
Journal of Software Engineering and Applications, 2017, 10, 925-958
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.1013053 Dec. 29, 2017 925 Journal of Software Engineering and Applications

Fault Tolerance for Lifeline-Based Global Load
Balancing

Claudia Fohry, Marco Bungart, Paul Plock

Research Group Programming Languages/Methodologies, University of Kassel, Kassel, Germany

Abstract
Fault tolerance has become an important issue in parallel computing. It is of-
ten addressed at system level, but application-level approaches receive in-
creasing attention. We consider a parallel programming pattern, the task pool,
and provide a fault-tolerant implementation in a library. Specifically, our
work refers to lifeline-based global load balancing, which is an advanced task
pool variant that is implemented in the GLB framework of the parallel pro-
gramming language X10. The variant considers side effect-free tasks whose
results are combined into a final result by reduction. Our algorithm is able to
recover from multiple fail-stop failures. If recovery is not possible, it halts
with an error message. In the algorithm, each worker regularly saves its local
task pool contents in the main memory of a backup partner. Backups are up-
dated for steals. After failures, the backup partner takes over saved copies and
collects others. In case of multiple failures, invocations of the restore protocol
are nested. We have implemented the algorithm by extending the source code
of the GLB library. In performance measurements on up to 256 places, we ob-
served an overhead between 0.5% and 30%. The particular value depends on
the application’s steal rate and task pool size. Sources of performance over-
head have been further analyzed with a logging component.1

Keywords
Fault Tolerance, Task Pool, Load Balancing, GLB, Resilient X10

1. Introduction

Hardware failures such as breakdown of a computational node are increasingly
recognized as impediments to the efficient execution of large-scale parallel pro-

1This paper is an extended version of C. Fohry, M. Bungart: A Robust Fault Tolerance Scheme for
Lifeline-Based Taskpools; Proc. Int. Conf. on Parallel Processing Workshops (P2S2), 2016, pp.
200-209.

How to cite this paper: Fohry, C., Bungart,
M. and Plock, P. (2017) Fault Tolerance for
Lifeline-Based Global Load Balancing. Jour-
nal of Software Engineering and Applica-
tions, 10, 925-958.
https://doi.org/10.4236/jsea.2017.1013053

Received: November 16, 2017
Accepted: December 26, 2017
Published: December 29, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.1013053
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.1013053
http://creativecommons.org/licenses/by/4.0/

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 926 Journal of Software Engineering and Applications

grams. The traditional fault tolerance technique, checkpoint/restart, has high
costs that increase with the system size. So alternatives are being looked at.

A promising direction is application-specific resilience. Here, the user pro-
gram is notified of the failure and can handle it in an appropriate way. Applica-
tion-specific resilience increases the programming expense. Therefore, imple-
mentation in reusable libraries is desirable.

This paper studies fault tolerance for a parallel programming pattern, the task
pool. This pattern has many variants and is widely used in runtime systems of
task-based parallel programming systems, as well as for load-balancing of irre-
gular applications. We consider a particular variant, which is called life-
line-based global load balancing, or shortly the lifeline scheme. It is an advanced
task pool variant with low communication costs and efficient termination detec-
tion.

The lifeline scheme is used in the Global Load Balancing framework GLB [1]
that is part of the standard library of the parallel programming language X10. It
targets distributed-memory architectures in the Partitioned Global Address
Space (PGAS) setting. Here, place denotes a set of computational resources to-
gether with a memory partition, i.e., typically a cluster node.

We extend the lifeline scheme by the ability to handle permanent place fail-
ures, i.e., fail-stop failures of a whole place. Other failures types such as silent
errors are not considered. The algorithm has been implemented by extending
the GLB code, which is open-source.

When designing our algorithm, we assumed that failures are rare and unre-
lated, but may coincide. Two failures are denoted as quasi-simultaneous if the
second failure occurs before the first one has been recovered from. Qua-
si-simultaneous failures coincide if the workers on the failed places were coope-
rating with each other at the time of failure, according to one of the protocols
described in Section 3.

Network communication is supposed to be reliable. If both sender and receiv-
er of a message are alive, the message is eventually delivered. There is no pre-
sumption on message ordering, though. Even messages from the same sender to
the same receiver may overtake.

The lifeline scheme deploys one worker per place, who processes tasks in a
single thread of execution. When it has no tasks, it tries to steal tasks from a
co-worker. Stealing is cooperative, i.e., the worker does not access the co-worker’s
memory, but sends a message in which it asks for tasks. The lifeline scheme
supposes the following task model, which is common for application-level task
pools:
• All tasks carry out the same code and are parameterized by a task descriptor.
• Task execution is free of side effects.
• Each task computes a partial result, and the overall result is calculated by re-

duction from the partial results. Reduction uses a commutative and associa-
tive operator.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 927 Journal of Software Engineering and Applications

This task model differs from nested fork-join parallelism insofar as children
do not return their results to the parent. In fact, children can outlive their par-
ents. Task execution adopts the help-first policy [2], i.e., after spawning a task, a
worker continues with the parent such that the child can be stolen away.

Our fault-tolerant algorithm has been developed incrementally, and earlier
versions have been published in [3] [4] [5]. The current paper sums up that
work and presents the overall algorithm in a unified way. Unlike earlier work, it
includes a detailed discussion of correctness and a performance analysis. Expe-
rimental data refer to the ULFM backend of X10 [6]. Base ideas of the overall
algorithm include
• a ring structure for backups,
• an actor-like communication structure that allows to reorder and prioritize

messages,
• a low-overhead consistence-maintaining steal protocol,
• transaction and linkage schemes to reduce the steal-related backup expense,
• a restore protocol whose execution can be nested to recover from multiple

coincident failures, and
• timeout control and an emergency mode to facilitate recovery.

The algorithm is correct in the sense that it either outputs the correct result or
halts with an error message. Beyond that, it is robust, i.e., program aborts are
rare. There are three reasons for such aborts:
• Our programming system lacks support for failure of place 0.
• We restrict redundancy to one copy per task descriptor. If both original and

copy go lost due to coincident failures, the program aborts.
• Ultimate timeout may enforce termination, e.g. after unusually long network

delays (see Section 4.2).
A third design goal has been efficiency, i.e., a low overhead during failure-free

operation, and quick recovery from failure. Fast recovery reduces the likelihood
that another failure occurs before the program execution has returned to a con-
sistent state.

The program has been tested extensively, by triggering failures with kill calls
in the program. Performance measurements used the Unbalanced Tree Search
(UTS) and Betweenness Centrality (BC) benchmarks. During failure-free opera-
tion on up to 256 places, we observed an overhead of 0.5% to 30% over the orig-
inal GLB version. The overhead for recovery was negligible. In addition to time
measurements, we analyzed sources of overhead by logging entrance and exit
from interesting states during program execution. The analysis revealed that
most overhead is due to steal-related backups, which are frequent at the begin-
ning and end of a program’s execution. So the overhead can be reduced by
switching to another resilient scheme during steal-intensive periods.

The paper is organized as follows. Section 2 provides background on X10,
GLB, and the lifeline scheme. We refer to an own actor-like implementation,
which we took as our basis to incorporate fault tolerance. The fault-tolerant al-

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 928 Journal of Software Engineering and Applications

gorithm is explained in Section 3. Correctness and robustness are discussed in
Section 4. Section 5 describes experiments and discusses results. The paper fi-
nishes with related work and conclusions in Sections 6 and 7, respectively.

2. Background
2.1. X10

In line with the Partitioned Global Address Space (PGAS) model, X10 assumes a
global address space that is subdivided into partitions. A partition, together with
computational resources, is denoted as place. An X10 programmer controls the
mapping of data and computations to places with the at keyword. Data may be
accessed locally only. For a remote access, the computation must be moved to
the remote place with at, which is more expensive than a local operation. These
place changes can be considered as active messages. In place changes, data from
the origin place is transparently copied and sent along, if accessed remotely.

More specifically, X10 follows the Asynchronous PGAS (APGAS) model [7].
Accordingly, it expresses computations by light-weight activities that are trans-
parently mapped to threads by the runtime system. An activity may release its
thread by calling Runtime.probe(). In this case, all pending activities are ex-
ecuted before the calling activity resumes. Program execution starts with a single
activity on place 0. New activities are spawned with the async keyword and run
asynchronously to their parent. Activities can be moved to a different place with
at. The spawning of activities can be encapsulated in a finish block. At the end of
this block, the program execution suspends until all activities, including nested
ones, have terminated.

X10 supports a mode called Resilient X10, in which the user program is noti-
fied in the event of a permanent place failure. Three notification mechanisms are
available:

1) Dead Place Exceptions can be caught at the end of an at or finish block.
They cannot be caught at the end of an async block.

2) Function isDead (place) can be invoked at any time to inquire a particular
place’s liveness.

3) Function register Place Removed Handler registers a piece of code at the
current place. It is automatically invoked when another place dies.

X10 programs can be compiled into either Java or C++. The latter option,
called Native X10, is more efficient. Native X10 can run with a sockets-based
backend or an MPI-based backend. For Resilient X10, the MPI backend is based
on the User-Level Failure Mitigation (ULFM) extension of MPI [6] [8].

2.2. Lifeline Scheme

Independent from the place-internal mapping of activities to threads, X10’s
standard library offers the Global Load Balancing framework GLB for in-
ter-place load balancing [1]. GLB tasks are different from X10 activities, and
must be explicitly defined. Internally, GLB achieves load balancing with the life-

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 929 Journal of Software Engineering and Applications

line scheme, which is a particular realization of the task pool pattern.
In general, a task pool processes a typically large number of tasks with a fixed

number of workers. The concept of tasks differs between task pool variants. As
stated before, we assume that all tasks carry out the same code, are side ef-
fect-free and produce a result. The final result is calculated by reduction from
task results, using a commutative and associative operator. Tasks may generate
new tasks, but are otherwise independent.

In most task pool variants, including the lifeline scheme, each worker main-
tains a local data structure, called local pool. The worker repeatedly takes a task
out of the pool, processes it, inserts new tasks if generated, then takes the next
task etc. Additionally, it accumulates the results of its tasks into a partial result.
Initially, at least one local pool contains a task. The overall computation ends
when all tasks are finished. Then, the final result is computed by reduction from
the partial results of all workers.

