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http://creativecommons.org/licenses/by/4.0/ 11 this paper, we consider the following stochastic Kirchhoff-type suspension

bridge equations

U, + A%+ A%, +(p—|Vu|2)Au+bu*+ f(u)=q(x)W, Qx[r,+x),7eR,

u(x,t)=vu(x,t)=0, xeoQ,t>r,
u(x,7)=uy(x),u (x,7)=u(x) XeQ,

(1.1)

where u(x,t) is an unknown function,which represents the downward
deflection of the road bed in the vertical plane, u" =u for u>0 and u'=0
for u<0. b>0 denotes the spring constant of the ties, the real constant p
represents the axial force acting at the end of the road bed of the bridge in the
reference configuration. Namely, p is negative when the bridge is stretched,

positive when compressed. € is an open bounded subset of R’ with
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sufficiently smooth boundary 6Q. q(x)eH®(Q) is not identically equal to
zero, f is a nonlinear function satisfying certain conditions. W is the
derivative of a one-dimensional two-valued Wiener process W (t) and
q(X)W formally describes white noise.

We assume that the nonlinear function f eC?(R,R) with f (0) =0, which
satisfies the following assumptions:

(a) Growth conditions:

£ (s)[<Co(2+]sf). k=LVseR, (12)

k=
where C, is a positive constant. For example, obviously, f(S)=|S| 's
satisfies (1.2).

(b) Dissipation conditions:

F(s)::ﬁf (r)dr2C1(|s|k+1—1),VSe]R, (1.3)

and

sf (s)=C,(F(s)-1),VseR, (1.4)

where C;,C, are positive constants.

When f(u)=0 and q(x)=0, Equation (1.1) is regarded as a model of
naval structures,which is originally in [1] introduced by Lazer and McKenna. To
the best of our knowledge, Qin [2] [3] proved random attractor for stochastic
Kirchhoff equation with white noise, Ma [4] investigated the asymptotic
behavior of the solution for the floating beam, that is, the “noise” is absent in
(1.1). No one else has studied the long-time behavior of the solutions about these
problems, it is just our interest in this paper. As far as the other related problems
are concerned, we refer the reader to [2]-[7] and the references therein.

It is well known that Crauel and Flandoli originally introduced the random
attractor for the infinite-dimensional RDS [8] [9]. A random attractor of RDS is
a measurable and compact invariant random set attracting all orbits. It is the
appropriate generalization of the now classical attractor exists, it is the smallest
attracting compact set and the largest invariant set [10]. Zhou et al. [11] studied
random attractor for damped nonlinear wave equation with white noise. Fan [12]
proved random attractor for a damped stochastic wave equation with
multiplicative noise. These abstract results have been successfully applied to
many stochastic dissipative partial differential equations. The existence of a
random attractors for the wave equations has been investigated by several
authors [8] [9] [10].

The outline of this paper is as follows: In Section 2, we recall many basic
concepts related to a random attractor for genneral random dynamical system.
In Section 3, We prove the existence and uniqueness of the solution
corresponding to system (1.1) which determines RDS. In Section 4, we prove the

existence of random attractor of the random dynamical system.

2. Random Dynamical System

In this section, we recall some basic concepts related to RDS and a random
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attractor for RDS in [8] [9] [10], which are important for getting our main
results.

Let (X ’""x) be a separable Hilbert space with Borel c-algebra B(X ), and
let (Q,f,P) be a probability space. 6,:QQ—>Q,teR is a family of measure
preserving transformations such that(t, @) G is measurable, g, =id and
6,,=6,0, for all t,seR. The flow 6 together with the probability space
(Q, F,P, (Q )tE]R) is called a metric dynamical system.

Definition 2.1. Let (Q, F.P.(6 )teR) be a metric dynamical system. Suppose
that the mapping ¢:R*'xQx X — X is (B(R*)x FxB(X )) -measurable and
satisfies the following properties:

1) ¢(0,a))X:X,Xe X and weQ;

2) g(t+s,0)=¢(t,0,0)o¢(s,w),forall t,seR",xeX and weQ.

Then ¢ is called a random dynamical system (RDS). Moreover, ¢ is called
a continuous RDSif ¢ is continuous with respect to xfor t>0 and weQ.

