( )* 2* * *
0

1, 0,
2

xf x y x y y K x
θ

− − − ≤ ∀ ∈  

Take an arbitrary point ( )*z K x∈ , and define a sequence of vectors ky  as  

( )* *1 ,ky x z x k
k

= + − ∈  

( )*K x  being convex, so ( )* ,ky K x k∈ ∈ , therefore  

* 2* *
0

1,
2

x
k kf x y x y

θ
− ≤ −  

which when k →∞  yields  
* *

0 , 0xf z x− ≥  
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Hence ( )( )*
0 ,x sol SSQVI F K∈ , which implies that  

( )( )* , 1, , ;ix sol SVQVI F i m K∈ =   also. 
Conversely, let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Then, by Theorem 2.1, 

( )( )*
0 ,x sol SSQVI F K∈ . Hence ( )* *x K x∈  and there exists ( )* *

0 0
xf F x∈  

such that  

( )
*

*

*
0sup , 0x

y K x
f x y

∈

− ≤  

therefore  

( )
( ) ( )

*
0

* * *
0

2* * *1inf sup , 0
2x

F x

f F x y K x
g x f x y x yθ θ∈ ∈

 = − − − ≤ 
 

 

But ( )0 * 0Fg xθ ≥ , which gives ( )0 * 0Fg xθ = .  

4. Another Scalar Gap Functions for SVQVI 

In previous section, we used the scalarization parameter λ  in constructing 
( )0 ,SSQVI F K  and then studied the gap function for ( ), 1, , ;iSVQVI F i m K=  . 

It is interesting to ask whether one can develop a gap function for  
( ), 1, , ;iSVQVI F i m K=   without taking help of ( )0 ,SSQVI F K . We make an 

attempt to construct such a gap function in the discussion to follow. But first a 
notation. 

Let ( ),x y K x∈  and let ( ) ( )1 , ,x x x
mf f f F x= ∈ . Then,  

( ) , 1, ,x
i if F x i m∈ =   and denote  

1 2, = ( , , , , , , ),x x x x
mf y x f y x f y x f y x〈 − 〉 〈 − 〉 〈 − 〉 〈 − 〉  

i.e., ,x
if y x−  is the ith component of the vector , , 1, ,xf y x i m− =  . 

4.1. Classical Gap Function 

Define a function : ng →   such that  

( )
( ) ( ) 1

inf sup min ,x
ix i mf F x y K x

g x f x y
≤ ≤∈ ∈

= −                    (2) 

Theorem 4.1. Consider the following 
1) , 1, ,iF i m=   are nonempty, convex and compact valued.  
2) : n nK    is closed, convex valued map.  
Then, g defined in (2) is a gap function for ( ), 1, , ;iSVQVI F i m K=   on 

( ){ }|nx x K x= ∈ ∈ .  
Proof. Since x∈ , so ( )x K x∈  which implies ( ) 0g x ≥ . 
Consider *x ∈ . We observe that ( )* 0g x =  if and only if there exists 

( )* *xf F x∈  such that  

( )
*

*

*

1
sup min , 0x

ii my K x
f x y

≤ ≤∈

− =  

that is,  

( )* * *

1
min , 0,x

ii m
f y x y K x

≤ ≤
− ≥ ∀ ∈  
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Equivalently,  

( )* * *, ,x mf y x int y K x+− ∉− ∀ ∈  

Hence, ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  .  
Proposition 4.1. For each nx∈ , ( ) ( )0Fg x g x≥ . 
Proof. Let nx∈  and ( )0 0

xf F x∈ . Then there exist ( )x
i if F x∈  or equi-

valently, ( ) ( )1 , ,x x x
mf f f F x= ∈  and 0, 1, ,i i mλ ≥ =   with 

1 1m
ii λ

=
=∑  

such that 0 1
mx

i iif fλ
=

=∑ . For any ( )y K x∈ , 

01 1
min , , ,

m
x x x

i i ii m i
f x y f x y f x yλ

≤ ≤ =

− ≤ − = −∑  

It follows that 

( )
( ) ( ) ( ) ( )

( )0

0 0
01

inf sup min , inf sup ,
x

Fx x
ix i m f F xf F x y K x y K x

g x f x y f x y g x
≤ ≤ ∈∈ ∈ ∈

= − ≤ − =  

We now attend to our prime aim that to develop the error bounds for 
( ), 1, , ;iSVQVI F i m K=  . We shall be needing the following concepts. 