If a worker has no tasks left, it tries to steal tasks from a co-worker. Corres-
pondingly, the workers are called thief and victim, respectively. In cooperative
work stealing, the thief sends a message, and the victim responds by sending
another message back. The return message contains either the loot (tasks) or a
reject notice. The lifeline scheme deploys a quite sophisticated pattern of victim
selection: A thief contacts up to w random victims, followed by up to z lifeline
buddies, until it finds work. The lifeline buddies are preselected and form a
low-diameter graph [9]. When a lifeline buddy rejects a steal request, it addi-
tionally stores the identity of the thief. If it obtains work later, it shares the work
with the stored thieves.

After w z+ unsuccessful steal attempts, a worker becomes inactive. This
state differs from termination in that the worker may be re-activated if a lifeline
buddy later sends work. When all workers have become inactive, the overall
computation ends.

2.3. GLB Framework

A GLB user must specify the local pool data structure by providing the following
functions:
• boolean process(n): takes up to n tasks from the local pool, processes them,

inserts new tasks, and returns a flag to indicate whether n tasks were available
• TaskBag split(): splits the local pool such that one part can be sent to a thieve

as loot in a TaskBag.
• void merge(TaskBag): integrates the received TaskBag into the own pool.

GLB implements the lifeline scheme with a single worker per place. By setting
environment variables, it moreover enforces sequentialization of all user activi-
ties on a place. Thus, there is no need for place-internal synchronization. Com-
munication between workers is accomplished by at async calls, which corres-
pond to active messages, and are shortly denoted as messages. If a message ar-
rives at a place, it is queued until the receiver suspends by calling Run-

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 930 Journal of Software Engineering and Applications

time.probe().
This scheme resembles the well-known actor model [10], in which parallel

entities progress in a message-driven way: Except for message processing, a
worker is passive and only reacts to message receipt. While the original GLB im-
plementation occasionally violates the actor pattern by using blocking commu-
nication, we slightly modified the code for a clear structure. The modified va-
riant is called GLB-Actor. It was the starting point for the development of our
fault-tolerant algorithm. For clarity of presentation, we only describe GLB-Actor
in the following. Further information on the differences between GLB and
GLB-Actor can be found in [4].

In GLB-Actor, all communication is asynchronous, and a sender never blocks
to wait for an answer. Asynchronous communication has two merits: First, it
enables parallelism between task processing and communication, which speeds
up the program. Second, it keeps workers responsive despite the restriction to a
single activity per place.

Recall that messages contain code. Thus, their receipt initiates a sequence of
actions, which may change the worker’s state and/or cause sending other mes-
sages. GLB-Actor deploys three types of messages:
• noTasks: This is the reject notice from an attempted victim. Upon receipt of

this message, the worker contacts the next victim or, after w z+ unsuccess-
ful attempts, sets variable stealFailed to true.

• give: A victim sends tasks. The victim may have been contacted right before,
or be a lifeline buddy that registered the request much earlier. On the thief
site, function give() internally calls the user-defined function merge() to in-
tegrate the tasks into the local pool. If the message give() arrives at an inac-
tive worker, the message additionally re-activates it.

• trySteal: The receiver of this message is the victim of a steal attempt. If its
queue is empty, it answers with noTasks. Otherwise, it calls split(), and sends
the extracted tasks back in a give message.

Recall that messages are always received at the next Runtime.probe() call fol-
lowing their arrival. Then, most of the respective actions are carried out imme-
diately. An exception is a steal request that arrives at a victim with a non-empty
pool. In this case, the request is recorded. Recorded actions are carried out only
when all pending messages have been received. This way, random steals can be
handled in preference (i.e., before) lifeline steals, and are thus answered by tasks
in more cases. In the GLB-Actor code, each worker runs the following main
loop, where queue denotes the worker’s local pool:

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 931 Journal of Software Engineering and Applications

Method processUpToN() is the same as process(), except that it updates state
information. At Runtime.probe(), all pending messages are received, i.e., the re-
spective remote activities perform their actions immediately or record them.
Recorded actions are carried out later when the worker resumes and calls pro-
cessRecorded().

Beside by messages, a worker’s progress may be driven by local events.
GLB-Actor defines only one type of local event, that of the local pool having be-
come empty. This event is recorded by processUpToN() and handled by pro-
cessRecorded(), when the worker starts stealing. This subdivision has the advan-
tage that the event is handled after a possible give, which is handled during Run-
time.probe() and makes the empty pool event obsolete (if applicable).

Behind the main loop, the worker activity ends. To re-activate the worker, a
lifeline buddy starts a new activity on its place. This activity continues to use the
worker’s state. Inactivity is reflected by a state variable. In GLB-Actor, inactive
workers do not call processRecorded(). This call is not necessary since inactive
workers may not receive messages of a type that requires recording.

3. Fault-Tolerant Algorithm

Our fault-tolerant algorithm extends GLB-Actor. It defines many new types of
messages and local events that are related to backup, failure recognition, and re-
covery. Table 1 gives an overview and contains more technical information. The
third column lists major actions only, whereas others are discussed in the text.
Immediate actions are displayed in italics. For recorded actions, their order in
the table reflects the execution order in processRecorded(). An arriving restore,
for instance, is handled before a give, since the former appears higher up in the
table. The last two columns are explained later.

Despite the higher number of messages and local events, the actor scheme
works the same way as before. With this scheme, the worker simultaneously
pursues different computational issues: task processing, stealing, backup, moni-
toring, and recovery. The fault-tolerant algorithm makes extensive use of the
actor scheme’s ability to record actions such that they can be performed in a
well-defined order and with different priorities. Unlike in GLB-Actor, even inac-
tive workers must regularly call processRecorded(), and we will ensure that.

In every message receipt, the message’s sender is inspected. If the message
does not match any ongoing protocol, a message-specific action is taken. In most
cases, the message is discarded for being orphan, i.e., it must have come from a
place that died after sending. Orphan messages are no longer needed. In some
cases, an unexpected message indicates a new failure or it is due to protocol
nesting. These cases are explicitly described in the text, whereas discarding of
orphans is the default and not further mentioned.

A message receipt may initiate multiple immediate actions. An interesting
observation regarding the actor scheme is the fact that these can be carried out
in any order. If a worker fails while modifying its state, all updates are lost, no

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 932 Journal of Software Engineering and Applications

Table 1. Types of messages and actions to be carried out upon arrival. Immediate actions are displayed in italics. For recorded
actions, their order in the table indicates the execution order. The leftmost column uses different fonts for messages and local
events. Abbreviations: Em = emergency mode, Ti = timeout control, n/a = not applicable, (−) = in emergency mode only.

Msg/Event Meaning Major actions at receiver Em. Ti.

REGack regular backup completed update state x (−)

STLack steal backup completed give tasks to all thieves x (−)

TOack taken-over backup completed, see Figure 3 send RSTack x x

IAack inauguration backup completed, see Figure 3 set Back to new value x -

RSTack handshaking, see Figure 3 send IAreq x x

BTack handshaking, see Figure 2 send Tend, for last thieve send BVend x x

Tend stealing completed at thief update openTends x x

BVend transaction completed at victim update state x x

victimLink discloses link to V, see Figure 2 save link, send BTack x -

delOpen Back(T) has taken over copy, see Figure 2 delete all tasks up to tan from Open(T) x -

linkResolve Back(T) needs saved tasks from V send linkTasks x -

linkTasks discloses requested tasks if R3 reached, send TOreq x x

GOTcheck Back(V) checks task arrival at T, see Figure 3 send GOTok, abort program or wait x -

GOTok task group has arrived at T, see Figure 3 if R3 reached, send TOreq x x

deathNotice backup place died send restore, invalidate Back x -

REGreq regular backup requested replace backup data, send REGack x -

STLreq steal backup received, see Figure 2 replace backup data, send STLack x -

TOreq taken-over backup received, see Figure 3 replace backup data, send TOack x -

IAreq inauguration backup received, see Figure 3 replace backup data, send IAack x x

monitor ghost activation, see Section 3.1 spawn ghost, send monitor to Back x -

restore restore requested, see Figure 3 send linkResolve/GOTcheck, check ring x -

give task delivery, see Figure 2
send victimLink, store tan in tanGOT,

insert tasks
- x

isDead(Back) regular isDead() call yields true send restore - n/a

trySteal incoming steal request, see Figure 2
send noTasks or form transaction and start with

Figure 2
- -

timeout timeout detected by timeout control
check liveness, send deathNotice,

specifics (see Section 3.4)
x n/a

k iters over backup interval over send REGreq - -

noTasks attempted victim has no tasks send next trySteal or set stealFailed - x

out of work process(n) returned false send first trySteal - n/a

matter whether performed before or after the failure. Message-sending actions
may be reordered w.r.t. local actions as well, if the message contents are inde-
pendent. From this observation, we always perform the most urgent actions first.
Typically, we start sending messages, and thereafter update the worker’s state.

The rest of this section is structured along the different computational issues
and core ideas of the algorithm. An overview of the algorithm is given in Fig-
ure 1.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 933 Journal of Software Engineering and Applications

Figure 1. Flow chart.

3.1. Algorithm in Failure-Free Operation

1) Regular backups: Each worker regularly saves a copy of its local pool con-
tents in the main memory of another. For that, workers are arranged in a ring.
For simplicity, we assume the ring order to coincide with place numbering (plus
wraparound). This setting has no negative impact on failure coincidence, if suc-

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 934 Journal of Software Engineering and Applications

cessively-numbered places are mapped to distinct physical network nodes.
If worker i writes its backup to worker j, we say that i has backup partner j, or

briefly Back(i) = j. Vice versa, i = Forth(j). After failures, the ring structure is re-
paired by bridging gaps and updating the respective Back and Forth variables.