Definition 2.2. A set-valued map D:Q —2* is said to be a closed
(compact)random set if D(a)) is closed (compact) for P-asweQ, and
w—d (X, D(a))) is p—a.s. measurable forall xe X .

Definition 2.3. If K and B are random sets such that for P-as.® there

exists a time t; (@) such that forall t>t; (@),
#(t,0,0)B(0.0)c K(w),

then Kis said to absorb B, and tg(®) is called the absorption time.

Definition 2.4. A random set A = A(a))wEQ c X is called a random attractor
associated to the RDS ¢ if P—as.:

1) A is a random compact set, e, A(a)) is compact for P-asweQ,
and the map @ d (X, A(a))) is measurable for every Xe X ;

2) A is ¢ -invariant, ie, ¢(t, a)) A(a)) = A((9ta)) for all t>0 and
P-asweQ;

3) A attracts every set B in X, ie, for all bounded (and non-random)
Bc X,

limd (4(t,0.,0)B(6.,0),A(»))=0,

t—w

where d(--) denotes the Hausdorff semi-distance:

d(A,B)=supingd(x, y),ABeX.
xeA Y€

Note that ¢(t,6’7ta))x can be interpreted as the position of the trajectory
which was in xat time -t . Thus, the attraction property holds from t=-o0.
Theorem 2.1. [8] (Existence of a random attractor) Let ¢ be a continuous
random dynamical system on X over (Q,f ’P’(Ht)teR)' Suppose that there
exists a random compact set K(w) absorbing every bounded non-random set
B = X . Then the set
A=A(@),0= U 7e (@)

BcX
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is a global random attractor for ¢, where the union is taken over all bounded
Bc X ,and Ag(®) isthe w-limitsset of B given by

re(@)=UJ4(t.0,0)B(6. o)

$>0t>s

3. Existence and Uniqueness of Solutions

With the usual notation, we denote
H=L(Q), V=H?(Q)
D(A)=H?(Q)NH;(Q), D(A*)={ueH*(Q): Auel’(Q)},
where A=-A,A>=A%. We denote H,V with the following inner products
and norms,respectively:
(u,v) = uvdx, Ju]* =(u,u),vu,veH,

((uv))= fQAuAde, Jul} = ((u,u)),vu,veV.

And we introduce the space E=D(A)xH, which is used throughout the

paper and endow the space E with the following usual scalar product and norm:
(V0 2 )e = (U u)) + (v, ), vy, = (U, v,) " € Ei=1,2,
¥l =(v.¥)e» vy =(uv) <E
where T'denotes the transposition.
More generally, define H' = D[A;J for reR, which turns out to be a

r r

Hilbert space with the inner product (U,V)r =(A2U,A2V], we denote by

.
A2

I =

be the first eigenvalue of A’u=Au,u(x,t)=Vu(x,t)=0,xedQ, by the compact
embeddings H'™ — H" along with the generalized Poincaré inequality, we

the norm on H' induced by the above inner product. Let 1>0

have
Julf s = A} - (3.1)
It is convenient to reduce (1.1) to an evolution of the first order in time
u, =V,
v, =—Alu —A2v+( p—|Vu|2)Au —bu* = f (u)+q(x)W, (3.2)
u(x,7)=uy(x),u (x,7)=u,(x),xeQ,
whose equivalent Ité equation is
du = vdt,
dv = —A°udt - Avdt+( p—|Vu[" ) Audt—bu"dt - f (u)dt+g(x)dw,  (3.3)

u(x,7)=Uy(x),u (x,7)=uy(x), xeQ,
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where W (t) is a one-dimensional two-sided real-valued Wiener process on
(Q, F.P.(6 )teR) . Without loss of generality,we can assume that

Q={o(t)=W(t)eC(R,R):e(0)=0},

where Pis a Wiener measure. We can define a family of measure preserving and

ergodic transformations (6,),_, by

bo()=o(-+t)o(t),teRoeQ.

Let Z=V—q(X)W , we consider the random partial differential equation
equivalent to (3.3)

du

- W,

o z+0q(x)

%:—Azu—A22+(p—|Vu|2)Au—bu+ = f(u)-A%q(x)W, (3.4)

u(x,7)=uy(x), z(zr,@) = 2(x,7,0) =u (x) - q(X)W (7), xe Q.

