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Abstract 
In this paper we revisit the addition of elliptic curves and give an algebraic 
proof to the associative law by use of MATHEMATICA. The existing proofs 
of the associative law are rather complicated and hard to understand for be-
ginners. An ‘‘elementary” proof to it based on algebra has not been given as 
far as we know. Undergraduates or non-experts can master the addition of el-
liptic curves through this paper. After mastering it they should challenge the 
elliptic curve cryptography. 
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1. Introduction 

Ciphering is essential for the security of internet. The RSA cryptography [1] [2] 
[3] is now commonly used. However, in the very near future the RSA 
cryptography will be replaced by the elliptic curve cryptography because of its 
efficiency; the RSA system is based on 2048 bits, while the elliptic system is based 
on 224 bits (2016, [4]). 

The target reader of this note is undergraduates or non-experts. Those who 
are interested in cryptography are strongly encouraged to master the theory of 
elliptic curve cryptography as soon as possible. For this purpose they must study 
an additional structure of elliptic curves. However, it is not so hard except for 
the associative law. 

As far as we know an algebraic proof to it has not yet been given1. Therefore, 
we give an ‘‘elementary” proof by use of MATHEMATICA for them. 

 

 

1We don’t admit usual geometric proofs in standard textbooks of elliptic curves. 
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2. Addition of Points of an Elliptic Curve 

Let us start by recalling the definition of an elliptic curve [5] [6] 
2 3y x ax b= + +                           (1) 

where a and b are some real constants. In the following we consider only real 
category. The discriminant of the cubic equation 

3 0x ax b+ + =  

is given by 
3 24 27D a b= − −                         (2) 

(see for example [5]) and we assume 0D <  in the following, so the point 
crossing the real axis is just one. 

For the graph of the elliptic curve (1) 

( ){ }2 2 3, |E x y y x ax b= ∈ = + +R                   (3) 

we want to introduce an addition, which is essential in the elliptic curve 
cryptography. For the purpose we must add the infinity point ( ),O = ∞ ∞  to 
(3). As a result, our space is not 2R  but a two dimensional sphere 2 2O =R S . 
Later it turns out that O is the identity element of the addition, see (10), (11). 
This justifies the notation O for the infinity point. 

Here we note 

( ) ( ), ,P x y E P x y E= ∈ ⇒ − = − ∈                  (4) 

where we have adopted the notation P−  for the mirror image of P  with 
respect to the real axis, see (11). 

Let us introduce the addition in E. For two points 1 2,P P E∈  we associate 
another point 3P E∈ . Consider the straight line passing through 1P  and 2P . 
We set R the crossing point of the line and the elliptic curve. 
A simple-minded candidate of the addition is 

1 2P P R⊕ =  

Unfortunately, this is not good because the associative law does not hold. 
Instead, we take the reflection point of R 

1 2 3.P P R P⊕ = − ≡                           (5) 

This is correct as shown in the paper. See the following Figure 1. 
Next, we want to express the addition above by use of the coordinate system. 

For the purpose we set 

( ) ( ) ( )1 1 1 2 2 2 3 3 3, , , and , .P x y P x y P x y= = =  

Formula The addition formula 

( ) ( ) ( )1 1 2 2 3 3, , ,x y x y x y⊕ =  

is given by 

( )
2

2 1
3 1 2

2 1

,y yx x x
x x

 −
= − + − 
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Figure 1. Addition 1 2P P≠ . 

 

( )
3

2 1 2 1
3 1 2 1

2 1 2 1

2 .y y y yy x x y
x x x x

   − −
= − + + −   − −   

          (6) 

Proof To give an elementary proof for undergraduates or non-experts is 
educational. 

First of all we set the coordinate of the point ( ),r rR x y=  and look for rx  
and ry . The straight line passing through 1P  and 2P  is given by 

( )2 1
1 1

2 1

.y yy x x y
x x
−

= − +
−

 

By taking 1x x−  into consideration we have 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 3

3
1 1 1 1

3 2 2 3
1 1 1 1 1 1 1 1

3 2 2 2
1 1 1 1 1 1 1

3 3

3 3 .

y x ax b

x x x a x x x b

x x x x x x x x a x x x ax b

x x x x x x x x a x x y

= + +

= − + + − + +

= − + − + − + − + + +

= − + − + − + − +

 

We substitute the straight line for the equation above 

( ) ( )

( ) ( ) ( ) ( )

2
2 22 1 2 1

1 1 1 1
2 1 2 1

3 2 2 2
1 1 1 1 1 1 1

2

3 3 .