Definition 4.1. [1] A set-valued map : n nF    is said to be strongly 
monotone with modulus 0µ >  on n  if, for any , nx y∈ ,  

( ) ( )2, , ,x y x yf f x y x y f F x f F yµ− − ≥ − ∀ ∈ ∈  

F is said to be monotone if the above inequality holds with 0µ = . F is said to 
be strictly monotone if it is monotone and the strict relation in the above in-
equality holds when x y≠ .  

Remark 4.1. Let 1 2, : n nF F    be two set-valued maps with 
( ) ( )1 2F x F x⊆  for any nx∈ . Note that, if 2F  is strongly monotone with 

modulus 0µ >  (respectively, monotone and strictly monotone) on n  then, 

1F  is also strongly monotone with modulus 0µ >  (respectively, monotone 
and strictly monotone) on n . Consequently, recall if uF  is strongly mono-
tone with modulus 0µ >  (respectively, monotone and strictly monotone) on 

n  then, each , 1, ,iF i m=   is strongly monotone with modulus 0µ >  (re-
spectively, monotone and strictly monotone) on n .  

Remark 4.2. Note that if uF  is strongly monotone with modulus µ  on 
any set nS ⊆   then each iF  is strongly monotone with modulus µ  on S  
[1]. However, the converse, in general, may not hold. For instance, consider two 
maps 1 2, :F F    as ( ) { }1F x x=  and ( ) { }2 3F x x= . Then, 1 2,F F  are 
strongly monotone on   with modulus 1 and 3 respectively. But for 1x = , 

2y = ; ( )3 1uF∈ , ( )2 2uF∈ , we have, 3 2,1 2 1− − = − , which means uF  is 
not strongly monotone (not even monotone) map on  .  

Definition 4.2. [5] A set-valued map : n nK    is said to be fixed point 
symmetric if for all ( ){ }|nx x x K x∈ = ∈ ∈ , we have, 

if ( )y K x∈  then ( )x K y∈  

The following result provides an error bound in terms of scalar gap function 
(without scalarize parameter) under strong monotonicity of uF  map and fixed 
pint symmetric K  map. 
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Theorem 4.2. Let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Suppose the following 
hold 

1) , 1, ,iF i m=   are nonempty, convex, compact valued.  
2) K  is closed, convex valued and fixed point symmetric map.  
3) uF  is strongly monotone with modulus 0µ >  on  .  
Then, for ( )*x K x∈ , we have  

( )* g x
x x

µ
− ≤                       (3) 

Proof. Since ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  , there exists  
( )* * , 1, ,x

i if F x i m∈ =   such that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

For y x= , we have  

( )* * ** * *
1 2, , , , , ,x x x m

mf x x f x x f x x int +− − − ∉−   

Therefore, there exists an index xi  such that ( ) ( )* * *
x x

x u
i if F x F x∈ ⊆  and  

* *, 0
x

x
if x x− ≥                           (4) 

Now, from the definition of ( )g x  and by Proposition 2.1, there exists 
( ) ( )1, , ,x x x x

mf F x f f f∈ =   such that  

( )
( ) 1

sup min ,x
ii my K x

g x f x y
≤ ≤∈

= −  

which gives  

( ) ( )
1
min , ,x

ii m
g x f x y y K x

≤ ≤
≥ − ∀ ∈  

Since ( )*x K x∈ , by fixed point symmetric property of K , ( )*x K x∈ , thus 
taking *y x=  in above inequality, we have  

( ) *

1
min ,x

ii m
g x f x x

≤ ≤
≥ −                       (5) 