Backup writing is uncoordinated. Each worker independently counts itera-
tions of its main loop and sends a backup every k iterations. The backup in-
cludes the tasks to be saved, the current value of the accumulated partial result,
the current value of the sender’s Forth variable, and the identity of the sender it-
self. Regular backups are sent with message type REGreq, and acknowledged
with message type REGack (see Table 1). If a REGreq’s sender differs from the
current value of the receiver’s Forth variable, it must be an orphan message and
is discarded as described before.

2) Failure recognition: As noted in Section 2, Resilient X10 supports three
mechanisms for failure notification:
• Dead Place Exceptions cannot be used in our program since they cannot be

caught at the end of an async block and the whole program is spanned by a
single finish.

• The register Place Removed Handler functionality is not available for Native
X10.

• Therefore, we rely on isDead(). More specifically, each worker i regularly
calls isDead(Back(i)) within processRecorded(). In case of failure, it invokes
the restore protocol described in Sect. 3.2. Sometimes, failure of Back(i) is
detected by a different worker, who reports that to i with message deathNo-
tice.

3) Ghost activities: An inactive worker must call processRecorded() to
a) fulfill regular duties such as invoking isDead(Back(i)), and
b) timely perform the actions that are recorded by incoming messages.
For issue 1, all active workers send the following monitor message to their

backup place during each processRecorded(). By recursion, all inactive workers
are captured this way.

For issue 2, every message that records an action at an inactive worker spawns

a ghost activity. A ghost calls processRecorded() and, like any other activity, is
scheduled after some time. A flag ensures that at most one ghost activity is
spawned, including the call in monitor.

4) Timeout Control: Although, in the actor scheme, a worker never explicitly
waits for an answer to a message sent, the worker may need a reply before it can

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 935 Journal of Software Engineering and Applications

return to normal state. In the backup protocol described above, for instance, the
worker must wait for the completion of a previous backup before it can send the
next. Otherwise, the second backup may overtake the first one and is overwrit-
ten. Message delays may be due to network delays or place failures. After fail-
ures, a failed place’s Back is not always able to notify the waiting place. Shortly
after trySteal, for instance, Back does not yet know of the steal attempt. There-
fore, we deploy a timeout control scheme that supplements the regular isDead()
calls.

Timeout control stores awaited messages in a list, called awaitedMsgs. For
each message, it records type, source, and a deadline (wallclock time). The last
column of Table 1 marks the message types covered by timeout control. Backup
acknowledgements are usually not included, since failure of Back is recognized
by the regular isDead() calls.

Each invocation of processRecorded() goes through awaitedMsgs and, if a
deadline has passed, checks liveness of the respective source via isDead(). If the
source is alive, the message is re-inserted into awaitedMsgs with a new deadline,
until an ultimate deadline is reached (see below). If the source is dead, a timeout
has occurred. In this case, a deathNotice is sent to the place’s Forth, which is de-
termined by going backwards through the ring until the next place alive. After-
wards, the timeout is dealt with specifically for the particular type of lost mes-
sage, as explained in Sect. Note that inactivity of a worker does not stall timeout
control, since monitoring ensures regular processRecorded() calls.

5) Transactions: At Runtime.probe(), multiple trySteal messages may be re-
ceived. For efficiency, we combine their handling into a transaction. Transac-
tions include successful requests only, whereas the others are rejected by sending
noTasks. Similarly, transactions do not contain duplicates, i.e., the same thief
may not be contained twice.

Transactions are numbered by tans, which are assigned consecutively by each
victim and include its id. Tans are included wherever appropriate, e.g. they are
sent with all messages of the steal protocol. Beside the tan, a transaction de-
scriptor stored by the victim holds the list of thieves.

6) Steal Protocol: The steal protocol is depicted in Figure 2. For clarity, only a
single thief T and victim V are shown, but there may be several thieves. Dotted
lines denote waiting times for Runtime.probe(), and wavy lines mark task
processing (depicted at T and V only). Messages STLreq, STLack and BVend are
sent once per transaction, whereas the other messages are sent once per thief.

Message STLreq initiates a steal backup, which updates the data saved at
Back(V) and includes the list of thieves. The backup is acknowledged by STLack.

As noted in the figure, V saves the task bags to be stolen in an array of lists,
called Open, before sending them out via give. Thus, entry Open(T) holds all
task bags that were sent to T but have not yet been acknowledged. When T rece-
ives loot, it first enters the corresponding tan into an array called tanGOT. This
array has one entry per place i and holds the last tan of loot received from i.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 936 Journal of Software Engineering and Applications

Figure 2. Steal Protocol, adapted from [3].

Then, T informs Back(T) by sending a victimLink message containing a link to
V. In case T dies, Back(T) will use this link to request the tasks from V. As a
recorded action, T later inserts the tasks into its own pool and resumes task
processing.

After Tend, any next backup brings Back(T) up to date, making the saved
links superfluous. Notations XYreq and XYack in Figure 2 denote backups that
are part of the steal protocol. XY can stand for REG, STL or TO (explained lat-
er). XY-backups are marked by a flag and instruct Back(T) to delete all links
saved (other backups do not cause deletion). In particular, Back(T) sends a de-
lOpen message to V, which in turn deletes all tasks up to the tan provided.

Backup writing is permitted after Tend only. Outstanding Tends are main-
tained in a list, called openTends. There may be several, since T may receive
multiple give messages at a time. If a backup is scheduled when openTends is
non-empty, it is postponed until the next processRecorded() call.

A victim V processes one transaction at a time. Upon receipt of BTack, it de-
letes the thief from the transaction descriptor. When all thieves have acknowl-
edged, BVend is sent. At Back(V), the period between receiving STLreq and

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 937 Journal of Software Engineering and Applications

BVend is denoted as queasy. During this period, Back(V) does not know wheth-
er T and Back(T) have already adopted the tasks.

3.2. Restore after Single Failure

1) Restore Protocol: Figure 3 depicts our restore protocol. It is initiated by
Forth(P) after having detected P’s failure via isDead() or a deathNotice. Forth(P)
locates Back(P) as being the next place alive in the ring. When receiving restore,
Back(P) makes sure that the failed place P is its own Forth, and that the mes-
sage’s sender is Forth(P). Only then recovery is possible. Otherwise, the program
needs to abort since a gap in the ring indicates that two neighbored places went
lost. If recovery is possible, Back(P) inserts P’s saved tasks into its own pool, up-
dates the accumulated partial result, and temporarily invalidates Forth, as noted
in the figure. If necessary, Back(P) is re-activated.

Figure 3. Restore protocol, adapted from [3].

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 938 Journal of Software Engineering and Applications

Back(P) also takes care of the case that P was the victim and/or thief of ongo-
ing steals at the time of failure. For the victim case, it contacts all thieves of the
current transaction, to make sure they received the tasks. This is accomplished
with GOTcheck and GOTok messages. A thief receiving GOTcheck obeys the
following three cases, in which waiting is accomplished by postponing the action
to the next processRecorded call:

a) tan ∈ tanGOT ∧ tan ∉ openTends → Send GOTok
b) tan ∉ tanGOT → Wait a few seconds to compensate network delays. Then

abort the program for loss of two copies.
c) tan ∈ tanGOT ∧ tan ∈ openTends → Wait until openTends is empty, ex-

cept possibly for the affected tan (for which Tend is unlikely to arrive after V’s
death). Then send an XYreq (of type TOreq) to Back(T). Upon receipt of TOack,
openTends is reset and GOTok is sent.

For the thief case, Back(P) goes through saved links, and contacts the respec-
tive victims via linkResolve. They respond by sending a linkTasks message that
contains either tasks or null. The latter indicates that V has already taken back
the tasks itself, which may happen after a timeout of BTack (see Section 3.4).

When Back(P) has successfully checked/collected all of P’s former tasks and
updated its local pool correspondingly, it writes a taken-over backup, represented
by messages TOreq and TOack. Note that this backup type is used for different
purposes.

Then, Back(P) signals completion via RSTack. Upon receipt, Forth(P) installs
Back(P) as its new backup partner by sending an inauguration backup with
message IAreq. If Forth(P) was between ○V1 and ○V4 when the failure occurred,
the IA-backup also includes the (possibly updated) transaction descriptor, such
that the new backup place can resume queasy state. Furthermore, Forth(P) and
Back(P) update their respective Back and Forth variables. An IAreq must always
be the first backup on a new backup place.

Note that, as any backups, TOreq and IAreq may only be sent after any
previous backup has been acknowledged. TOreq may correspond to an XYreq in
Figure 2. IAreq may not, since any previously sent links went to the failed place.
Nevertheless, IAreq brings its backup partner up to date, making XYreq
superfluous. If Back(T) fails while T is between ○T2 and ○T3 , T sends replacement
messages for BTack and delOpen when reaching ○C3 .

2) Emergency mode: Any execution of the restore protocol is time-critical.
Therefore, only urgent and short messages are processed at Forth(P) and
Back(P) between ○c1 and ○R5 . In particular, processing of tasks pauses, and
non-urgent recorded messages are postponed. Immediate actions are always
performed.

In emergency mode, timeout control is only applied to messages that may be
relevant for restore. For these, timeout control is time-critical. While active
workers are constantly calling processRecorded() in this mode (since task
processing pauses), the normal monitoring of inactive workers is too infrequent.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 939 Journal of Software Engineering and Applications

Therefore, we run a long-term ghost between ○c1 and ○C2 . It is launched on
Forth(P), and carries out code

If Forth(P) is active, it starts a ghost on Back(P) the same way within proces-

sRecorded. This guarantees frequent timeout control on both Forth(P) and
Back(P). Unlike monitoring, the long-term ghost is not recursive.

3.3. Nested Restore

During the restore protocol, one of the involved workers may fail. Failure of a
former victim or thief has already been discussed in the previous section. Coin-
cident failures of both victim and thief lead to timeout onlinkTasks and are dis-
cussed in Section 3.4. In the following, we consider all cases in which Forth(P),
Back(P), or Back(Back(P)) fail.

An overview is given in Table 2, where row and column headings denote the
role that the same worker takes in the 1st and 2nd protocol, respectively. The in-
terior of the table indicates the failed place’s identity. For instance, the first entry
of the table refers to a place that has Forth(P) role in the first protocol. When the
1st protocol’s Back(P) fails, the place takes over the Forth role in the 2nd proto-
col, as well. For any given row/column, the identity of the failed place is unique.
Sign “+” marks cases in which recovery is possible, and “−” marks cases in which
it is not. For “(+)”, recovery may or may not be possible, depending on the par-
ticular timing.

