
Journal of Transportation Technologies, 2011, 1, 123-131 
doi:10.4236/jtts.2011.14016 Published Online October 2011 (http://www.SciRP.org/journal/jtts) 

Copyright © 2011 SciRes.                                                                                 JTTS 

A Personnel Detection Algorithm for an Intermodal  
Maritime Application of ITS Technology for  

Security at Port Facilities 

Mouhammad K. Al Akkoumi, Robert C. Huck, James J. Sluss 
The University of Oklahoma, Tulsa 

E-mail: makkoumi@ou.edu, rchuck@ou.edu, sluss@ou.edu 
Received July 26, 2011; revised August 23, 2011; accepted September 4, 2011 

Abstract 
 
With an overwhelming number of containers entering the United States on a daily basis, ports of entry are 
causing major concerns for homeland security. The disruption to commerce to inspect all containers would 
be prohibitive. Currently, fences and port security patrols protect these container storage yards. To improve 
security system performance, the authors propose a low cost fully distributed Intelligent Transportation Sys- 
tem based implementation. Based on prior work accomplished in the design and fielding of a similar system 
in the United States, current technologies can be assembled, mixed and matched, and scaled to provide a 
comprehensive security system. We also propose the incorporation of a human detection algorithm to en- 
hance standard security measures. The human detector is based on the histogram of oriented gradients detec- 
tion approach and the Haar-like feature detection approach. According to the conducted experimental re- 
sults, merging the two detectors, results in a human detector with a high detection rate and lower false posi- 
tive rate. This system allows authorized operators on any console to control any device within the facility 
and monitor restricted areas at any given time. 
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1. Introduction 
 
In 2005, over 20 million sea, truck, and rail containers 
entered the United States [1]. This increasing number of 
containers entering the country poses higher risks for 
security breaches and malicious attacks. Physical in-
spect- tion of each and every container on a daily basis 
would shut down the entire economy [1]. Furthermore, 
many containers coming into the country are stored at the 
port for a period of time before being shipped by road, 
rail, or barge to their final destination. Storing these con-
tainers in a staging area raises concerns about the secu-
rity of the containers. Thus leading to a need to have a 
more efficient system to monitor and protect the port 
facility and the cargo. Currently, un-queued video sur- 
veillance, vehicle detection, fences and gates, and foot 
patrols are the common means for port security. Using 
other available technologies, a more efficient security 
system can be implemented to allow uninterrupted 
freight-flow operations at the port. 

Human detection is a fast growing and promising 

technique used in various applications to find humans in 
given images. Researchers are trying to accomplish this 
type of detection using methods that result in high accu- 
racy and fast computation. The next sections are written 
in the following sequence: section II includes a literature 
review of related works. Section III discusses the per- 
sonnel detection algorithm and section IV covers the 
experimental results of our algorithm. Section VI is a 
discussion of future work and the conclusion. 

 
2. Background 

 
The benefits of ITS deployments are well known: Im- 
proving transportation network efficiency, enhancing 
safety and security, reducing congestion and travel delay, 
reducing incident response times, and increasing the ef- 
ficiency of both transportation and emergency response 
agencies. Today’s typical ITS deployment is a assort- 
ment of vehicle detectors, closed circuit television (CCTV) 
cameras, fixed and portable message signs, highway ad- 
visory radio systems, a web based traveler information 
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system, weather information, and an integrated commu- 
nications network that links the field hardware to system 
operators, transportation managers, and emergency man- 
agement agencies. In most cases, system control is im- 
plemented in a centralized traffic management center that 
co-locates the system operators, transportation managers, 
response agencies, and their dispatchers [2,3]. Our de- 
sign of a distributed, hierarchical, peer-to-peer ITS sys- 
tem [4] results in a virtual centralized management cen- 
ter where the various system operators, transportation 
managers, and incident management agencies can remain 
geographically separated throughout the State but still 
enjoy most of the benefits provided by a this centralized 
management center environment. Another feature of this 
system is the use of off-the-shelf equipment and open- 
source software to reduce development costs. Addition- 
ally, by using standards based network architectures and 
protocol converters to communicate with the remotely 
deployed sensor devices; the software integration effort 
was reduced thereby greatly reducing risks. 