For ( ) ( ) , 1, ,x u
i if F x F x i m∈ ⊆ =  , by strongly monotonicity of uF  and 

(4), we get  

( ) * * 2* * *

1
min , ,

x x

x x x
i i ii m

g x f f x x f x x x xµ
≤ ≤

≥ − − + − ≥ −         (6) 

Hence, for any ( )*x K x∈ ,  

( )* g x
x x

µ
− ≤  

Remark 4.3. We observed that the strong monotonicity of uF  (that is, as-
sumption (3)) is used only to obtain relation (6). A careful examination reveals 
that even the following condition can help us to achieve the same error bound 
for ( ), 1, , ;iSVQVI F i m K=  : 

For any ( )*x K x∈  and for any ( ) ( )1 , ,x x x
mf f f F x= ∈ , there exists an 

index { }1, ,j m∈  , and ( )* *x
j jf F x∈  satisfying (4) and  
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* 2* *

1
min ,x x

i ji m
f f x x x xµ

≤ ≤
− − ≥ −                  (7) 

Hence the error bound given in (3) is valid for ( ), 1, , ;iSVQVI F i m K=   be-
cause under assumption (3) of Theorem 4.2, the set-valued maps , 1, ,iF i m=   
always satisfy (7). 

In particular, if K  is a constant map K  and each iF  is a single-valued 
map, then (7) states that for any x K∈ , there exists an index j  such that  

( ) ( ) 2* * *

1
min ,i ji m

F x F x x x x xµ
≤ ≤

− − ≥ −               (8) 

For instant, take 1 2, :F F    given as ( ) { }1 2F x x=  and ( )2
1
2

F x x = − 
 

 

and [ ]1, 1K = − + . For this, ( )( )1 2
1, ; 0,
2

sol SVVI F F K  =   
. In this case uF  is  

not strongly monotone that means assumption (3) of Theorem 4.2 fails but the 
error bound Formula (3) remains valid because 1 2,F F  satisfy (8). 

In light of Proposition 4.1, the following is immediate.  
Corollary 4.2.1. Let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Suppose the fol-

lowing hold 
1) , 1, ,iF i m=   are nonempty, convex, compact valued.  
2) K  is closed, convex valued and fixed point symmetric map.  
3) uF  is strongly monotone with modulus 0µ >  on n .  
Then, for ( )*x K x∈ ,  

( )0
*

Fg x
x x

µ
− ≤  

Similar to 0Fg , the gap function g  is not differentiable leading to define the 
regularized gap function for ( ), 1, , ;iSVQVI F i m K=  . 

4.2. Regularized Gap Function 

For 0θ > , define a function : ngθ →   as  

( )
( ) ( )

2

1

1inf sup min ,
2

x
ix i mf F x y K x

g x f x y x yθ θ≤ ≤∈ ∈

 = − − − 
 

           (9) 

For each x, define the function  

( ) 2

1

1, = min ,
2

x
ii m

x y f x y x yϕ
θ≤ ≤

 − − − 
 

 

Here, ( ),.xϕ  is a strongly concave function of y. When ( )K x  is a closed 
convex set for any nx∈  then, ( ),.xϕ  attains maximum at a unique point in 

( )K x . If ( )F x  is a compact set in m  then, it follow from [20] (Chapter 4, 
Theorem 1.7), gθ  is differentiable.  

Theorem 4.3. Consider the following 
1) , 1, ,iF i m=   are nonempty, convex and compact valued. 
2) : n nK    is closed, convex valued map.  
Then, gθ  defined in (9) is a gap function for ( ), 1, , ;iSVQVI F i m K=   over 

the set  .  
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Proof. Since x∈ , so ( )x K x∈  which implies ( ) 0g xθ ≥ . 
Let *x ∈ . We observe that ( )* 0g xθ =  if there exists ( )* *xf F x∈  such 

that  

( )
*

*

2*

1

1sup min , 0
2

x
ii my K x

f x y x y
θ≤ ≤∈

 − − − = 
 

 