In the following, notation X → Y means that a worker is performing role X in
the first restore protocol, and then receives a message that puts it into role Y in
the second. Forth is abbreviated by F, Back by B, and Back(Back) by BB.

Case B → B Since a place may only restore another if it holds the failed place’s
backup, the program needs to abort if message restore2 is processed before the

Table 2. Recovery after two failures: Rows/columns denote the same worker’s roles in the
two protocols. The interior indicates the second failed place’s identity. Abbreviations: +
recovery possible, − abort, (+) recoverability depends on timing.

 1. restore
2. restore

Forth Back Back(Back)

Forth (+), Back +, Forth(Forth) +, Forth(Forth(Forth))

Back +, Back(Back) −, Forth −, Forth(Forth)

Back(Back) +, Back(Back(Back)) (+), Back −, Forth

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 940 Journal of Software Engineering and Applications

arrival of IAreq1. Recovery is facilitated by the order in Table 1, If restore is re-
ceived first, the algorithm waits for a few seconds before aborting the program.

Case F → F This case is illustrated in Figure 4. Recovery is possible if and
only if restore(Back(P)) arrives after TOreq. Otherwise, Back(P)’s data are un-
secured. After the second failure, outstanding messages of the first protocol are
orphan.

Case F → B This case is not interesting if F receives restore after C2, and thus
after having sent IAreq. Here, the second protocol’s TOreq2 is just delayed until
the first protocol’s IAack1 arrives, as usual.

If F receives restore before RSTack, it instantly commences its B role, to utilize
the waiting time before ○C2 . However, our worker must not send TOreq2 before
IAack1. In fact, TOreq2 and IAreq1 are redundant. Therefore, the worker waits
until the second protocol has come to ○R3 , and the first protocol has come to ○C2 ,
and then sends a single (combined) IAreq. Upon receipt of IAack, it sends
RSTack2.

Case B → F If B is at or behind ○R4 when detecting the failure, the recovery
procedures are independent. If B is before ○R4 , it first attends to the second pro-
tocol, because it needs an inaugurated backup place before it can send TOreq.
There is no difference between states ○R3 and ○R4 , since TOreq went lost. Similar
to the previous case, TOreq1 and IAreq2 are combined. After IAack, the second
protocol is complete, whereas the first protocol is continued with sending
RSTack.

Case F → BB Here, F can receive the TO-backup independent from its par-
ticipation in the first protocol.

Case BB → F Similarly, the roles are independent.
Case B → BB This case coincides with case F → B on B’s predecessor. This

case can only occur after B’s inauguration.
Case BB → B Similarly, this case coincides with F → F. Recovery is possible if

and only if the TO-backup is written before receipt of restore. Again, the proba-
bility for encountering the two messages in this order is increased by the order
in Table 1, as well as by waiting for a few seconds if message restore arrives first.

Case BB → BB This case coincides with B → B and requires program abort.
More than two failures: From the above case-by-case analysis, BB involvement

is either independent or coincides with another case. Therefore, we concentrate

Figure 4. Recovery in F → F case.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 941 Journal of Software Engineering and Applications

on roles F and B. From case B → B, a worker cannot be in more than one B role.
From case F → F, it can be in more than one F role, but then the first role is es-
sentially finished when the second one is started with. Consequently, a place can
be in at most one B role and one active F role, such that the above consideration
of cases F → B and B → F is sufficient.

3.4. Specific Timeouts

Recall from Section 3.1 that each worker maintains an awaitedMsgs list. Timeout
control regularly runs through this list to check liveness of the respective
sources. When recognizing a failure, we speak of a timeout. Then, the place’s
Forth is informed by a deathNotice and the particular type of lost message is
dealt with. This section handles the type-specific treatment of lost messages. Re-
call that timeout control covers the message types marked in the last column of
Table 1.

Timeout of RSTack corresponds to case F → F. Here, Forth determines the
next place alive in the ring and sends restore. Similarly, timeout of IAack in-
itiates the next restore protocol.

If timeout of GOTok or linkTasks reveals a failure, the program must be ab-
orted for loss of two copies. The same holds for timeout of IAreq.

In some cases, the causer of a timeout may be different from the source of an
outstanding message. In Figure 2, for instance, timeout of BVend may be due to
a failure of Back(T), despite liveness of V. The typical approach in these cases is
non-transitive, i.e., each worker only checks the source of its own outstanding
messages. In the example, message BTack will be controlled by V.

An interesting exception is timeout of BTack. The message is expected from
Back(T), but V contacts T. The exception is made for the reason that Back(T)
does not wait for the victimLink message. If T is alive, BTack is kept in awai-
tedMsgs, since the timeout may be due to a network delay. If Back(T) is dead,
that will be detected by T later on. In this case, T sends a replacement for BTack,
as noted in Section 3.2.

If timeout of BTack reveals failure of T, V takes back the tasks from Open(T),
and re-inserts them into its own pool. Moreover, V removes T from the transac-
tion descriptor. Thereafter, V informs Back(V) by sending a new backup, for
which it overloads message types TOreq and TOack again.

It may happen that T failed, but Open(T) does not contain the tasks. In this
case, linkResolve must have overtaken BTack, and no further action is needed.

Timeout control for noTasks and give coincides. Timeout requires no further
action beyond sending a deathNotice and contacting the next victim. At this
point, defects of the lifeline graph can be tackled as well, as described in [10].

At timeout of Tend, T writes the next backup as soon as possible, i.e., when
openTends has become empty except for the lost message. Again, a TO-backup
is used for this purpose. After receipt of TOack, the missing Tend is removed
from openTends.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 942 Journal of Software Engineering and Applications

At timeout of BVend, Back(V) sends a deathNotice, but takes no further ac-
tion until receipt of restore.

3.5. Variants of Algorithm

In addition to the algorithm described, we considered two variants:
1) Forward-and-collect: This variant is inspired by a modification of coopera-

tive work stealing, which was introduced by Prell [11]. Recall rejects of unsuc-
cessful steal attempts are normally returned to the thief, who in turn contacts the
next random victim. The forwarding variant from [11] replaces these two mes-
sages by a single one to reduce communication costs. For that, the first victim
selects a second random victim, and sends the steal request along on behalf of
the original thief. If the second victim has no work either, it forwards the request
again, and so on. When work is discovered, it is sent back to the original thief
only.

We modified the scheme and call our variant forward-and-collect. Here, a
forwarded request includes the identities of the original thief, and of all victims
encountered along the way. Note that these victims are normally out of tasks.

To state it in more detail, the original thief selects w random victims, and then
sends its own id, a steal id and the list of selected victims to the first victim. We
call this message type forward. It is covered by timeout control. Receipt of for-
ward is similar to receipt of trySteal, but the request is always recorded. The vic-
tim can respond in three ways:
• Case 1: The victim has no work to share and there are victims left in the list.

In this case, the message is forwarded to the next victim and a corresponding
forwardedTo message is sent to the original thief. Moreover, the victim adds
itself as thief. Added thieves are denoted as fellows.

• Case 2: The victim has no work to share and there are no victims left in the
list. This case corresponds to w failed random steals in the original GLB. The
victim sends a noTasks message to the original thief. Fellows are not in-
formed, since they have another open steal request of their own.

• Case 3: The victim has work to share. The victim opens a transaction for all
thieves on the list (subject to the availability of enough work).

The forwardedTo messages inform the thief about the identity of the current
victim. They are used for timeout control. When a thief receives a noTasks mes-
sage, it starts stealing from lifeline buddies as usual.

Forward-and-collect fits well with the lifeline scheme, since the scheme can
naturally handle simultaneous give’s. Forward-and-collect offers the advantage
of an increased transaction size, which may increase our fault tolerance scheme’s
efficiency.

2) Ahead-of-time stealing: In this variant, a worker initiates a steal attempt
before it runs out of tasks, i.e., when its pool size has fallen under some thre-
shold [11]. The scheme can improve the efficiency of work stealing, since it re-
duces idle times.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 943 Journal of Software Engineering and Applications

4. Correctness and Robustness
4.1. Correctness

Recall that correctness requires the program to either output the correct result or
halt with an error message. Correctness follows from observations 1 to 3:

Observation 1: If the program yields a result, exactly one result per task
has been included in the reduction. Outside of stealing, a backup partner takes
over both the failed worker’s tasks and the corresponding accumulated partial
result at the time of backup writing. Thus, even though a task may be executed
twice, its result is included only once.

The steal protocol ensures that, after a failure, open tasks (including their
copies) are consistently adopted by either the thief or the victim sides:
• If Back(T) fails, the restore protocol involves an IA-backup from T to a new

Back(T). The backup includes all tasks for which links have been sent before.
The victim side is not involved in the restore, and so the tasks are consistent-
ly adopted by the thief side.

• Similarly, if Back(V) fails, V inaugurates a successor. The IA-backup includes
information about the ongoing transaction, and puts the new Back(V) into
queasy state. Since T is not involved, the tasks are consistently adopted by the
victim side.

• If both T and Back(T), or both V and Back(V) fail, the program aborts for
loss of a place and its backup partner. This is taken care of by the restore
protocol.

• If V fails before ○V1 , T is informed by a timeout, but the tasks have never
moved away from V.

• If V fails between ○V1 and ○V4 , Back(V) is in queasy state and sends
GOTcheck messages. From the three cases in Section 3.2, they are answered
by GOTok only when it is clear that both T and Back(T) have adopted the
copies. Note that this includes cases in which Back(T) is replaced due to
failure.

• If T fails before ○T2 , V is notified by a timeout of BTack and takes over the
tasks. The subsequent TOreq brings Back(V) up to date. Since T failed before
○T2 , Back(T) did not yet receive any links. Therefore, the tasks are consistently
seen at V.