In this research, two human detection approaches were 
used to create a joint human detector. The two ap- 
proaches are the histogram of oriented gradients [5] and 
the Viola and Jones approach using a cascade of weak 
classifiers [6]. In [6], Viola and Jones proposed the first 
approach for detecting objects in images based on Haar- 
like features in 2001. This approach has been used pre- 
viously to perform face detection, upper and lower body 
detection, and full body detection with moderate detec- 
tion results [7-9]. While face detection was introduced 
first and showed very promising results; Haar-like fea- 
ture detection has not shied away from being used in 
many other human and object detection algorithms. The 
Viola and Jones detector has been used in different ap- 
plications to perform fast object recognition. One of the 
drawbacks of this detector is its detection inconsistency 
with an object's rotation in images. 

In [10], Kolsch and Turk proposed a Viola and Jones 
detector that performed hand detection with a degree of 
rotation. The detector was trained using a dataset that 
contained images of hands with different angles of rota- 
tion. The results showed an increase of one order of 
magnitude in the detection rate of the hand in input im- 
age frames. A more advanced version of the Viola and 
Jones approach was proposed in [11] by Mita et al. The 
authors introduced a new approach for face detection 
using joint Haar-like features. The joint features are lo- 
cated through the co-occurrence of face features in an 
image. The classifiers were then trained using these fea- 
tures under adaptive boosting (Adaboost). The results 
shown in the paper proved achieving faster detection 
time, 2.6 times faster, with similar face detection accu- 
racy. The joint Haar-like features also played into re- 

duceing the overall detection error by 37% compared to 
the traditional Viola and Jones approach.  
 
3. Personnel Detection and Image Processing 

Techniques 
 
Establishing exceptionally accurate pedestrian detection 
and tracking are two major hurdles facing computer vi-
sion today. Overcoming these challenges can result in 
providing more secure surveillance systems to monitor 
indoor and outdoor spaces. These smart systems can be 
used to enhance security at ports of entry worldwide. 
 
3.1. Haar-Like Feature Pedestrian Detector 
 
The use of Haar-like algorithms simplifies locating all 
the desired features. A feature is selected if the differ-
ence between the average dark region pixel value and the 
average of the light region is higher than a preset thresh-
old. An example of HAAR features is shown in Figure 1. 
As shown in the figure, the features can be used to detect 
different pixel orientations throughout a defined region 
of interest. A combination of a certain arrangement of 
edges can then be identified as the desired object or not. 
The features presented in the figure are either 2-rectangle 
or 3-rectangle features. Another type of features is the 
4-rectangle features that are used in other implementa- 
tions of Haar-like features. The feature can be computed 
quickly using integral images which are defined as 
two-dimensional lookup tables and have the same size as 
the input image. 

The next step in the algorithm is training the machine 
to be able to make decisions whether a pedestrian is pre- 
sent in the image region. Adaboost is a machine learning 
method that uses many weak classifiers to create a strong 
classifier. Each weak classifier is assigned a weight to 
help strengthen the overall classifier. The weak classify- 
ers filter the image region as it passes through them. If, at 
any point, the region is filtered out, then the region is 
considered not to have the desired object. The heavily 
weighted filters come in first to make the process much 
quicker and annihilate negative regions. Figure 2 shows 
the overall Viola and Jones detection system. 
 

 

Figure 1. Haar-like features. 
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Figure 2. Viola & Jones object detection algorithm. 