y y y yx x x x y y
x x x x

x x x x x x x x a x x y

 − −
− + − + − − 

= − + − + − + − +

 

A short calculation gives 

( ) ( ) ( )
2

2 22 1 2 1
1 1 1 1 1 1

2 1 2 1

2 3 3y y y yx x y x x x x x x a
x x x x

 − −
− + = − + − + + − − 

 

and 

( ) ( )
2

2 22 1 2 1
1 1 1 1 1

2 1 2 1

3 3 2 0.y y y yx x x x x x y a
x x x x

  − − − − − − + − + =  − −   
 

This is a quadratic equation and it is easy to solve 
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22 2
22 1 2 1 2 1

1 1 1 1 1
2 1 2 1 2 1

1 3 3 4 3 2 .
2

y y y y y yx x x x x y a
x x x x x x

       − − −   − = − ± − − − +        − − −          

 

Here we set 

( )
22

22 1 2 1
1 1 1

2 1 2 1

# 3 4 3 2 .y y y yx x y a
x x x x

    − − = − − − +    − −     
 

By expanding and arranging ( )#  we have 

( )
4 2

22 1 2 1 2 1
1 1 1

2 1 2 1 2 1

# 6 8 3 4 .y y y y y yx y x a
x x x x x x

   − − −
= − + − −   − − −   

 

Some calculation (this is a key point) gives 

( ) ( )

( )

( ){ }

( ) ( ){ }

( )

4 2 2
2 12 1 2 1

1
2 1 2 1 2 1

2
2 1 22 1

1 1
2 1 2 1

4 2
2 1 2 1

1 2 1
2 1 2 1

2 1 2 1 1 2
1

2 1
4

2 1 2 1
2 1

2 1 2 1

# 6 4

4 8 3 4

6 4

2
4 3 4

2 2

y yy y y yx
x x x x x x

y y y y y x a
x x x x

y y y yx x x
x x x x

y y y y y
x a

x x

y y y yx x
x x x x

−   − −
= − −   − − −   

− −
+ + − −

− −

   − −
= − + −   − −   

− − +
+ − −

−

  − −
= − + − − 

2 2 2
22 1
1

2 1

4 3 4
y y x a
x x

 −
+ − −  − 

 

( ) ( )

( )

( ) ( )

4 2
2 2 22 1 2 1

2 1 2 2 1 1 1
2 1 2 1

4 2
2 22 1 2 1

2 1 2 2 1 1
2 1 2 1

4 2
22 1 2 1

2 1 2 1
2 1 2 1

2
2 1

2
2 1

2 2 4 3 4

2 2 4 4

2 2 2

2

y y y yx x x x x x a x a
x x x x

y y y yx x x x x x
x x x x

y y y yx x x x
x x x x

y y x x
x x

   − −
= − + + + + + − −   − −   
   − −

= − + + + +   − −   
   − −

= − + + +   − −   

 −
= − − − 

2

1

  
 
  

 

where in the process we have used the equation 

( ) ( )
( )( )

2 2 3 3
2 1 2 2 1 1

2 2
2 1 2 2 1 1 .

y y x ax b x ax b

x x x x x x a

− = + + − + +

= − + + +
 

Therefore 

( )

2 2
2 1 2 1

1 1 2 1
2 1 2 1

2 2
2 1 2 1

1 2 1 2
2 1 2 1

1 3 2
2

1 2 4 2 2
2

y y y yx x x x x
x x x x

y y y yx x x x
x x x x

    − − − = − + − −    − −     
    − − = − − = − +    − −     
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and we finally obtain 

( )
2

2 1
1 2

2 1

,r
y yx x x
x x

 −
= − + − 

 

which is symmetric in 1 and 2. Another solution is 2x x=  (check this). 
This gives 

( )

( )

( )

2 1
1 1

2 1

2

2 1 2 1
1 2 1

2 1 2 1

3

2 1 2 1
1 2 1

2 1 2 1

2

2 .

r r
y yy x x y
x x

y y y y x x y
x x x x

y y y y x x y
x x x x

−
= − +

−

  − − = − + +  − −   

   − −
= − + +   − −   

 

As a result we have 

( ) ( )3 3, ,r rx y x y= −  

and this gives the Formula (6). 
Comment From the geometric definition of the addition (5) it is easy to see 

the commutativity 

1 2 2 1.P P P P⊕ = ⊕  

However, it is not clear to see this from the Formula (6). Then, a small change 
of 3y  in (6) gives 

( )
3

2 1 2 1 2 1 1 2
3 1 2

2 1 2 1 2 1

,y y y y y x y xy x x
x x x x x x

   − − −
= − + + +   − − −   

       (7) 

which is anti-symmetric in 1 and 2. The commutativity is very clear. In our 
opinion this formula is best. 