By similar arguments given in Theorem 3.2, we can work out that  

( )* * *

1
min , 0,x

ii m
f x y y K x

≤ ≤
− ≤ ∀ ∈  

which is equivalent to  

( )* * *, ,x mf y x int y K x+− ∉− ∀ ∈  

that is, ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . 
For the converse part, let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Then 

( )* *x K x∈  and there exists ( )* * , 1, ,x
i if F x i m∈ =   such that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

Hence for any arbitrary but fixed ( )*z K x∈ , there exists an index zi , de-
pending on z , and there exists ( )* *

z z

x
i if F x∈ , such that  

* *, 0
z

x
if x z− ≤  

In other words,  

( )* 2* * *

1

1min , 0,
2

x
ii m

f x y x y y K x
θ≤ ≤

 − − − ≤ ∀ ∈ 
 

 

which implies  

( )
( ) ( )

*

* * *

2* * *

1

1inf sup min , 0
2x

x
ii mf F x y K x

g x f x y x yθ θ≤ ≤∈ ∈

 = − − − ≤ 
 

 

We conclude that ( )* 0g xθ = , and hence the result follows.  
Theorem 4.4. Let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Suppose the following 

hold  
1) , 1, ,iF i m=   are nonempty, convex, compact valued.  
2) K  is closed, convex valued and fixed point symmetric map.  
3) uF  is strongly monotone with modulus 0µ >  on  .  

Then, for 1
2

θ
µ

>  and for any ( )*x K x∈ ,  

( )*

1
2

g x
x x θ

µ
θ

− ≤
 − 
 

 

Proof. Since ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  , there exists  
( )* * , 1, ,x

i if F x i m∈ =   such that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   
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Taking ( )*y x K x= ∈ , we have  

( )* * ** * *
1 2, , , , , ,x x x m

mf x x f x x f x x int +− − − ∉−   

There exists an index xi  such that ( ) ( )* * *
x x

x u
i if F x F x∈ ⊆ , and  

* *, 0
x

x
if x x− ≥                            (10) 

Proceeding along the lines of Theorem 4.2, we can easily obtain, for 

( )*x K x∈ ,  

( ) * * 2* * *

1

2*

1min , ,
2

1
2

x x

x x x
i i ii m

g x f f x x f x x x x

x x

θ θ

µ
θ

≤ ≤
≥ − − + − − −

 ≥ − − 
 

 

where the last inequality follows from strongly monotonicity of uF  and (10), 
yielding the requisite result.  

5. Substitution of “Fixed Point Symmetric Assumption” 

Aussel [5] obtained the error bounds for a SSQVI by replacing “fixed point 
symmetric” property on K  by the Holder’s type hypothesis which motivated 
us to see if the Holder’s type hypothesis on K  works for ( ), 1, , ;iSVQVI F i m K=   
too. 

Definition 5.1. [5] A set-valued map K  is said to be locally α-Holder 
( 0α > ) at a point * nx ∈  if there exists 0δ >  and 0L >  such that for all 

( )*,x B x δ∈   

( ) ( ) ( ) ( )* * *, 0,K x B x K x B L x x
α

δ ⊂ + −
 

where B  represents a ball in n .  
Remark 5.1. If : n nK    is a fixed point symmetric map over any set 

nS ⊆   then K  will also be locally α-Holder ( 1, 1Lα ≥ ≥ ) at any point 
x S∈ . However, the converse, in general, may not hold. For instance, consider 
Proposition 3.6 in [5], where the constraints map K  is defined, for any 

nx∈ , by  
( ) ( ) ( ){ }|nK x y y xφ ψ= ∈ ≤  

where : nφ →   is a continuously differentiable function and : nψ →   is 
an α-Holder continuous on n . Let x S∈  be such that ( ) 0xφ∇ ≠ . Then for 
some constant γ  (see Proposition 3.6 in [5]), the constraint map K  is locally 
γ-Holder at x S∈ . Note that K  is not necessary fixed point symmetric over 
S .  

