
Journal of Modern Physics, 2017, 8, 2122-2158 
http://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2017.813130  Dec. 8, 2017 2122 Journal of Modern Physics 
 

 
 
 

Why Gravitational Waves Cannot Exist 

J.-F. Pommaret 

CERMICS, Ecole des Ponts Paris Tech, Paris, France 

 
 
 

Abstract 
The purpose of this short but difficult paper is to revisit the mathematical 
foundations of both General Relativity (GR) and Gauge Theory (GT) in the 
light of a modern approach to nonlinear systems of ordinary or partial diffe-
rential equations, using new methods from Differential Geometry (D.C. 
Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and 
Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the dif-
ferential indeterminates of Ritt and Kolchin with the jet coordinates of 
Spencer, in order to study Differential Duality by using only linear differential 
operators with coefficients in a differential field K. In particular, the linearized 
second order Einstein operator and the formal adjoint of the Ricci operator 
are both parametrizing the 4 first order Cauchy stress equations but cannot 
themselves be parametrized. In the framework of Homological Algebra, this 
result is not coherent with the vanishing of a certain second extension module 
and leads to question the proper origin and existence of gravitational waves. 
As a byproduct, we also prove that gravitation and electromagnetism only 
depend on the second order jets (called elations by E. Cartan in 1922) of the 
system of conformal Killing equations because any 1-form with value in the 
bundle of elations can be decomposed uniquely into the direct sum ( ),R F  
where R is a section of the Ricci bundle of symmetric covariant 2-tensors and 
the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No 
one of these purely mathematical results could have been obtained by any 
classical approach. Up to the knowledge of the author, it is also the first time 
that differential algebra in a modern setting is applied to study the specific al-
gebraic feature of most equations to be found in mathematical physics, partic-
ularly in GR. 
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1. Introduction 

The first motivation for studying the methods used in this paper has been a 
1000$ challenge proposed in 1970 by J. Wheeler in the physics department of 
Princeton University while the author of this paper was a student of D.C. 
Spencer in the closeby mathematics department:  

Is it possible to express the generic solutions of Einstein equations in vacuum 
by means of the derivatives of a certain number of arbitrary functions like the 
potentials for Maxwell equations? 

During the next 25 years and though surprising it may look like, no progress 
at all has been made towards any solution, either positive or negative. We now 
explain the way we found the (negative) solution of this challenge in 1995 [1]. 

Let us consider a manifold X of dimension n with local coordinates ( )ix x=
 ( )1, , nx x= � , tangent bundle T, cotangent bundle *T , vector bundle *

qS T  of 
q-symmetric covariant tensors and vector bundle *r T∧  of r-skew-symmetric 
covariant tensors or r-forms. The group of isometries ( )y f x=  of the non- 
degenerate metric ω  with ( ) 0det ω ≠  on X is defined by the nonlinear first 
order system in Lie form: 

( )( ) ( ) ( ) ( )k l
kl i j ijf x f x f x xω ω∂ ∂ =  

Linearizing at the identity transformation y x= , we may introduce the 
corresponding Killing operator ( )*

2 :T S T ξ ξ ξ ω→ → = = Ω  , which 
involves the Lie derivative   and provides twice the so-called infinitesimal 
deformation tensor of continuum mechanics when ω  is the Euclidean metric. 
We may consider the linear first order system of Medolaghi equations:  

( )( ) ( ) ( ) ( ) 0r r r
ij rj i ir j r ijij

x x xξ ω ω ξ ω ξ ξ ωΩ ≡ ≡ ∂ + ∂ + ∂ =  

which is in fact a family of systems only depending on the geometric object ω  
and its derivatives. Introducing the Christoffel symbols γ , we may differentiate 
once and add the operator ( ) *

2S T Tξ γ = Γ∈ ⊗  with the well known 
Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj ω ω ω ω γ= ∂ �  in order to obtain the linear 
second order system of Medolaghi equations:  