Next, we must define the addition P P⊕  of the same point P. The definition 
is usually performed by differential. By noting 

2 1
12 1

2 1

lim y y y
x x→

− ′=
−

 

the differential of 2 3y x ax b= + +  at ( )1 1,x y  gives 
2

2 1
1 1 1 1

1

32 3 .
2
x ay y x a y

y
+′ ′= + ⇒ =  

If we set for ( ),P x y  

( ) ( ) ( )3 3 3or , , ,P P P x y x y x y⊕ = ⊕ =            (8) 

then we obtain 
22

3
3 2 ,

2
x ax x

y
 +

= − 
 

 

32 2

3
3 3 3

2 2
x a x ay x y

y y
   + +

= − + −   
   

                (9) 
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by applying the argument above to (6). See the following Figure 2. 
There are tasks left behind. Our tasks are to show 

P O O P P⊕ = ⊕ =        (10) 

and 

( ) ( ) .P P P P O⊕ − = − ⊕ =        (11) 

Exercise Consider a proof with the geometric method. 
Last, we must prove the associative law 

( ) ( )1 2 3 1 2 3 ,P P P P P P⊕ ⊕ = ⊕ ⊕        (12) 

which is very hard for undergraduates (hard even for experts). 
The geometric method usually goes like Figure 3 ( 1P P= , 2P Q=  and 

3P R=  in this figure) 
 

 
Figure 2. Addition P1 = P2 = P. 

 

 
Figure 3. Associativity ( ) ( )P Q R P Q R⊕ ⊕ = ⊕ ⊕ . 
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However, this is not a proof but a circumstantial evidence. Therefore, we give 
an algebraic proof by use of MATHEMATICA2. 

For the purpose let us calculate the difference 

( ) ( )1 2 3 1 2 3P P P P P P⊕ ⊕ − ⊕ ⊕                   (13) 

by MATHEMATICA. In the following program we set 

( ) ( ) ( )1 2 3 1 2 3 , .P P P P P P CC FF DD GG⊕ ⊕ − ⊕ ⊕ = − −          (14) 

and use the Formula (7) because of its high symmetry. Associativity holds when 
the right hand side vanishes. 

Beginning of MATHEMATICA 

Readers must input and execute the following program in standard form of 
MATHEMATICA. 

We set 

( )
2

2 1
1 2

2 1

;y ys x x
x x

 −
= − + − 

 

( )

1 2
3

1 22 1 2 1
1 2

2 1 2 1 2 1

Det
;

x x
y yy y y yt x x

x x x x x x

  
     − −   = − + + +   − − −   

 

and 

( )
2

3
3

3

;y tCC s x
x s

 −
= − + − 

 

( )

3
3

33 3
3

3 3 3

Det
;

s x
t yy t y tDD s x

x s x s x s

  
     − −   = − + + +   − − −   

 

and also set 

( )
2

3 2
2 3

3 2

;y yu x x
x x

 −
= − + − 

 

( )

2 3
3

2 33 2 3 2
2 3

3 2 3 2 3 2

Det
;

x x
y yy y y yv x x

x x x x x x

  
     − −   = − + + +   − − −   

 

and 

( )
2

1
1

1

;v yFF x u
u x

 −
= − + − 

 

( )

1
3

11 1
1

1 1 1

Det
.

x u
y vv y v yGG x u

u x u x u x

  
     − −   = − + + +   − − −   

 

 

 

2We expect that undergraduates in the world can use MATHEMATICA or MAPLE, etc. 
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Moreover, we set 

( ) ( ) ( )2 2
1 2 1 2 1 2 3 ;P y y x x x x x= − − − + +  

( ) ( ) ( )2 2
2 3 2 3 1 2 3 ;Q y y x x x x x= − − − + +  

( ) ( ) ( )
( )( )( )( )

2 2 2
2 3 1 3 1 2 1 2 3

1 2 2 3 3 1 1 2 3 .

R x x y x x y x x y

x x x x x x x x x

= − + − + −

+ − − − + +
 

Here, 2P  ( 2Q ) appears in the denominator of CC  ( FF ) and 3P  ( 3Q ) in 
the denominator of DD  (GG). The homogeneous polynomials P and Q are 
invariant under the permutation of 1,2,3 , whereas R changes sign. 