Recall the map :u n nF   . For if uF  is a compact valued map then de-
fine  

( ) ( ){ }*sup : , ,1uM f f F x x B x= ∈ ∀ ∈  

where ( )*,1B x  indicates the closed unit ball in n  centered at *x .  
Theorem 5.1. Let ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  . Suppose the following 

hold 
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1) , 1, ,iF i m=   are nonempty, convex, compact valued.  
2) K  is closed, convex valued and locally α-Holder with 2α >  at *x  and 
( )0,1δ ∈ . 

3) uF  is strongly monotone with modulus 2 0ML αµ δ −> > .  

Then, for any 
( )

( )
2

2

1
2

L
ML α

θ
µ δ −

+
>

−
, and for any  

( ) ( )* *,x B x K xδ∈  , ( )* g x
x x θ

δρ
− ≤  

where 
( )2

2 1
2

L
ML α

δρ µ δ
θ

−
 +
 = − −
 
 

.  

Proof. Since ( )( )* , 1, , ;ix sol SVQVI F i m K∈ =  , there exists  
( )* * , 1, ,x

i if F x i m∈ =   such that  

( ) ( )* * ** * * *
1 2, , , , , , ,x x x m

mf y x f y x f y x int y K x+− − − ∉− ∀ ∈   

Taking y x=  in above relation  

( )* * ** * *
1 2, , , , , ,x x x m

mf x x f x x f x x int +− − − ∉−   

Hence, there exists an index xi  and ( )* *
x x

x
i if F x∈  such that  

* *, 0
x

x
if x x− ≥                         (11) 

Also, 

( )
( ) ( )

2

1

1inf sup min ,
2

x
ix i mf F x y K x

g x f x y y xθ θ≤ ≤∈ ∈

 = − − − 
 

 

Using Proposition 2.1, there exists ( )xf F x∈  such that  

( ) ( )2

1

1min , ,
2

x
ii m

g x f x y y x y K xθ θ≤ ≤

 ≥ − − − ∀ ∈ 
 

 

For any ( )y K x∈ , there exists an index yi  and ( )
y y

x
i if F x∈  such that  

( ) 21,
2y

x
ig x f x y y xθ θ

≥ − − −  

Consequently,  

( )

( )

* *

2

2* *

2* * *

22* * * *

1,
2

1, ,
2

1, , ,
2

1, ,
2

y

y y

y x x y

y

x
i

x x
i i

x x x x
i i i i

x
i

g x f x y y x

f x x f x y y x

f f x x f x x f x y y x

x x f x y y x x x

θ θ

θ

θ

µ
θ

≥ − − −

= − + − − −

= − − + − + − − −

≥ − + − − − + −

  (12) 

where the last inequality is due to assumption (3), (11) and triangular inequality 
of . . 

Since K  is locally α-Holder at *x , for all ( ) ( )* *,x B x K xδ∈  , we have  

( )* * ,x y L x x y K x
α

− ≤ − ∀ ∈  
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Taking into account that * 1x x− < , inequality (12), we have, for  

( ) ( )* *,x B x K xδ∈  ,  

( ) ( )

( )
( )

( )

22* * * *

22* * * *

2 2 1 2* * 2 * * *

22 2* *

2
2 22 * *

1
2

1
2
1 2

2
1

2 2

1
,

2

g x x x M x y y x x x

x x ML x x L x x x x

x x ML x x L x x L x x x x

L LML x x x x

L
ML x x x x

θ

α α

α α α

α

α
δ

µ
θ

µ
θ

µ
θ

µ
θ θ θ

µ δ ρ
θ

+

−

−

≥ − − − − − + −

≥ − − − − − + −

= − − − − − + − + −

 
≥ − − − − − − 
 
 +
 ≥ − − − = −
 
 

 

where 
( )2

2 1
2

L
ML α

δρ µ δ
θ

−
 +
 = − −
 
 

. 

Then, for all ( ) ( )* *,x B x K xδ∈  , if *x x≠  we have ( ) 0g xθ >  because 
0δρ > , thus proving that *x  is the unique solution of ( ), 1, , ;iSVQVI F i m K=   

over ( ) ( )* *,B x K xδ  . 
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