 

The training process is a key stage to formulate strong 
classifiers for the Haar-like features pedestrian detector 
(HFPD). A combination of training samples is used to 
formulate a cascade of classifiers to be used in the detec-
tion process. The complete process goes through 4 main 
stages: data preparation, object marking and creating 
object samples, training and then finally testing. The 
trained detector was used for detecting a pedestrian 
lower body region (mainly legs) in a given image. To 
train the detector, a set of positive and negative samples 
was collected. The positive samples contain one or more 
instances of the human lower body. The negative sam-
ples are the ones that contain no instances of the human 
lower body and even no humans. The negative samples 
were obtained from an online dataset [12]. The dataset 
includes 2977 negative samples of various grey scale 
backgrounds with no human or human like objects. 
These images are used to train the detector to what is not 
the object of interest and ultimately improves the overall 
detection rate. The wider the range of backgrounds being 
used the lower the false positive rates are and the 
stronger the classifier would be. 

The positive samples were taken in a lab environment 
with different backgrounds. Three detectors were trained 

using 890, 1890 and 2890 positive samples, respectively. 
The goal is to try various numbers of positive images and 
compare the results. One might think that increasing the 
number of positive samples would result in a stronger 
cascade of classifiers but that’s not always the case. 
There are several factors that determine the strength of 
the cascade and these include but are not limited to: the 
type of object being detected, the backgrounds of the 
positive samples, Object rotation, and Object scaling. 
The lower body samples are taken from different view- 
points and appear in different poses. The illumination is 
kept almost the same with minor differences. The posi- 
tive samples were taken using a high definition camcor- 
der with a 1280 × 720 pixel resolution. The resolution for 
these images is not a factor since all the images are re- 
scaled during the training process. These positives will 
later be used to specify where the location of the object 
of interest is precisely. Various poses of the lower body 
were captured to strengthen the cascade to overcome the 
rotation drawback of Haar-like features. The images used 
in the training process are converted to grey scale, thus 
no color constraints are taken into consideration. The 
next step prior to starting the training the detector is to 
mark the legs in a bounding box in every positive sample 
and save its coordinates. Then a vector file for the posi-
tive samples is created. This vector file is an output file 
that contains information regarding the generated sam-
ples. The training process time varies according to sev-
eral factors, among these are: the number of training 
samples being used, the number of stages the cascade 
needs to cover, the memory allocation for the process, 
and the processor speed. On average, it took between 2 
to 4 hours to train the lower body detectors. Three cas-
cades were trained with 890, 1890 and 2890 positives 
respectively and 2977 negatives. 50 images from the 
INRIA online dataset were chosen at random for testing 
[13]. 

 
3.2. HOG Pedestrian Detector 

 
The Histogram of Oriented Gradients (HOG) detection 
approach was first introduced in 2005 and focused on 
detecting objects based on their edge orientations. The 
HOG approach can be compared to the Scale-Invariant 
Feature Transform (SIFT) approach proposed by David 
Lowe in 1999 [14]. The two approaches share the same 
concept of extracting unique features to help in the deci-
sion-making process of whether the target object is pre-
sent in an image. However, the HOG method segments 
the image in a different way and makes use of local con-
trast normalization to improve the overall performance of 
the system. Now, HOG is being used in multiple object 
detection applications resulting in fast and accurate de-
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

pixel is calculated based on the direction of the gradient 
element at its center. According to [18], a fast way to 
calculate the histograms of regions of interest is achieved 
by using integral histograms. 

tection [15-17]. The first step in the HOG algorithm is 
gradient computation. The simplest and most efficient 
way to accomplish that, as tested by Dalal and Triggs, is 
to apply a 1-D, centered point, discrete derivative mask. 
Applying other types of masks such as the 3 × 3 Sobel 
mask doesn’t lead to better overall system performance. 
The derivative mask system is defined as follows: 

In order to pass the computed histograms of gradients 
into a classifier, cells are organized in a 3 × 3 arrange-
ment called a block. Creating blocks helps make the al-
gorithm less susceptible to changes in illumination and 
contrast. The blocks overlap in an image producing more 
correlated spatial information to be used in the descriptor, 
which also improves the overall detection performance. 
Figure 3 shows an example of blocks containing 9 cells 
inside the detection window. The 3 × 3 and 6 × 6 blocks 
worked best for Dalal and Triggs in their experimental 
results and believe that varying the block size has less 
effect on the detection as does overlapping the blocks. 