Apparently, there is no stochastic differential in (3.4) by comparing with
stochastic differential Equation (3.3). Let

o=[5 )= —LZJ'F("””):[(p—|vu|2)Au—ZL(j)—Wf ()= Aa (W |

then (3.4) can be written as
p=Lp+F(p0), q)(z',a)):(uo,z(z',a)))T. (3.5)

From [13] we know that L is the infinitesimal generators of C,-semigroup
e on E It is not difficult to check that the functions F((p, a)): E—E is
locally Lipschitz continuous with respect to ¢ and bounded for every weQ.
By the classical semigroup theory of existence and uniqueness of solutions of
evolution differential equations [13], so we have the following theorem:

Theorem 3.1. Consider (3.5). For each weQ and initial value
o(z,0)=(u,, Z(r,a)))T = (Ug, Uy (X) = (X)W (r))T €E , there exists a unique

function ¢(t,®) such that satisfies the integral equation
(p(t,a)) _ el_(tfr)(o(z',a)) + J.:F ((p(s),a))ds, Vgo(‘r, a)) e E.

By theorem 3.1, we can prove that for P—a.s. every weQ the following
statements hold forall T >0:

DIf ¢(r,w)eE,then ¢(t,0) eC([r,r+T); D(A))XC([T,T+T); H )

2) (o(t,(z)(r,a))) is continuous in fand (p(f,a)).

3) The solution mapping of (3.5) satisfies the properties of RDS.

Equation (3.5) has a unique solution for every we Q. Hence the solution
mapping
S(t,w):¢(r,0) - o(t,0) (3.6)

generates a random dynamical system, so the transformation
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S(t,w): p(z,0)+(0,q(X)W (7)) = o(t, @) +(0,g(x)W (t))’ (3.7)
also determines a random dynamical system corresponding to Equation (3.2).

4. Existence of a Random Attractor

In this section,we prove the existence of a random attractor for RDS (3.7) in E.

Let Z= Z+€u,l//=(u,Z)T,where
/12
E=—F7—. 4.1
4* +31+4 D

So Equation (3.4) can be written as
¥ +Qy =F(y,0), l//(r,a)):(uo, z(r,a))+gu0)T, t>r. (4.2)

where

Q:[(l—e)i\lzwzl Az_—lg'}
a(x)W J

If(W’w):{(p—|Vu|2)Au—bu+ —f(u)+(e—A)a(xw |
The mapping
S, (t@): (U 2(z, @) +euy) > (u(t),z(t)+eu(t)), Em>Et2r

is defined by (4.2).
To show the conjugation of the solution of the stochastic partial differential
Equation (1) and the random partial differential Equation (4.2), we introduce

the homeomorphism

R,:(u,2)" > (u,z+eu)
with the inverse homeomorphism R_,. Then the transformation

S, (t,w)=R,S(t,w)R,, (4.3)
also determines RDS corresponding to Equation (1). Therefore, for RDS (7) we

only need consider the equivalent random dynamical system
S,(t,w)=R.S(t,w)R_,, where S,(t,®) isdecided by

E+QE=G(&m), &(r,0)=(Up b +euy) , t27, (4.4)
where

0

[ . |
g_(ut(t)+gu(t)]’G(§' ) {(p—|Vu|2)Au—bu+—f(u)+q(x)W'

Next, we prove a positivity property of the operator Q in E that plays a vital
role throughout the paper.
Lemma 4.1. Forany ¢= (u, Z)T e E, there holds
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(Q4.9). —||¢||E —IIUIIZ —IIZII

Proof. Since Q¢= (gu -7,(1-e)Au+&u+ A’z —SZ)T , by using the
Poincaré inequality and the Young inequality, we conclude that

(Q6.), = el — 2 (Av, Az) + * u,2) ] ]

2&°

> ool ~SJul ~2elAef ol -2 2 Jaaf ~olef
2¢ 3¢

> 210l + 1o+ 0-20) el (2232l

T

2
2/1—. 0
427 +34+4

Lemma 4.2. Let (1.2)-(1.4) hold, there exist a random variable T, (a)) >0, and
a bounded ball B, of E centered at 0 with random radius f,(®)>0 such
that for any bounded non-random set B of E, there exists a deterministic
T(B)<-1 such that the solution w(t, oy (T, a))) = (u (tw),(t, a)))T of (4.2)
with initial value (u0 Uy + U, )T € B satisfies for P-asweQ,