• If T fails between ○T2 and ○T3 , V is again notified by a timeout of BTack.
Independently, Back(T) discovers the failure and sends linkResolve. This
gives rise to a race condition, in which either Back(T) or V adopts the tasks.
In either case, the tasks are removed from Open(T) during adoption, and
therefore cannot be adopted twice. If the tasks are adopted by V, the
argumentation is the same as in the previous case (Back(T) receives null). If
the tasks are adopted by Back(T), Back(V) need not be informed as it already
sees the tasks at the thief side.

• After ○V4 , the tasks are consistently seen at the thief side.
Observation 2: Provided that number and duration of tasks are finite, the

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 944 Journal of Software Engineering and Applications

program terminates. Termination detection is primarily provided by Resilient
X10, as our program starts all activities within the scope of a single finish. The
number of steal attempts is finite, since a worker becomes inactive after w z+
attempts. It is re-activated only when it receives tasks, and then it processes at
least one task itself. Moreover, the duration of each steal attempt is finite, since it
is eventually limited by the ultimate timeout scheme. Consequently, completion
of tasks implies a worker activity’s termination, and Resilient X10 detects when
all activities have either terminated or failed.

In our scheme, a task is executed at most 1r + times, where r denotes the
number of failures. Thus, the overall time for task processing is finite. Workers
are constantly processing tasks (if available), except in emergency mode and in-
active state. Emergency mode is left from Observation 3, and inactive state is
handled by the lifeline scheme. Even if unfavorably coincided failures cut off a
subgraph of the lifeline graph, the two subgraphs do not share work anymore,
but still each task is computed by one of the subgraphs. So this case can lead to
slowdown, but does not compromise the correctness.

Deadlock is impossible, since the code of all messages is wait-free, i.e., it fi-
nishes after a bounded time. Livelocks are precluded by the ultimate-timeout
scheme discussed in Section 4.2.

Observation 3: After failures, the program is guaranteed to return to
normal operation. In particular, the following observations hold.

3a) All failures are detected. This is guaranteed by regular isDead() calls and
monitoring.

3b) The ring structure is repaired. Since Back(P) checks both its own and the
failed place’s Forth variables (see Sect. 3.2), acceptance of restore guarantees that
there are no gaps left in the ring. This issue has been discussed in more depth in
[3], where it was called log.

3c) Ongoing protocols are aborted such that participants either return to a
consistent state or the program halts. This statement has been verified with an
informal, but systematic analysis. We considered all possible states and message
types, and made sure they are handled appropriately.

The following discussion includes interesting cases only. Many other cases are
obvious, since the respective message belongs to an ongoing protocol, or can be
easily seen to be orphan. An example for an orphan message is state ○C1 with
message IAack. This indicates case F → F. From Figure 4, the message must
have come from Back(P), which meanwhile failed. Discarding the message is
therefore appropriate.

Other message receipts are impossible. For instance, an IAack cannot be re-
ceived in state ○T2 , since IAreq may not be sent when openTends is non-empty.

An interesting case for a message receipt in a certain state is a give message
that arrives after its timeout. Here, Back(V) must be in queasy state. The mes-
sage can be accepted as usual, and a successive GOTcheck may later be answered
by GOTok.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 945 Journal of Software Engineering and Applications

Another interesting case is state ○C1 with message IAreq. Candidate situations
in which that may happen are cases F → B and B → F. From the explanation in
Section 3.3, case F → B is not possible, since F cannot have sent RSTack while in
state ○C1 , and thus its predecessor cannot have sent IAreq. In case B → F, the
second failure cannot have been detected before ○R4 , since the F-role protocol
would have been carried out until ○C2 before sending the (combined) IAreq.
This contradicts our place being in state ○C1 . Consequently, the situation can
only occur in case B → F when the second failure is detected after ○R4 .
Consequently, the protocols are independent, and IAreq can be handled as
usual.

Abort of the steal protocol has already been discussed in Observation 1. The
restore protocol obviously returns to a consistent state in the single-failure case:
Former Back(P) becomes Forth(P)’s Back and vice versa, such that the gap is
bridged. Tasks are adopted by Back(P), and all involved workers get a consistent
view of the new state by the backups.

The tanGOT array contains only the largest tan from each victim. This is
sufficient since V processes one transaction at a time. Any larger tan in tanGOT
indicates that the previous transactions have been successfully completed as well.
Therefore, it is no problem if Back(V) sends GOTcheck when T is already in
state ○T3 .

The occurrence of a second failure during a restore protocol’s execution has
already been handled in Sect. 3.2. For instance, the first line of Table 2 covers all
possibilities for the second failure, when complemented with the observation
that a failure of Forth causes program abort.

3d) The program is free from leakage. Orphan messages are discarded, as
discussed before. Both the tanGOT array and the awaitedMsgs list have finite
size. The Open list may not overflow, since any delOpen message deletes all tan’s
up to the one provided as a parameter. This scheme cannot cause premature
deletion since V processes one transaction at a time, and the links must be
received in the same order. A transaction may not contain the same thief twice,
as is taken care of by V.

4.2. Robustness and Efficiency

Recall that robustness denotes the program’s ability to usually output the correct
result despite one or several, possibly coincident, failures. Thus, cases in which
the program halts with an error message are rare.

Robustness has principle limitations. First, in the current X10 version, only
resilience mode 1 can be selected, which halts the program after a failure of
place 0.

Second, our fault-tolerant algorithm has a limited redundancy of one copy per
task descriptor. While the particular value of one is rather arbitrary, any
resilience scheme must restrict the redundancy level in some way, to trade off
backup overhead against recovery chances. A higher value than one would

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 946 Journal of Software Engineering and Applications

increase robustness, but any value will leave cases in which the program aborts.
In our case, if both original and copy go lost quasi-simultaneously, recovery is

fundamentally impossible. For uniform protection, the algorithm keeps exactly
one copy per task descriptor. Between ○T2 and ○T5 , these copies are spread over
different victim places. Therefore, the probability of data loss is somewhat higher
than that of a quasi-simultaneous failure of a place and its backup partner. The
difference is, however, small, since the spread copies are collected regularly.

If either original or copy of each relevant task descriptor is intact, our
algorithm is normally able to recover. A few rare exceptions are due to unusually
long network delays. These cases are practically excluded since the program
waits for a few seconds before abort.

Moreover, the algorithm leaves one loophole for livelocks: Occasionally,
recorded actions are postponed from one processRecorded() call to the next, to
first wait for a certain message. This may give rise to a group of workers who
cyclically wait for each other’s message. Such cycles may involve additional
workers who do not postpone actions, but carry out a protocol whose progress
depends on the arrival of the next message. A particularly vulnerable protocol
state is ○R2 , since further progress depends on multiple outstanding messages.
Table 3 lists all cases in which actions are postponed. It also includes some
vulnerable states, to facilitate further discussion.

An example of a livelock cycle is the following: In the restore protocol, worker
Back(P) sends GOTcheck and thus waits in state ○R2 . The inquired thief finds the
tan in tanGOT and also in openTends. According to case 3 from Section 3.2, it
waits until openTends is almost empty, and then needs to send an XYreq. If

Table 3. Situations in which actions are postponed to next process recorded.

Case State
Postponed action/Message/event being

waited for

1 queasy processing STLreq, REGreq BVend

2 any send backup
previous backup
acknowledged

3 ○T2 send victimLink
outstanding IAack,

XYack

4 any send backup openTends empty

5 em send GOTok corresponding Tend

6 several abort a few seconds

7 em several recorded actions (see Table 1) emergency mode left

8 ○R2 send TOreq
all GOTok, linkTasks

(plus cases 1, 3)

9 ○C1 send IAreq RSTack

10 ○V1 - ○V4 send STLreq or REGreq all BTack

11
timeout
BTack

send BVend TOack

12 pool empty trySteal Tend

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 947 Journal of Software Engineering and Applications

accidentally Back(T) has failed as well, a new Back(T) must first be inaugurated.
The corresponding restore protocol may, symmetrically to the first one, hang in
○R2 , such that none of the involved workers makes progress.

Possibly, cycles like that could be eliminated at the price of further increasing
the algorithm’s complexity. We took a different approach and built into the al-
gorithm an ultimate timeout scheme. The scheme is an extension of timeout
control and has already been mentioned in Section 3.1. If a message is being
waited for since a long time, ultimate timeout aborts the program. Like normal
timeout, ultimate timeout refers to wallclock time. The value should be chosen
large enough to account for unusually long network delays, which may, e.g., be
due to temporary network congestion from other jobs. Feedback about the cur-
rent load, if available, could be used to adjust the value. We never observed ulti-
mate timeout in our experiments.

We rely on ultimate timeout for several practical reasons. First, eliminating
livelocks, if possible, would be difficult and error-prone. Second, even if the al-
gorithm was livelock-free, any programming error (or network fault) may still
stall the program, and then ultimate timeout can help. Finally, we expect that the
likelihood of a program abort due to livelock is much lower than that of loosing
an original and its copy.

To consolidate this conjecture, consider Table 3, which includes all cases in
which actions are postponed.

The following discussion assumes that the awaited message is not subject to
timeout. Similarly, for outstanding backup acknowledgements, the case that
Back fails is ignored. In these cases, the restore protocol takes appropriate action
such that the respective situation is left. In case 4, if a Tend is affected by time-
out, the backup is sent despite openTends holding the problematic message.
Only if the restore protocol’s execution leads to a new vulnerable state, a livelock
may occur. From the discussion of specific timeouts in Section 3.4, this is rarely
the case.

Case 1 of the table can only occur if V has sent BVend before the backup re-
quest, and the messages have just overtaken. Thus, from our assumption of a re-
liable network, BVend will eventually arrive. Cases 2 and 3 cannot cause the
program to hang, since backup writing is never postponed (except for case 1,
where the delay is finite) and thus the awaited message will be delivered for sure.
Similarly in case 4, both victimLink and BTack are always processed immediate-
ly, and thus Tend is guaranteed to be sent. For the same reason, situation 5 is
left. Case 6 embraces several situations in which a problem would actually re-
quire program abort, but it may be caused by a network delay. For instance,
GOTcheck may be received before the corresponding tasks, or restore(P) may be
received before P’s backup. Since waiting for a few seconds does no harm to the
program’s progress, case 6 may not lead to livelock.