     
   

Y i,j =X i,j+1 X i,j 1

Y i,j =X i+1,j X(i 1,j)

 


 
 

The equation system contains vertical and horizontal 
1D derivative masks that can be applied pixel wise to an 
input image X. Y is the output image with the calculated 
pixel derivatives on row i and column j. The whole im- 
age is scanned to calculate each pixel orientation to be 
used in computing the later histograms. The derivative 
masks used can be expressed as: 

Also in some cases, increasing the number of cells 
present in the block decreases the overall performance of 
the detection system. The rectangular HOG, also known 
as R-HOG, can be set with different block dimensions 
but are best used in square arrangements. The R-HOG is 
adopted in the tested HOG human detector presented in 
this chapter. A block is represented by a multi-dimen- 
sional feature vector that is used in the classification step. 
Block normalization is needed to decrease the required 
computation, thus L-2 normalization on the block is done 
followed by a renormalization step. 

, 

1

0

1

 
 
 
  

 1 0 1

After calculating the gradients, the algorithm defines a 
detection window of fixed size (64 x 128 pixels) to scan 
the image. The detection window is then divided into a 
number of 8 × 8 pixel groups called cells, Figure 3. A 
cell can be rectangular or radial in shape and can vary in 
size although 6 × 6 pixel group is considered an optimal 
solution for human detection. For the purpose of this 

Each block is normalized and used in the collected 
feature vector. Using 2 × 2 cells results in having a 36 
dimensional normalized feature vector, since 4-9-bin 
histograms were used for the HOG detector. The final 
step for the HOG algorithm is to use the feature vector as 
input to a Support Vector Machine (SVM) classifier to 
perform the decision making. SVM has been used by 
many researchers in object detection and segmentation to 
deliver a classification method for various objects in 

study, the selected cells are rectangular. The next step in 
this system finds a 9-bin histogram of pixel orientations 
for each cell. The number of orientation bins selected 
sug- gests looking at 20 degrees for each pixel orienta-
tion. The range from 0 - 180 degrees, for unsigned gra-
dients, is divided by the 9 bin orientation in which linear 
gradient voting is represented. A weighted vote for each 
 

 

Figure 3. HOG detection window with cells and blocks. 
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input images [19-21]. Linear SVM is one of the most 
common methods used for forming different classes of a 
dataset. The HOG algorithm feeds the descriptor vector 
to a trained linear SVM to determine human presence in 
a given test image. The HOG scheme was tested and 
performed extremely well on two datasets: the MIT pe- 
destrian database and then on a new dataset created by 
Dalal and Triggs called the INRIA dataset. A flow dia-
gram of the HOG method is shown in Figure 4. 
 
4. System Analysis and Results 
 
In all the conducted experiments, three rates were ob- 
served: false negative rate, false positive rate, and detec- 
tion rate. In this paper, these terms are defined as follows: 
a false negative rate is calculated by summing the num- 
ber of events where the detector missed a human present 
in the image and divide it by the total number of events, 
a false positive rate is the number of events where the 
detector had found something that it thinks is a human 
but it is not divided by the total number of events, and 
the detection rate is the number of events where the de- 
tector had found a human in the image divided by the 
total number of events. In addition, in this paper an event 
is defined as one of three things: not detecting a human 
present in the image, falsely detecting a human, and de- 

tecting a human. These rates are determined subject- 
tively and through a predetermined number of test im- 
ages. The background in the videos for the different sce- 
narios was static (i.e., fixed camera positions) to help 
overcome any background noise that might affect the 
detection rate. 

The collected experimental results show the perform- 
ance of the combined human detector compared with the 
two separated detectors. The feedback system maintained 
a high detection rate and decreased the false positive rate 
which results in a more robust detector. Indoor and out- 
door scenarios with different image resolutions are tested. 
 