"t//(—l,a),y/(r,a)))"E <r(w), 7<T(B),

where &=

and forall 7<t<0
||y/(t,a),t,z/(z',a)))||2E <R(r,0), (4.5)
where Z(tw)=u,(t)+eu(t)—q(x)W(t),and R(z,@) is given by

R(r,0)= 2e (70 ( U, ||§ +u, +,9u0||Z +||q||2 |W|2 +IQF (U, )dx+|Vu0|2 - p)2)

+1% ().
Besides it is easy to deduce a similar absorption result for
#(-1)=(u(-1).u (1) + u(-1))’

instead of l//(—l) .
Proof. We take the inner product in Eof (4.2) with y =(u,Z )T , where
Z=U,+sU —q(X)W we get

2 - Sl +(@vw)e =(Fro)w),. vtz (4.6)

where

(Fly.@)w), =((waCow))-b(u.2)=(f (u).2)

(4.7)
~(Aq(x)W.2)+2(a ()W, 2)+((p-[vu[ ) Au,z).
We deal with the terms in (4.7) one by one as follows:
PR 2
((0.00w) < £ uff el (0 (49)
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—b(u*,Z):—b(u* U, +gu—q(x)W)

= ;: —&bju* 2+b(u*,q(x)W) (4.9)
B N e T 2+M|W|2;
2dt 2 2¢
A Az EC 2 2
s(aC)W. )< +—[al W['; (4.10)
lall 2, 2
5 2 |12
‘—(Azq(x)w,z)‘sT“I\M 2l (4.11)

By using (1.2)-(1.3) and the Holder inequality, we get

(f (W), a()W )< Cyf, (1+]ul Ja(x)w (t)dx
< Cy Jaw |+ Co  J, Ju dx)m .. W]
<Coalw+C, Cﬁ(f (F(U)+C o) fall., W]

sC.,C 4 g &C, |1

<yl |+ S5 (u)ocs St + I
Inequality (4.12) together with (1.4) yields
—(f(u),Z):—(f(u) U +eu—qg(x)W)

<——J'F u)dx - gCJF u)dx+£C, |Qf+(f (u),q(x)W)

s——j F u
4 . C +ZC
o S22

((p—|Vu|2)Au,Z)=(p—|Vu| )(Au,ut +eu—q(x)W)
:(p—|Vu|2)|:%%+g|Vu|2 —(Au,g(x)W)

(4.12)

2C, -C,C* (4.13)
A )IF (u)dx+ Co o W]

|Q|-

(4.14)

:_%%(Wur —p) (vl - p) ~ep(jvu] - p)

+(|Vu|2 - p)(Au,q(x)W).
2 1
(Ivuf* - p)(Au,q(x)W)s%(WuF -p) +§|w|4 s VAt @19)
Collecting with (4.6)-(4.15) and Lemma 4.1, we get that
d 1 2
we (vl =) 2ol
. {||l,,||§ s 2{(vuf - p) 42 |Q|}

<M (1w (0)+ |vv<t| |vv<t| o (o).
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2C, -C,C;*
2

-1
where & = mln{g 5} ,C, > CO?

,and

M = max{g p?+&(C, +2C, +2C, )|, C, [a],

B (22 Y+

By the Gronwall lemma, we conclude that

lov(co |r

<e—£1tr(

+M_[:e"'l(t’s)(1+|\l\l(s)|+|\N(s)|2+|\N( | +W (s

+ [ F () dx+= (|Vu0| —p)}

+M j:e*€1(‘*5)(1+|w (s) +[W () + W (s)| +[w (

Let
7 (w)= 2(1+ suee‘gﬂ q||2 |W (r)|2j +5M
T<— 1
M [ et (|w (s) +W (s)f
.ﬂ@:%+mﬁwﬁw@hm@f
1

IIOIIL Co o

ol + s + el + ol W (=)

+ W (s)|" +Ww (s)

W ()] +w (

k+1
k+1

Ival'|
2 268

m+(w%|_q4acgﬂ

k+1)

(4.16)

s) k+1)ds.