In case 7, none of the postponed messages may stall recovery, as can be
verified with Table 1 and Table 3. Leaving situation 8 is implied by the previous

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 948 Journal of Software Engineering and Applications

discussion of cases 2, 3 and 4 and the observation that linkResolve is processed
immediately. In consequence, the restore protocol cannot stick in state ○R2 .
Therefore, RSTack is guaranteed to be sent, which beats case 9. Note that the
same arguments apply to combined IAreq/TOreq messages in the B → F and
F → B cases. In consequence, emergency mode is guaranteed to be left, and thus
the delays from case 5 are finite. This observation applies in particular to give,
resolving case 10. In case 11, the TO-backup will succeed since Back(V) is either
alive, or will be replaced by a new Back(V). Execution of the corresponding
restore protocol is not hindered by the delay of BVend. Finally, case 12 may
occur if the tasks just received by give have been consumed before the
corresponding Tend arrives. The case cannot stall the program, since the steal
protocol is guaranteed to progress outside of failures.

From the above discussion, compromises to robustness are chiefly due to
coincident failures. We have designed the algorithm so as to minimize them. In
particular, we keep the recovery period short, by switching to emergency mode
and by using an efficient restore protocol. If coincident failures occur, nested
executions of the restore protocol may still permit recovery.

Regular isDead() calls guarantee that all failures are recognized. Closer
meshed monitoring could further reduce the probability of quasi-simultaneous
failures at the price of a higher performance overhead. Regarding efficiency,
place failures slow down a program for three reasons:

1) decreased number of computational resources
2) recovery overhead, and
3) defects of the lifeline graph.
Issue 1 cannot be avoided. Unlike other computations, task pools have the

advantage of being naturally malleable. After a failure, Back takes over the tasks,
but the burden for re-execution is automatically balanced among workers by
stealing. We addressed issue 2 with an efficient design of our restore protocol.
For instance, all linkResolve and GOTcheck messages are issued at the same
time. Local actions such as checking Forth are performed afterwards, while
waiting for the outstanding answers. Issue 3 arises since failures reduce the
number of lifeline buddies that may re-activate a worker. Thus, the worker tends
to remain inactive for a longer period of time, in which it does not contribute to
task processing. This effect can be eliminated by restructuring the lifeline graph,
as discussed in [12]. Lifeline graph degeneration is problematic only when mul-
tiple, or even all, lifeline buddies of a worker are affected. From our assumption
of only few failures, we expect the performance impact of issue 3 to be low, and
therefore have not taken any further provision. Similar to issue 3, our algorithm
may send steal requests to dead victims. Again, we did not try to eliminate that,
from our assumption of only few failures.

Experimental data in Section 5 show our algorithm’s efficiency during fail-
ure-free operation. Efficiency has been obtained with different algorithmic ideas.
Foremost, we strive to send as few messages as possible, and to keep their vo-

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 949 Journal of Software Engineering and Applications

lume low. We focused on communication since it is expensive in PGAS systems.
The steal protocol’s concept of maintaining links instead of sending more back-
ups to Back(T) reduces the communication volume, and requires less hand-
shaking. Similarly, our transaction scheme reduces steal overhead, since it re-
quires less steal backups and reduces handshaking. The consistent use of asyn-
chronous communication often allows to continue task processing while waiting
for the next message of an ongoing protocol. Finally, we took care for imple-
mentation details. For instance, we avoid copying unnecessary data in place
changes, and perform local actions in an appropriate order.

5. Experiments

Experiments were conducted on an Infiniband-connected cluster with 16 nodes.
Each node has two Intel Xeon E5-2680 v3 Processors as well as 64 GB of main
memory. Hyperthreading was disabled. We started up to 16 places per physical
node. More specifically, experiments with up to 16 places used one node, expe-
riments with 17 to 32 places used two nodes etc. Places were mapped cyclically
to nodes, to avoid quasi-simultaneous failures of a place and its Back. X10 does
not optimize data access between places on the same node, such that communi-
cation costs are almost identical inside and across the nodes.

As benchmarks, we used Unbalanced Tree Search (UTS) [13] and Between-
ness Centrality (BC) [14]. Both are part of the X10 distribution, and utilize the
GLB framework. UTS counts the number of nodes in a highly irregular tree, and
BC calculates a centrality score for each node in a graph. The benchmark ver-
sions used in this paper differ from less-efficient ones used in [5] insofar as they
store open tasks in a compact format. BC includes long-running tasks. To allow
their interruption by Runtime.probe(), we slightly modified the original bench-
mark, as described in [3]. The modification is necessary to store the result of
partially finished tasks separately from the overall result. Thus it is not included
in backups, as long as the task is not finished. Both benchmarks insert given
tasks at the bottom of the local pool. Regarding GLB usage, the main differences
between UTS and BC are:
• BC distributes the initial work load statically, such that each worker starts

with about the same number of tasks. UTS, in contrast, maps a single initial
task to one worker, and relies on work stealing to distribute the load.

• The result of UTS is a single long value, whereas the result of BC is a
long-array of size N, where N is the number of nodes in the graph.

All programs were compiled and executed with X10 2.6, gcc 4.9.4 and
MPI-ULFM version 1.7.

Table 4 gives an overview of the parameters used to configure the benchmarks
and the GLB frameworks. GLB denotes the original GLB framework from the
X10 library, and FTGLB denotes our fault-tolerant extension from Section 3. As
further explained in [13], UTS uses geometric tree shape with tree depth d,
branching factor b, and a random seed r. For BC, N denotes the number of

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 950 Journal of Software Engineering and Applications

Table 4. Parameter settings.

Benchmark Benchmark parameters Framework Framework parameters

UTS d = 16, b =4, r =19
GLB n = 511

FTGLB n = 511, k = 2048

BC
N = 216, a = 0.55, b = 0.1,

c = 0.1, d = 0.25 s = 2

GLB n = 511

FTGLB n = 511, k = 32,768

graph nodes, parameters a, b, c, d determine the graph shape, and s is a random
seed [14]. GLB-parameter n was set to its default-value of 511. The value of k
(which determines the interval for regular backups) was set to 2048 in UTS and
to 32768 in BC. The choice of k will be discussed below.

Prior to the actual experiments, we determined appropriate values for the
GLB-parameters w (number of random steals) and z (number of lifeline buddies
per worker) by exploring the parameter space for w and z for different number
of places. We found that () ()1 10 number of placesw = ⋅ and

()number of placesz  =   yield the best performance. Such experiments
should be conducted prior to any GLB usage, and do not privilege our
fault-tolerant extension.

Next, we measured performance with these values on 1 to 256 places. Figure 5
depicts the overhead of FTGLB’s execution time over that of GLB, calculated by

FTGLB GLBtime time 1− . The overhead for UTS is depicted in Figure 5(a). It
ranges from 0.5% to 10% on up to 64 places, and is about 30% on 128 and 256
places. The increased overhead on 128 and 256 places can be attributed to a high
steal rate. On 64 places, about 33% of all backups written were found to be steal
backups, on 256 places it was about 70%. This mirrors our result from [14],
where steal backups were always dominating regular backups. We will discuss a
possible solution for this problem further below.

Figure 5(b) shows the overhead of BC. It ranges from 8% to 18%. The BC
curve is more even than the UTS curve. We expect this to be due to static
initialization, which eliminates the initial stealing phase.

Similar to w and z, the value of k should to be determined experimentally. The
value 32768k = corresponds to writing approximately one backup per second.
An inappropriate value of k may cause significant overhead, as illustrated with
the 2048k = case in Figure 5(c). Experiments with 2048k = and a larger
number of places were not conducted due to the bad performance on up to 8
places.

In a next group of experiments, we analyzed the performance with a logging
component. The generated phase diagrams for a run on 64 places (4 nodes) are
depicted in Figure 6. In these diagrams, the horizontal axis represents
processing time. For any time value, the height of the red bar indicates the per-
centage of places whose worker is processing tasks at this time. Analogously, the
yellow bar represents the percentage of places whose worker is active but does

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 951 Journal of Software Engineering and Applications

Figure 5. Performance overhead of (a) UTS, (b) BC with 32768k = and (c) BC with 2048k = in FTGLB compared to GLB.

not process tasks. In particular, the place may be inside the Runtime.probe() call,
run incoming activities such as trySteal or give, or perform the split(), merge()
and processRecorded() functions. Note that even if a Worker has no incoming
messages, some portion of time is attributed to the yellow bar. In FTGLB, the
yellow bar additionally comprises sending and receiving backups, calling is-
Dead(), and checking timeouts. We decided to call this phase “Communicating”,
since most of these activities are related to communication. Times spent waiting
for a victim’s answer to a steal requests are depicted in blue. Note that part of the
time spent waiting is used for communication and therefore attributed to the
yellow bar. Idling times in inactive state are depicted in green.

For the BC runs in Figure 6(a) and Figure 6(b), it is noticeable that FTGLB
has a longer finish phase than GLB, i.e., termination detection is less efficient.
This can be explained by the fact that FTGLB (Figure 6(b)) has to write one
backup per steal, and by the large backup volume in BC. Towards the end of the
calculation, more workers run out of work and begin to steal, resulting in a large
number of steal backups. GLB took 9.99 s to execute, whereas FTGLB took 11.24
s. This makes for an overhead of about 12.5%.

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 952 Journal of Software Engineering and Applications

Figure 6. Phase diagrams for the BC benchmark with GLB and FTGLB ((a) and (b) respectively), as well as for the UTS bench-
mark with GLB and FTGLB ((c) and (d) respectively).

For UTS, the plots in Figure 6(c) and Figure 6(d) are similar. Execution time

was 17.29 s for GLB and 19.04 s for FTGLB, which corresponds to an overhead
of about 10.12%. In UTS, the result is a single long value, such that the backup
volume is smaller. It can be observed that FTGLB spends more time on commu-
nication. Steal backups account for most of the communication overhead. Thus,
reducing this communication by switching to another fault tolerance scheme
during steal-intensive time periods can reduce the overall overhead.