4.1. Merged HOG and Haar Detectors Results in 

an Indoor Scenario 
 
The first scenario tested for the two detectors was in- 
doors, as shown in Figure 5. This scenario was used 
previously to test the HOG full body and the Haar leg 
detector separately. The collected results showed high 
detection rates in both cases and very low false positive 
and negative rates. The detection rate for the Haar leg 
detector was 93.8% for 210 test images and the false 
positives rate was 9.5%. The HOG detector was able to 
locate the human in every frame with an insignificant 
false positive rate. 

 

 

Figure 4. Static histogram of oriented gradients approach. 
 

 

Figure 5. HOG and Haar used in an Indoor scenario. 
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The test results for the indoor scenario were taken to 

show both detectors activities and how the algorithm 
works in different cases. For example, the first and sec- 
ond frames in the above figure show complete detection. 
The third, sixth and eighth frames show a detected hu- 
man by the HOG detector and missed detection by the 
Haar detector as explained in Subsection 5.3.2. The 
fourth and fifth frames show two cases of HOG detection 
and Haar false detection. Note that in the fourth frame 
the false detected leg is the upper body and within the 
region of the human. In the fifth frame, a second false 
positive is shown by the Haar detector behind the human. 
This false positive is discarded during the feedback mes- 
saging algorithm while the other one, which is in the 
human detection region, is not. The seventh frame shows 
one HOG detection box and three Haar detection circles, 
two of which are true detection and one false positive 
that falls within the HOG box. 

 
4.2. Merged Detectors Tested on Two Humans in 

an Outdoor Scenario 
 

The second scenario used to test the two merged detec- 
tors was of two humans in an outdoor scenario. Figure 6 

shows the detected false positive and negative results 
for both detectors. The first frame shows two HOG 
boxes for the two humans and that the Haar detector has 
missed both. The second and eightth frames are the 
only ones where both detectors agree on spotting both 
pedestrians. In the third frame, the HOG detector finds 
both humans whereas the Haar finds none and adds a 
false positive. 

The fifth frame shows both humans detected as one 
using the HOG full body detector. In this case, only one 
alert is sent. In the fourth, sixth, and seventh frames, the 
HOG finds the two humans whereas the Haar detector 
only finds one. Two alerts are sent out to the authorized 
personnel. When tested separately using 300 test images, 
the detectors showed different detection, false positive 
and negative rates. The HOG outperformed the Haar 
detector in the detection and negative rates by almost 
20% for each. Both detectors had approximately the 
same false positive rate of 6%. Using the feedback mes- 
saging system, a more accurate human detector can be 
established by merging the two full and part-based de- 
tectors. The feedback system helps decrease the false 
positive rate for the combined detector. Table 1 shows 
the statistics for all three cases. 

 

 

Figure 6. Results of applying both detectors in an outdoor scenario. 
 

Table 1. Detection statistics for separated and merged detectors. 

Detector Types 
Resolution 
(in pixels) 

Total Number of
Test Images 

Detection Rate 
False Positive 

Rate 
False Negative 

Rate 
Average Detection 

Time (in ms) 

HOG Full Body 
Detector 

640 × 480 300 97.0% 5.3% 3% 790 

Haar Leg Detector 640 × 480 300 77.33% 6% 22.67% 50 

Merged Detector 640 × 480 300 97.0% 0.67% 3% 880 
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Each of the 300 test images must ideally produce two 

alerts, one for each human in the captured frame. Thus, 
the expected total number of true alerts sent is 600. The 
false positive rate can be decreased using information 
from both detectors where the human is expected to be. 
Therefore, a huge reduction in the false positive rate can 
be observed. On the other hand, the negative rate stays 
the same as the one for the more accurate detector, which 
in this case is the HOG full body detector. The final de- 
tection rate for the merged detector is 97%. The detec- 
tion time for the final detector is approximately the sum 
of the detection time of both detectors in addition to a 
small margin taken for the feedback messaging system. 