( )( ) ( ) ( ) ( ) ( ) 0
kk k k r k r r k r k

ij ij rj i ir j ij r r ijij
x x x xξ γ ξ γ ξ γ ξ γ ξ ξ γΓ ≡ ≡ ∂ + ∂ + ∂ − ∂ + ∂ =  

Similarly, introducing the Jacobian determinant ( ) ( )( )k
ix det f x∆ = ∂ , the 

group of conformal transformations of the metric ω  may be defined by the 
nonlinear first order system in Lie form:  

( )( ) ( ) ( ) ( ) ( )
2

ˆ ˆk ln
kl i j ijf x x f x f x xω ω

−
∆ ∂ ∂ =  

while introducing the metric density ( ) ( )
1

ˆ ˆ 1n
ij ijdet detω ω ω ω

−
= ⇒ =  as a 
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new geometric object, rather than by eliminating a conformal factor as usual. 
The conformal Killing operator ( )ˆ ˆˆξ ξ ξ ω→ = = Ω   may be defined by 
linearization as above and we obtain:  

( ) ( ) ( ) ( )2ˆ ˆ ˆ ˆ ˆ 0r r r r
ij rj i ir j ij r r ijx x x x

n
ω ξ ω ξ ω ξ ξ ωΩ ≡ ∂ + ∂ − ∂ + ∂ =  

We may introduce the trace ( ) ij
ijtr ωΩ = Ω  with standard notations and 

obtain therefore ( )ˆ 0tr Ω =  because ( ) ( )
1 1ˆ n

ij ij ijdet tr
n

ω ω
−  Ω = Ω − Ω 
 

. 

The reader may look at [2] [3] [4] [5] [6] for finding other examples of Lie 
groups or Lie pseudogroups of transformations along the approach initiated by 
E. Vessiot in 1903 [7]. 

In classical elasticity, the stress tensor density ( )ij jiσ σ σ= =  existing inside 
an elastic body is a symmetric 2-tensor density introduced by A. Cauchy in 1822.  

Integrating by parts the implicit summation 1
2

ij
ijσ− Ω , we obtain the Cauchy  

operator ir i rs i
r rs fσ σ γ σ→ ∂ + = . When ω  is the euclidean metric, the 

corresponding Cauchy stress equations can be written as ir i
r fσ∂ =  where the 

right member describes the local density of forces applied to the body, for 
example gravitation. With zero second member, we study the possibility to 
“parametrize” the system of PD equations 0ir

rσ∂ = , namely to express its 
general solution by means of a certain number of arbitrary functions or 
potentials, called stress functions. Of course, the problem is to know about the 
number of such functions and the order of the parametrizing operator. For 

1,2,3n =  one may introduce the Euclidean metric ( )ij jiω ω ω= =  while, for 
4n = , one may consider the Minkowski metric. A few definitions used 

thereafter will be provided later on. 
● When 2n = , the stress equations become 11 12

1 2 0σ σ∂ + ∂ = , 21 22
1 2σ σ∂ + ∂

0= . Their second order parametrization 11
22σ φ= ∂ , 12 21

12σ σ φ= = −∂ , 
22

11σ φ= ∂  has been provided by George Biddell Airy (1801-1892) in 1863 
[8]. It can be simply recovered in the following manner:  

( )
( )

11 12 11 12
1 2 2 1

22 21 22 21
2 1 1 2

12 21
1 2 2 1

0 , ,

0 , ,

0 , ,

σ σ ϕ σ ϕ σ ϕ

σ σ ψ σ ψ σ ψ

σ σ ϕ ψ φ ϕ φ ψ φ

∂ − ∂ − = ⇒ ∃ = ∂ = −∂

∂ − ∂ − = ⇒ ∃ = ∂ = −∂

= ⇒ ∂ − ∂ = ⇒ ∃ = ∂ = ∂

 

We get the linear second order system:  
11

22
12

12
22

11

0 1 2
0 1

10

σ φ

σ φ

σ φ

 ≡ ∂ =
− ≡ ∂ = •
 •≡ ∂ =

 

which is involutive with one equation of class 2, 2 equations of class 1 and it is 
easy to check that the 2 corresponding first order CC are just the stress 
equations. 