For 

( ) ( )2 2 3 3

; ;
P Q CC FF P Q DD GG

AA BB
R R

− −
= =  

execute the following 

[ ]Factor AA  

[ ]Factor BB  

Ending of MATHEMATICA 

It takes about several seconds for a standard present day PC before 
MATHEMATICA outputs two huge homogeneous polynomials in 1x , 2x , 3x , 

1y , 2y  and 3y  of integer coefficients. The “degrees” of AA  and BB  are 9 
and 31/2, respectively, when “degree” 1 is assigned to 1x , 2x , 3x  and 3/2 for 

1y , 2y  and 3y , see the curve Equation (1). In other words, AA  and BB  are 
universal polynomials of elliptic curves which are independent of the parameters 
a and b. More than 10 pages are required to write down the outputs. As we will 
see their explicit forms are irrelevant for the discussion of the associativity, we 
do not display them here. These polynomials have many interesting features. 
From the program we have 

2 2 3 3, .AA BBCC FF R DD GG R
P Q P Q

− = − =                 (15) 

It is very interesting and important that both have a common factor R. Note 
that we have not imposed the equations 

2 3
1 1 1
2 3
2 2 2
2 3
3 3 3

y x ax b
y x ax b
y x ax b

 = + +
 = + +
 = + +

                         (16) 

up to this point. 
Last, we show 

0R =                                 (17) 

under the condition (16), which finishes the proof of associativity (14). 
Here, let us give an educational proof for undergraduates. We treat the 

following determinant : 
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1 2 3
2 2 2
1 2 3

1 1 1
X x x x

y y y
=                        (18) 

Direct calculation gives 

( ) ( ) ( ){ }
2 2 2 2 2 2

2 3 3 1 1 2 2 1 1 3 3 2

2 2 2
2 3 1 3 1 2 1 2 3 .

X x y x y x y x y x y x y

x x y x x y x x y

= + + − − −

= − − + − + −
               (19) 

On the other hand, from (16) we have 

1 2 3
3 3 3
1 1 2 2 3 3

1 2 3
3 3 3
1 1 2 2 3 3

1 2 3
3 3 3
1 2 3

1 1 1

1 1 1

1 1 1

X x x x
x ax b x ax b x ax b

x x x
x ax x ax x ax

x x x
x x x

=
+ + + + + +

=
+ + +

=

 

by some fundamental operations. 
Moreover, we have 

( )( )

( )( )
( )( )

( )( )( )( )
( )( )( )( )

1 2 1 3 1
3 3 3 3 3
1 2 1 3 1

2 1 3 1 1
3 2 2 2 2
1 2 2 1 1 3 3 1 1

2 1 3 1 1
3 2 2
1 2 2 1 1 3 2 3 2 1

2 1 3 1 3 2 3 2 1

1 2 2 3 3 1 1 2 3

1 0 0

1 0 0
1 1

1 0 0
1 0

X x x x x x
x x x x x

x x x x x
x x x x x x x x x

x x x x x
x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

= − −
− −

= − −
+ + + +

= − −
+ + − + +

= − − − + +

= − − − + +

     (20) 

by some fundamental operations. As a result, we obtain 

( ) ( ) ( )
( )( )( )( )

2 2 2
2 3 1 3 1 2 1 2 3

1 2 2 3 3 1 1 2 3

0

R x x y x x y x x y

x x x x x x x x x
X X

= − + − + −

+ − − − + +

= − + =

 

by (19) and (20). 
As shown in the paper the elementary proof of the associative law of the 

points of an elliptic curve is not easy. However, it is not necessarily a bad thing 
for the encryption system. 

In this section we reproved the following 
Theorem The system { },E ⊕  becomes an additive (abelian) group. 
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3. Concluding Remarks 

We conclude the paper by making some comments on the elliptic curve 
cryptography [7] [8]. 

Let p be a huge prime number and pF  be the finite field 

{ }0,1,2, , 1 ,p p= −F  

see for example [5]. 
Our target is an elliptic curve on pF  

( ) ( ){ }2 3, | mod .pE x y y x ax b p= = + +  

For this case pE  becomes a finite set. We assume that P  and pQ E∈  
satisfy the relation 

( )modQ n P p⊕=  

where 

( )-times .n P P P P n⊕ = ⊕ ⊕ ⊕  

Problem For given P and Q is it possible to find n in polynomial time? 
This is called the discrete logarithm problem and it is known as a very hard 

one to solve [9]. The security of the elliptic curve cryptography (which is worth 
studying for undergraduates or non-experts) is based on this hard problem. 
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