k+1)d5,

S)k+l)d3,

where 1} (w) and r’(w) arefinite P—as., we get a bounded set Bof E we

choose T (B) < -1 such that
effl(*lff) (

forall V(uy,u, +&U, )T €B,and

er [

2+,

u0|| + [,

1 2
Nx+qﬁﬂ+zﬂv%r—p))sl

(4.17)

F (U, )dx+C, |Qf+= (|Vu0| —p) j<1(4.18)

forall (U, U, +€uo) €B,andforall 7<T(B).O
Let u(t) be a solution of problem (1.1) with initial value (UO,Ut +&U, )T eB.
we make the decomposition Uu(t)=y,(t)+y,(t), where y (t) and vy,(t)

satisfy

Yy + A%y, + A%y, +(p—|Vu|2)Ay1 =0, Qx[r,+x),7€R,

¥ (X, t)=Vy, (x,t)=0,
yl(x"[) = UO(X)* Yie (X'T) = ul(x)'

XeoQ,t>r, (4.19)

XeQ.
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and
Vou +A%Y, + A%y, + (p Vu|2)Ay2+bu*+f(u):q(x)W, Qx[r,+o), 7R,

Y, (Xt)=Vy,(x1t)=0, XeoQ,t>r,
Y2 (% 7)=0, y, (x,7)=0, XeQ.

(4.20)

Lemma 4.3. Let p<Tﬂ, B be a bounded non-random subset of E ,
¥ (Ug, U + U, ) € B
I¥: (O)f =[lv. ), +[ya (0) + v, (O
egT 2 , ) ,
Sm(lluollz—(p—lvuol JIVuef” + i+ 20 ).
0, p<0,

1_1 p<£

Ja 4
Proof. Let v =y, +¢Y,, taking the scalar product in H of (4.19), we get that
S M+ @) + (vl - p) |

IV~ + (1)l +([Vuol” ) Vo + £ (v,v) =0

(4.21)

where Y, =(y1, Vit +8y1)T satisfies (4.19), C(p)=

(4.22)

using the Holder inequality and the Young inequality, we get that

M =&V + & (=)l +° (v:.v)

(4.23)

2 1"2_
1- g € e(1-
> Sy (- 2 o= 2

il )+ (vl - )|
+g[||v|| +(1-6) Iyl +2(|vuf - )Wyl'z]go_

Let 9(t)=|v|’ +(l e)|lva + (|Vu0| —p)|Vy1| , we can get that
8(6)= (1-&)C(p)y:ll +IM +[Vu' [vy:[" > (1-2)C (p) ¥ >0

(1o
>e(t=2) vl + I, - M -

&
LS

we have that

A
and for p< e we get

| M+ @)l +2( vusf - o) vyl |22 900,

SO
Do)+ £g(t)<0
dt 2 -

By the Gronwall lemma, getting that (4.21). [
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Lemma 4.4. Assume that (1.2) holds, there exists a random radius T, (a)) ,

such that for P-asweQ,

1 2

A, (0,mY, (7,0))| <t} (o), (4.24)

E

where Y, =(Y,, Y, +&Y, (X)W )T satisfies (4.20).
Proof. Let Y, =(Y,, Y, +&Y, —q(X)W )T , Equation (4.20) can be written to

Y, +QY, =H (Y, @), Y, (7)=(0,~q(x)W (7)), (4.25)
where
ey w):{ abow ]
? (p—|Vu|2)Ay2—bu*—f(u)+(g—Az)q(x)W

Taking the scalar productin E of (4.25) with AY,, we get that

1 2

1d|,=
En AZY, E +(QY,, AY, ), =(H (Y, @), AY,)_, (4.26)
where
(H(Y,, @), AY, ).
:((Ayz,q(x)W))Jr((p—|Vu|Z)Ay2,A(y2t +gy2—q(x)W)) (4.27)

+(—bu* —f(u)+(e—AR)a (X)W, A(yy +£Y, —q(X)W))-

Due to Lemma 4.1, we get that

2 2 2

1 1 1
(QYZ,AYZ)Ezg A%Y, +§ A2y, +> P2 (Y ey, —q(X)W)| . (4.28)
E 2
Using the Young inequality, we have that
1| 1|
((Ayz,q(x)W))si Azy, += Azq| W (4.29)
2 2
‘—(bu*,A(th+ey2—q(X)W)>‘
i 1 2 (4.30)
<= ||A2u* t3 A2 (yy + ey, —a(x)W)| ;
2
‘—(Azq(x)W,A(th+gy2—q(x)W))‘
2| S e Al i (431)
<= AZq|l W] +3 A% (Y +ey, —aq(x)W)| ;
(2a()W, Ay, +2y, —a(x)W))
22| 1 |F Al : 2 (4.32)
< 2% lazg |W|2+§ A% (Y, +ey, —q(x)W)| .