When constructing a long prismatic dam with concrete as in [9] [10] or in the 
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Introduction of [11], we may transform a problem of 3-dimensional elasticity 
into a problem of 2-dimensional elasticity by supposing that the axis 3x  of the 
dam is perpendicular to the river with ( )1 2, , , 1, 2ij x x i jΩ ∀ =  and 33 0Ω =  
because of the rocky banks of the river. We may introduce the two Lamé 
constants ( ),λ µ  and the Poisson coefficient ( )2ν λ λ µ= +  in order to 
describe the usual constitutive relations of an homogeneous isotropic medium as 
follows, passing from the standard case 3n =  to the restricted case 2n =  just 
by setting:  

( ) ( )

( ) ( ) ( )

11 22

11 22

1 ,
2

,
2

tr tr

tr tr

σ λ ω µ

λ
µ σ σ ω σ σ σ

λ µ

= Ω + Ω Ω = Ω +Ω

⇒ Ω = − = +
+

 

even though ( ) ( ) ( )33 33 11 22
11 22

1 1 0
2 2

trσ λ λ σ ν σ σ= Ω +Ω = Ω ⇒ = + ≠ . Let us 

consider the right square of the diagram below with locally exact rows:  

Killing Riemann

Cauchy Airy

2 3 1 0

0 2 3 1

→ → →
↓↑

← ← ←

� �  

Taking into account the formula (5.1.4) of [12] for the linearization of the 
only component of the Riemann tensor at ω  when 2n =  and substituting the 
Airy parametrization, we obtain:  

( )

( ) ( )

11 22 22 11 12 122 0
2 0 0

2

tr R d d d

tr R λ µµ φ φ
λ µ

≡ Ω + Ω − Ω =

+
⇒ ≡ ∆∆ = ⇒ ∆∆ =

+
 

where the linearized scalar curvature ( )tr R  is allowing to define the Riemann 
operator in the previous diagram, namely the only compatibility condition (CC) 
of the Killing operator. It remains to exhibit an arbitrary homogeneous 
polynomial solution of degree 3 and to determine its 4 coefficients by the boundary 
pressure conditions on the upstream and downstream walls of the dam. Of 
course, the Airy potential φ  has nothing to do with the perturbation Ω  of the 
metric ω  and the Airy parametrization is nothing else but the formal adjoint 
operator ( )Airy Riemannad=  of the Riemann operator, linearization of the 
Riemann tensor over ω , expressing the second order compatibility conditions 
(CC) of the inhomogeneous system ξ = Ω . 
● When 3n = , using now the left square of the following diagram with locally 

exact rows:  
Killing Riemann

Cauchy Beltrami

3 6 6

0 3 6 6

→ →
↓↑

← ← ←

� �  

where the self-adjoint operator ( )Beltrami Riemannad=  has ben introduced by 
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E. Beltrami in 1892. We may substitute the 3-dimensional constitutive relations 
with Lamé constants ( ),λ µ  in the Cauchy stress equations and get, when 

=f g  (gravity):  

( ) ( )

( ) ( ) ( ) ( )2 0 0 0tr tr tr

λ µ µ

λ µ σ

+ ⋅ + ∆ =

⇒ + ∆ Ω = ⇒ ∆ Ω = ⇒ ∆ =

f
∇

∇ ∇ ξ ξ
 

We discover at once that the origin of elastic waves is shifted by one step 
backwards, from the right square to the left square of the diagram. Indeed, using 
inertial forces 2 2tρ= ∂ ∂f ξ  for a medium with mass ρ  per unit volume in 
the right member of Cauchy stress equations because of Newton law and the 
vector identity ( ) ( )∧ ∧ = ⋅ − ∆∇ ∇ ∇ ∇ξ ξ ξ , we discover the existence of two 
types of elastic waves ( )exp i tω⋅ −A k x  with wave vector k , period T , 
pulsation 2π Tω =  with standard notations, namely the longitudinal and 
transversal waves with different speeds T Lv v< , which are really existing 
because that are responsible for earthquakes [11]:  