A closer look at the starting phases of FTGLB for both UTS and BC executions
(Figure 6(b) and Figure 6(d)) reveals that all places are either idling or com-
municating. The latter denotes the time spent to write the initial backup. Like
result reduction, this time does not count to the program’s execution time.

It is noticeable that both BC-executions show a phase towards the end of the
execution where all places are idle. This phase is actually present in all four ex-
ecutions (BC and UTS), but much more prominent in BC. This represents result
reduction. For BC, a long-array of length N must be collected, as compared to a
single long-value for UTS. The time needed for result reduction is not part of the

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 953 Journal of Software Engineering and Applications

overall computation time. For both BC executions, result reduction took about
0.3 s, whereas result reduction took about 0.04 s for the two UTS executions.

In a last group of experiments, we measured performance for the variants
presented in Section 3.5. For forward-and-collect, the execution time was almost
the same as that of FTGLB. Ahead-of-time-stealing had bad performance when
the threshold was set to a large value. This was especially problematic for the
UTS benchmark since the local pool sizes are typically small. Therefore, the pa-
rameter had to be set to a small value. With the optimum threshold value, the
performance was about the same as that of FTGLB.

Summarizing experimental results, the overhead of FTGLB vs. GLB varies
between 0.5% and 30%. The value increases with an application’s steal rate and
backup volume.

6. Related Work

In recent years, fault tolerance received much attention [15] [16] [17]. Research
addresses both permanent failures and silent errors [18] [19].

A common fault tolerance technique is system-level checkpoint/restart. It reg-
ularly saves checkpoints, typically on disc, and upon failure resets to the last va-
lid checkpoint. Checkpoint/restart can be combined with message logging [20].
Current research investigates improvements such as multi-level schemes [21].
Compared to our approach, checkpoint/restart has a different cost structure:
Writing a single checkpoint is expensive, and the checkpointing frequency must
rise with the system size to account for an increased failure rate. In our ap-
proach, backup writing is comparatively cheap, and the checkpointing frequency
depends on the steal rate.

Other research considers application-level approaches. Application-level
checkpointing reduces the size of the state that needs to be saved [22] [23]. Ap-
plication-specific techniques include the exploitation of redundancy in matrix
computations, which is often denoted as algorithm-based fault tolerance (ABFT)
[24]. Application-specific approaches require a failure notification mechanism in
the underlying programming system, as it is available in an increasing number
of systems [6] [25] [26]. In some applications such as Monte Carlo algorithms,
failures can be ignored [25]. Ali et al. [27] use redundant communication to
continuously update shadow data structures. Other user-level approaches target
arrays [28] as well as the MapReduce [29] and hierarchical master/worker pat-
terns [30]. Task scheduling in grids and clouds differs from our work in coars-
er-grained tasks and centralization (e.g. [31] [32]).

Previous work on resilient task pools considered recovery from silent errors
[33], and coping with side effects [34]. Closest to our work is fault-tolerance for
divide-and-conquer algorithms and nested fork-join programs [35] [36] [37].
This research direction considers a different task model, in which each child task
returns a result to its parent. The parent outlives the child and can therefore
function as a kind of supervisor. In particular, the parent re-spawns tasks after a

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 954 Journal of Software Engineering and Applications

child’s failure. Kestor et al. [37] introduce a particularly efficient realization of
this approach, which avoids re-computing grandchildren on live nodes when the
child failed. Like ours, their approach can cope with multiple permanent place
failures in a PGAS setting. Unlike ours, their scheme accumulates large amounts
of computed information in a single location (roots of computation subtrees),
whereas our scheme steadily maintains a copy of each valuable piece of informa-
tion. Thus, the scheme from [37] needs to be combined with checkpointing,
whereas our scheme can be used independently. Moreover, the scheme from
[37] requires global failure notification, whereas our scheme gets along with lo-
cal notification.

In [4], we considered a modification of our algorithm’s previous version from
[3]. The modification may further reduce the backup volume for the case that
local pools are organized as stacks. In [12], we considered an extension that
supports both fault tolerance and the dynamic addition of places. The resilient
A* algorithm in [38] shares some similarity with our algorithm, but in a simpler
setting.

Application-level fault tolerance schemes can make use of system-level facili-
ties for resilient storage such as X10’s Resilient Store [39] or Hazelcast’s IMap
[40]. Such facilities simplify the implementation of fault-tolerance [41], but do
not support integration with the application. In particular, our approach of sav-
ing links at Back(T) requires a custom fault tolerance scheme.

7. Conclusions

This paper has introduced a fault-tolerant extension of lifeline-based global load
balancing, which is able to recover from one or several permanent place failures.
We combined several algorithmic ideas to achieve both robustness and efficien-
cy. Among them are a transaction scheme for stealing, emergency mode, time-
out control, and nested execution of restore protocols.

Correctness was discussed theoretically, and confirmed by experimental tests.
In performance measurements, we observed an overhead between 0.5% and
30%. The particular value is application-dependent and increases with the steal
rate and the backup volume. Consequently, the overhead can be reduced by
switching to another resilience scheme in steal-intensive times. If recovery from
a failure is not possible, the algorithm halts with an error message. Such cases are
rare, as has been discussed in the paper.

The presented algorithm is tied to the lifeline scheme. Nevertheless, we expect
its main ideas to be applicable to more task pool variants. In particular, the algo-
rithm does not seem to exploit the lifeline scheme’s pattern of victim selection.
Possibly, some of our ideas are also useful for other task models and non-cooperative
work stealing. Similarly, silent errors are an important topic, and possibly our
algorithm can be combined with replication techniques to handle both types of
failures.

Our performance analysis can be further strengthened by including more

https://doi.org/10.4236/jsea.2017.1013053

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 955 Journal of Software Engineering and Applications

benchmarks and attributing cost savings to different algorithmic ideas. Moreo-
ver, a formal verification would be desirable. Formal methods might especially
help to find all cases of livelock.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft, under grant
FO 1035/5-1. Experiments were conducted on the Lichtenberg high performance
computer of the TU Darmstadt.

References
[1] Zhang, W., Tardieu, O., Herta, B., et al. (2014) GLB: Lifeline-Based Global Load

Balancing library in X10. Proceedings of the 1st Workshop on Parallel Program-
ming for Analytics Applications, Orlando, FL, 16 February 2014, 31-40.
https://doi.org/10.1145/2567634.2567639

[2] Guo, Y., Barik, R., Raman, R. and Sarkar, V. (2009) Work-First and Help-First
Scheduling Policies for Async-Finish Task Parallelism. International Parallel and
Distributed Processing Symposium (IPDPS), Rome, 25-29 May 2009, 1-12.

[3] Fohry, C., Bungart, M. and Posner, J. (2015) Fault Tolerance Schemes for Global
Load Balancing in X10. Scalable Computing: Practice and Experience, 16, 169-185.

[4] Fohry, C., Bungart, M. and Posner, J. (2015) Towards an Efficient Fault-Tolerance
Scheme for GLB. Proceedings of the ACM SIGPLAN Workshop on X10, Portland,
OR, 14 June 2015, 27-32. https://doi.org/10.1145/2771774.2771779

[5] Fohry, C. and Bungart, M. (2016) A Robust Fault Tolerance Scheme for Lifeline
Based Taskpools. Proceedings of the International Conference on Parallel Processing
Workshops (P2S2), Philadelphia, 16-19 August 2016, 200-209.

[6] Bland, W. (2012) User Level Failure Mitigation in MPI. Proceedings of Euro-Par,
Springer LNCS 7640, Rhodes Island, 27-31 August 2012, 499-504.

[7] Saraswat, V., Almasi, G., Bikshandi, G., et al. (2010) The Asynchronous Partitioned
Global Address Space Model. Proceedings of ACM SIGPLAN Workshop on Ad-
vances in Message Passing, Toronto, 5-10 June 2010, 1-8.

[8] Hamouda, S.S., Herta, B., Milthorpe, J., Grove, D. and Tardieu, O. (2016) Resilient
X10 over MPI User Level Failure Mitigation. Proceedings of the 6th ACM
SIGPLAN Workshop on X10, Santa Barbara, CA, 14 June 2016, 19-23.
https://doi.org/10.1145/2931028.2931030

[9] Saraswat, V., Kambadur, P., Kodali, S., et al. (2011) Lifeline-Based Global Load Ba-
lancing. Proceedings of the 16th ACM Symposium on Principles and Practice of
Parallel Programming, San Antonio, TX, 12-16 February 2011, 201-212.
https://doi.org/10.1145/1941553.1941582

[10] Agha, G.A. and Kim, W. (1999) Actors: A Unifying Model for Parallel and Distri-
buted Computing. Journal of Systems Architecture, 45, 1263-1277.
https://doi.org/10.1016/S1383-7621(98)00067-8

[11] Prell, A. (2016) Embracing Explicit Communication in Work-Stealing Runtime
Systems. Ph.D. Thesis, Universität Bayreuth, Bayreuth.

[12] Bungart, M. and Fohry, C. (2017) A Malleable and Fault-Tolerant Task Pool
Framework for X10. 2017 IEEE International Conference on Cluster Computing,
Honolulu, HI, 5-8 September 2017.
https://doi.org/10.1109/CLUSTER.2017.27

https://doi.org/10.4236/jsea.2017.1013053
https://doi.org/10.1145/2567634.2567639
https://doi.org/10.1145/2771774.2771779
https://doi.org/10.1145/2931028.2931030
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1016/S1383-7621(98)00067-8
https://doi.org/10.1109/CLUSTER.2017.27

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 956 Journal of Software Engineering and Applications

[13] Olivier, S., Huan, J., Liu, J., et al. (2006) UTS: An Unbalanced Tree Search Bench-
mark. Proceedings of Workshop on Languages and Compilers for High Perfor-
mance Computing, Springer LNCS 4382, New Orleans, 14-21 July 2006, 235-250.

[14] HPCS Scalable Synthetic Compact Applications #2: Graph Analysis.
http://www.graphanalysis.org/benchmark/HPCS-SSCA2_Graph-Theory_v2.0.pdf

[15] Snir, M., Wisniewski, R.W., Abraham, J.A., et al. (2014) Addressing Failures in Ex-
ascale Computing. International Journal of High Performance Computing Applica-
tions, 28, 129-173.