By (1.2), (4.5) and Sobolev embedding theorem, we obtain that f(u) is
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uniformly bounded in L”, that is, there exists a constant M >0 such that

[7'(s)

» SM. (4.33)

Combining with (4.33), the Sobolev embedding theorem and the Young
inequality, we have that

‘—(f (U), A(yzt tey, _q(X)W ))‘

1

A2f (u)

1
A2 (Y, +&Y, —q(x)W )H (4.34)

2

Az(y2t+syz q(x)w)|

<

Z,uM

where 4 isa positive constant.
_((p—|Vu|2)Ay2,A(y2[+gy2—q(x)W))
1d
=5 gV =p)Ivall +([vul = p Izl + (p~[vul’) (Ayz a(w)
L [ A (T A (R N TN
£ €
>5§(IVUI p)Ivall + 2 (Ivul” = o)l =Sl ellval;
1 2
—EIIAQIIZIWIZ—g(I pl+[vul”) [
1d

&
=SV =P <5 (Vo =)l
1 2 1
5[ elpl{lpl+ 19 ) Ylvlz ~Slaal WP

(4.35)

2

1
Let E(t)=]A2Y, +(|Vu|2— p)"yz"z, by the Poincaré and C(p), we get

E 2
that, E(t)zc(p)tw2 >0. Using (4.27)-(4.35) and (4.5), for 7<T (@),
from (4.27) we get E
SE@)+E()
2 2
_C(g|p|+(|p|+R(s,a)))2+—4b +:’UM jR(s,w)
[2
+ p—
&

Using the Gronwall lemma, we get that

112

A2q

5 |2

+—||A2
P q

112

4 AZg

A

il ||Aq|| J[\N |2, r<t<0.

2

2

2 2
+ C_Loe‘gS (g| pl+(|p|+ R(s,a)))2 +w) R(s,@)ds

1
A2q

{2
+| =
&

E(0)<e”

A

2 2

4

1

AZq

5

+—lla2 Az
P q

2

3 IIAQII Jf W (s)] s

(4.36)
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Set
1|2 5 |12 Sl 1 P
FZZ(w):[E qu +% AEq +4i AEq +%"Aq"2JJ._0me£SW(S)|2 ds
2
1P ,
+[A%q W (7)|
7<0
2 2
el o)+ s o)) + 22 (s e
i i w (t) — 2 . . ~ .
Since lim,,,, " 0, rj(w) is finite P-a.s., together with 4.18 and 4.36,
we get that
1 2 P
2 r; (@)
A%, (0,0, (7,0))| <2
(ool <)

This completes the proof of Lemma 4.4. [
A
Theorem 4.5. Let p< %, (1.2)-(1.4) hold, q(x)eH*(Q)NH¢ (Q), then the

random dynamical system S,(t,w) possesses a nonempty compact random
attractor A.
Proof. Let B, (@) be the ball of H®(Q)x(H?(Q)NH;(Q)) of radius
AG)
c(p)
compact in E. for every bounded non-random set B of E and any
v (0)e S, (t,6.,@)B, by Lemma 4.4, we know that
Y,(0)=w(0)-Y,(0) e B,(®). Therefore, for <0,
inf v (©)-1(0)c <[ )]

1(0)

, by the compact embedding H®(Q), it follows that B (@) is

e’ 2 2 2 2
< luoll = (P =Vl ) 7+ + 20 ).

(1-¢)C(p)

So, forall t>0,
d(S, (t,0.,0)B,B, (o))
e L G TR TR

From relation (4.3) between S, (t,a)) and S~£ (t,@), wcan obtain that for
any non-random bounded B c EP -as.,

d (sl (t.0,0)B, Bl(a))) —0, ast— +o.

Hence, the RDS S, (t, a)) associated with (3.7) possesses a uniformly
attracting compact set B, (@) < E . Using Theorem 2.1, we complete the proof.
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