( )

0 0

20 0 2

T

L

v

v

µ
µ

ρ

λ µ
λ µ

ρ


⋅ = ⇒ ⋅ = ⇒ ∆ = ⇒ =




+ ∧ = ⇒ ∧ = ⇒ + ∆ = ⇒ =


k A f

k A f

∇

∇

ξ ξ

ξ ξ
 

It is this comment that pushed me to use the formal adjoint of an operator, 
knowing already that an operator and its (formal) adjoint have the same 
differential rank (See later on). In the case of the conformal Killing operator, the 
second order CC are generated by the Weyl operator, linearization of the Weyl 
tensor over ω̂  when 4n ≥ . The particular situation pour 3n =  will be 
studied in the last section and its corresponding 5 third order CC are not known 
after one century [6]. Finally, the Bianchi operator describing the CC of the 
Riemann operator does not appear in this scheme.  

Summarizing what we have just said, the study of elastic waves in continuum 
mechanics only depends on group theory because it has only to do with one 
differential sequence and its formal adjoint, combined together by means of 
constitutive relations. We have proved in many books [4] [5] and in [6] [13] [14] 
that the situation is similar for Maxwell equations, a result leading therefore to 
revisit the mathematical foundations of both General Relativity (GR) and Gauge 
Theory (GT), thus also of Electromagnetism (EM). 

Knowing already M.P. Malliavin as I gave a seminar on the “Deformation 
Theory of Algebraic and Geometric Structures” [6] [15], I presented in 1995 a 
seminar at IHP in Paris, proving the impossibility to parametrize Einstein 
equations, a result I just found [1]. One of the participants called my attention 
on a recently published translation from japanese of the 1970 master thesis of M. 
Kashiwara that he just saw on display in the library of the Institute [16]. This has 
been the true starting of the story because I discovered that the duality involved 
in the preceding approach to physics was only a particular example of a much 
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more sophisticated framework having to do with homological algebra [11] [17] 
[18] [19] [20] [21].  

Let us explain this point of view by means of an elementary example. With 
2 1

22 12,ξ η ξ η∂ = ∂ =  for  , we get 2 1
1 2η η ζ∂ − ∂ =  for the CC 1 . Then 

( )1ad   is defined by 2 1
1 2,µ λ µ λ= −∂ = ∂  while ( )ad   is defined by 

1 2
12 22ν µ µ= ∂ + ∂  but the CC of ( )1ad   are generated by 1 2

1 2ν µ µ′ = ∂ + ∂ . 
Using operators, we have the two differential sequences: 

( ) ( )

1

1ad ad

ξ η ζ

ν µ λ

ν

→ →

← ←

′
↙



 
 

where 1  generates the CC of   in the upper sequence but ( )ad   does 
not generate the CC of ( )1ad   in the lower sequence, even though 1 0=� 

( ) ( )1 0ad ad⇒ =�  , contrary to what happened in the previous diagram. We 
shall see that this comment brings the need to introduce the first extension 
module ( )1ext M  of the differential module M determined by  .  