[16] Herault, T. and Robert Y. (2015) Fault-Tolerance Techniques for High-Performance
Computing. Springer, Berlin. https://doi.org/10.1007/978-3-319-20943-2

[17] Hukerikar, S. and Engelmann, C. (2017) Resilience Design Patterns: A Structured
Approach to Resilience at Extreme Scale. Supercomputing Frontiers and Innova-
tions, 4, 1-38.

[18] Ni, X., Meneses, E., Jain, N. and Kale, L.V. (2013) ACR: Automatic Check-
point/Restart for Soft and Hard Error Protection. Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
Denver, CO, 17-21 November 2013, Article No. 7.
https://doi.org/10.1145/2503210.2503266

[19] Benoit, A., Cavelan, A., Cappello, F., Raghavan, P., Robert, Y. and Sun, H. (2017)
Identifying the Right Replication Level to Detect and Correct Silent Errors at Scale.
Proceedings of the 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS@HPDC 2017), Washington DC, 26 June 2017, 31-38.
https://doi.org/10.1145/3086157.3086162

[20] Meneses, E. (2013) Scalable Message-Logging Techniques for Effective Fault Toler-
ance in HPC Applications. Ph.D. Thesis, University of Illinois at Urbana-Champaign,
Champaign, IL.

[21] Benoit, A., Cavelan, A., Fèvre, V.L., Robert, Y. and Sun, H. (2017) Towards Optimal
Multi-Level Checkpointing. IEEE Transactions Computers, 66, 1212-1226.
https://doi.org/10.1109/TC.2016.2643660

[22] Bautista-Gomez, L., Komatitsch, D., Maruyama, N., et al. (2011) FTI: High Perfor-
mance Fault Tolerance Interface for Hybrid Systems. Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, Seattle, 12-18 November 2011, Article No. 32.
https://doi.org/10.1145/2063384.2063427

[23] Moody, A., Bronevetsky, G., Mohror, K. and de Supinski, B.R. (2010) Design, Mod-
eling, and Evaluation of a Scalable Multi-Level Checkpointing System. SciTech
Connect, 1-11. https://doi.org/10.2172/984082

[24] Ali, N., Krishnamoorthy, S., Halappanavar, M., et al. (2013) Multi-Fault Tolerance
for Cartesian Data Distributions. International Journal of Parallel Programming, 41,
469-493. https://doi.org/10.1007/s10766-012-0218-5

[25] Cunningham, D., Grove, D., Herta, B., et al. (2014) Resilient X10: Efficient Fail-
ure-Aware Programming. Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 49, 67-80.
https://doi.org/10.1145/2555243.2555248

[26] Panagiotopoulou, K. and Loidl, H.-W. (2015) Towards Resilient Chapel: Design and
Implementation of a Transparent Resilience Mechanism for Chapel. Proceedings of
the 3rd International Conference on Exascale Applications and Software (EASC),
Edinburgh, 21-23 April 2015, 86-91.

https://doi.org/10.4236/jsea.2017.1013053
http://www.graphanalysis.org/benchmark/HPCS-SSCA2_Graph-Theory_v2.0.pdf
https://doi.org/10.1007/978-3-319-20943-2
https://doi.org/10.1145/2503210.2503266
https://doi.org/10.1145/3086157.3086162
https://doi.org/10.1109/TC.2016.2643660
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.2172/984082
https://doi.org/10.1007/s10766-012-0218-5
https://doi.org/10.1145/2555243.2555248

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 957 Journal of Software Engineering and Applications

[27] Ali, N., Krishnamoorthy, S., Govind, N. and Palmer, B. (2011) A Redundant Com-
munication Approach to Scalable Fault Tolerance in PGAS Programming Models.
2011 19th International Euromicro Conference on Parallel, Distributed and Net-
work-Based Processing, Ayia Napa, Cyprus, 9-11 February 2011, 24-31.
https://doi.org/10.1109/PDP.2011.72

[28] Chien, A., Balaji, P., Beckman, P., et al. (2015) Versioned Distributed Arrays for Re-
silience in Scientific Applications: Global View Resilience. Procedia Computer
Science, 51, 29-38. https://doi.org/10.1016/j.procs.2015.05.187

[29] Hadoop Homepage. https://hadoop.apache.org/

[30] Bendjoudi, A., Melab, N. and Talbi, E.-G. (2014) FTH-B&B: A Fault-Tolerant Hie-
rarchical Branch and Bound for Large Scale Unreliable Environments. IEEE Trans-
actions on Computers, 63, 469-493.

[31] Favarim, F., da Silva Fraga, J., Lung, L.C. and Correia, M. (2007) GRIDTS: A New
Approach for Fault-Tolerant Scheduling in Grid Computing. 6th IEEE Internation-
al Symposium on Network Computing and Applications, Cambridge, MA, 12-14
July 2007, 187-194. https://doi.org/10.1109/NCA.2007.27

[32] Murray, D.G., Schwarzkopf, M., Smowton, C., et al. (2011) CIEL: A Universal Ex-
ecution Engine for Distributed Data-Flow Computing. Proceedings of USENIX
Conference on Networked Systems Design and Implementation, Berkeley, 30
March-1 April 2011, 113-126.

[33] Wang, Y., Ji, W., Shi, F. and Zuo, Q. (2013) A Work-Stealing Scheduling Frame-
work Supporting Fault Tolerance. Proceedings of Design, Automation and Test in
Europe, EDA Consortium/ACM DL, Grenoble, 19-22 March 2013, 695-700.

[34] Ma, W. and Krishnamoorthy, S. (2012) Data-Driven Fault Tolerance for Work
Stealing Computations. Proceedings of the 26th ACM International Conference on
Supercomputing, Venice, 25-29 June 2012, 79-90.

[35] Blumofe, R.D. and Lisiecki, P.A. (1997) Adaptive and Reliable Parallel Computing
on Networks of Workstations. Proceedings of the USENIX Annual Technical Sym-
posium, Anaheim, 6-10 January 1997, 133-147.

[36] Wrzesinska, G., Nieuwpoort, R.V.V., Maassen, J. and Bal, H.E. (2005) Fault-Tolerance,
Malleability and Migration for Divide-and-Conquer Applications on the Grid. Pro-
ceedings of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), Denver, CO, April 2005.

[37] Kestor, G., Krishnamoorthy, S. and Ma, W. (2017) Localized Fault Recovery for
Nested Fork-Join Programs. 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Orlando, FL, 29 May-2 June 2017, 397-408.
https://doi.org/10.1109/IPDPS.2017.75

[38] Kabir, U. and Goswami, D. (2015) Identifying Patterns towards Algorithm Based
Fault Tolerance. In: International Conference on High Performance Computing &
Simulation, Amsterdam, 20-24 July 2015, 508-516.

[39] X10 Homepage. http://x10-lang.org/

[40] Hazelcast Reference Manual.
http://docs.hazelcast.org/docs/3.7/manual/html-single/index.html

[41] Posner, J. and Fohry, C. A Java Task Pool Framework providing Fault Tolerant
Global Load Balancing. International Journal of Networking and Computing, 8, in
press.

https://doi.org/10.4236/jsea.2017.1013053
https://doi.org/10.1109/PDP.2011.72
https://doi.org/10.1016/j.procs.2015.05.187
https://hadoop.apache.org/
https://doi.org/10.1109/NCA.2007.27
https://doi.org/10.1109/IPDPS.2017.75
http://x10-lang.org/
http://docs.hazelcast.org/docs/3.7/manual/html-single/index.html

C. Fohry et al.

DOI: 10.4236/jsea.2017.1013053 958 Journal of Software Engineering and Applications

Appendix: Nomenclature
1. General

BC Betweenness Centrality (benchmark)
FTGLB Fault-Tolerant GLB variant developed in this paper
GLB Global Load Balancing framework of X10 class library
GLB-Actor minor modification of GLB according to actor scheme
PGAS Partitioned Global Address Space (programming model)
ULFM User-Level Failure Mitigation (MPI branch)
UTS Unbalanced Tree Search (benchmark)
X10 parallel programming language

2. Places

P a place
V victim of a transaction
T thief of a transaction
Back(P) successor of P, holds P’s backup
Forth(P) predecessor of P, saves its backup on P

3. Framework Parameters

n max. number of tasks processed per main loop iteration
k number of main loop iterations between regular backups
w number of random victims
z number of lifeline buddies per worker

4. Backup-Related Messages

REG regular backup
STL steal backup
TO taken-over backup
IA inauguration backup
req backup send request
ack acknowledgement of receipt

5. Steal-Related Messages (See Figure 2 and Table 1)

trySteal, noTasks, give, victimLink, BTack, Tend, BVend, delOpen

6. Restore-Related Messages (See Figure 3 and Table 1)

deathNotice, restore, linkResolve, linkTasks, GOTcheck, GOTok, RSTack

7. Liveness-Check-Related Messages (See Table 1)

monitor, isDead(Back)

8. User-Implemented

Classes: TaskBag, Result, Queue
Methods: process, merge, split, getResult

https://doi.org/10.4236/jsea.2017.1013053

	Fault Tolerance for Lifeline-Based Global Load Balancing
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. X10
	2.2. Lifeline Scheme
	2.3. GLB Framework

	3. Fault-Tolerant Algorithm
	3.1. Algorithm in Failure-Free Operation
	3.2. Restore after Single Failure
	3.3. Nested Restore
	3.4. Specific Timeouts
	3.5. Variants of Algorithm

	4. Correctness and Robustness
	4.1. Correctness
	4.2. Robustness and Efficiency

	5. Experiments
	6. Related Work
	7. Conclusions
	Acknowledgements
	References
	Appendix: Nomenclature
	1. General
	2. Places
	3. Framework Parameters
	4. Backup-Related Messages
	5. Steal-Related Messages (See Figure 2 and Table 1)
	6. Restore-Related Messages (See Figure 3 and Table 1)
	7. Liveness-Check-Related Messages (See Table 1)
	8. User-Implemented