 
4.3. Merged Detectors Tested on Multiple 

Humans in an Outdoor Scenario 
 

The last scenario investigated has multiple humans walk- 
ing in an outdoor scene. Again, the two detectors are 
applied on several test frames to determine subjectively 
the false positive, false negative and detection rates. 
Figure 7 shows the results of merging the two detectors. 
As expected, the HOG detector produced a detection rate 
higher than that of the Haar leg detector. The HOG de- 
tection rate was 93.5% while the Haar had a detection 

rate of 62.8% for 300 test images. The false positive rate 
in both cases was less than 3%. Note that the Haar leg 
detector was not able to find all four pedestrians in the 
test images. This is due to the training dataset that only 
included one instance of the target object for each image. 

In this scenario, four humans are walking around and 
at times partially or fully occluding one another. Table 2 
shows the detection, false positive and negative rates in 
addition to the average detection time for each detector. 
The detection time is higher than the previous scenario 
due to an increase in the video resolution from 640 × 480 
to 848 × 480 pixels. The system requires just over a sec- 
ond to determine whether one or more humans are pre- 
sent in frames of size 848x480 pixels. Ideally, the num- 
ber of produced alerts should be 1200, but in this case, 
the 300 test images contained 1, 2, 3 or 4 humans per 
frame. The total number of expected alerts is 838 alerts. 
Note that the detection rate for the merged detector is not 
much higher than that of the full body detector due to the 
high negative rate that was not decreased. On the other 
hand, the false positive rate was taken out by the feed- 
back messaging system. The false positives from both 
detectors were not in the same location and also did not 
correspond with the location of the moving object given 
by the tracker. 

 
Table 2. Detection statistics for multiple human separate and merged detectors. 

Detector 
Resolution 
(in pixels) 

Total Number of
Test Frames 

Detection 
Rate 

False Positive 
Rate 

False Negative 
Rate 

Average Detection
Time (in ms) 

HOG Full Body Detector 848 × 480 300 93.5% 1.1% 6.5% 1010 

Haar Leg Detector 848 × 480 300 62.8% 2.7% 37.2% 70 

Merged Detector 848 × 480 300 93.5% 0% 6.5% 1150 

 

 

Figure 7. Results of applying both detectors for multiple human detection. 
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5. Future Work and Conclusions 
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Th  size of the input image is the main e
slower detection time, and is due to a bigger number of 
visited detection windows required for detection. The 
authors believe that downsampling the images can help 
decrease the detection time to fit in a model for real-time 
or near real-time pedestrian detection. Additionally, 
work accomplished with General Purpose Graphical 
Processing Units (GPGPUs) indicates processing speed 
increases with this kind of application. Based on the ex- 
perimental results collected thus far, the authors believe 
that combining the two detectors in addition to pre- 
processing with an object tracker would result in a robust 
personnel detection and tracking system. The first stage 
in the system is the tracking stage. The object tracker 
identifies moving silhouettes in the video capture and 
alerts the user of a potential threat. The second stage in- 
cludes the HOG full body detector that looks at the loca- 
tion of the moving object and determines whether it is a 
human or not. The third stage introduces the Haar-like 
feature pedestrian detector that tries to find upper and 
lower human body regions. The fourth stage starts the 
feedback messaging between the detectors to decide 
whether the detected region actually contains a pedes-
trian or it’s a false positive. After several iterations, the 
system converges and the detection results are collected. 
The results collected in this paper are based on several 
training and testing data sets. This helps establish a more 
generalized solution to the presented challenges. The two 
stages complement one another in such a way that the 
detection system is much stronger than the current sys- 
tems. The Viola and Jones approach is not a computa- 
tionally heavy approach and provides object detection at 
different scales and backgrounds. Thus, the feedback 
stage will help improve the detection rate without slow- 
ing down the overall system. In this paper, we proposed 
a low cost distributed ITS-based smart sur- veillance 
security system for port security. This system is very 
scalable and provides improvements to a major inter- 
modal maritime application. Using image processing 
techniques security can be enhanced to capture unau- 
thorized personnel in restricted areas. Port security op- 
erators can rely on alerts produced by the pedestrian de- 
tection and tracking system as well as the container 
tracking devices to assess port security. These systems 
complement the overall security system and integrate 
well as building blocks. This security approach can be 
used in various applications and sites to improve overall 
security nationwide. 
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