In a more intrinsic setting, using the same notation for a vector bundle and its 
set of (local) sections, we shall have:  

( )* * * *adn n

E F

T E T F

→

∧ ⊗ ← ∧ ⊗




 

In the meantime, following U. Oberst [22] [23], a few persons were trying to 
adapt these methods to control theory and, thanks to J.L. Lions, I have been able 
to advertise about this new approach in a european course, held with succes 
during 6 years [5] and continued for 5 other years in a slightly different form 
[24]. By chance I met A. Quadrat, a good PhD student interested by control and 
computer algebra and we have been staying alone because the specialists of 
Algebraic Analysis were pure mathematicians, not interested at all by applications. 
As a byproduct, it is rather strange to discover that the impossibility to 
parametrize Einstein equations, that we shall prove in Section 4, has never been 
acknowledged by physicists but can be found in a book on control because it is 
now known that a control system is controllable if and only if it is parametrizable 
[24] [25]. 

The following example of a double pendulum will prove that this result, still 
not acknowledged today by engineers, is not evident at all. For this, let us 
consider two pendula of respective length 1l  and 2l  attached at the ends of a 
rigid bar sliding horizontally with a reference position ( )x t . If the pendula 
move with a respective (small) angle ( )1 tθ  and ( )2 tθ  with respect to the 
vertical, it is easy to prove from the Newton principle that the equations of the 
movements does not depend on the respective masses 1m  and 2m  of the 
pendula but only depend on the respective lengths and gravity g  along the two 
formulas:  
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2 2 2 2
1 1 1 2 2 20, 0d x l d g d x l d gθ θ θ θ+ + = + + =  

where td d=  is the standard time derivative. It is experimentally visible and 
any reader can check it with a few dollars, that the system is controllable, that is 
the angles can reach any prescribed (small) values in a finite time when starting 
from equilibrium, if and only if 1 2l l≠  and, in this case, we have the following 
(injective) 4th order parametrization:  

( )4 2 2 4 2 4 2
1 2 1 2 2 1 1 2, ,l l d g l l d g x l d gd l d gdφ φ φ φ φ θ φ φ θ− − + − = + = + =  

( ) ( ) ( ) ( )2 22
2 1 1 2 1 1 2 2l l g l l x l lφ θ θ⇒ − = − + −  

of course, if 1 2l l l= = , the system cannot be controllable because, setting 

1 2θ θ θ= − , we obtain by substraction 2 0ld gθ θ+ =  and thus ( )0 0θ = , 
( ) ( )0 0 0d tθ θ= ⇒ = .  

We end this Introduction explaining on a simple example why the second 
extension module ( )2ext M  must also be considered, especially in the study of 
Einstein equations, though surprising it may look like. To make a comparison, 
let us consider the following well known Poincaré sequence:  

0 * 1 * 2 * 1 * * 0
d d d d dn nT T T T T−∧ →∧ →∧ → →∧ →∧ →�  

where : I i I
I i Id dx dx dxω ω ω= → ∂ ∧  is the exterior derivative. When 3n = , we 

have:  

( ) ( ) ( )

0 * 1 * 2 * 3 *

3 * 2 * 1 * 0 *

0 0

0 0

grad curl divd d d

ad d ad d ad d graddiv curl

T T T T

T T T T

φ ξ η ζ

θ ν µ λ

∧ →∧ →∧ →∧ → ⇔ → → → →

←∧ ← ∧ ← ∧ ← ∧ ⇔ ← ← ← ←
 

From their definition it follows that div  is parametrized by curl  while 
curl  is parametrized by grad . Also, in local coordinates, we have ( )ad div =

grad− , ( )ad curl curl= , ( )ad grad div= −  and the adjoint sequence is also 
the Poincaré sequence up to the sign. Let us nevertheless consider the new 
(minimal) parametrization of div  obtained by setting 3 0ξ = , namely [26] [27]:  

3 2 1 1 3 2 2 1 3
2 3 3 1 1 2

2 1 1 2 2 1 3
3 3 1 2

, ,

, ,

d d d d d d

d d d d

ξ ξ η ξ ξ η ξ ξ η

ξ η ξ η ξ ξ η

− = − = − =

⇒ − = = − =
 

If we define the differential rank of an operator by the maximum number of 
differentially independent second member, this is clearly an involutive 
differential operator with differential rank equal to 2 because ( )1 2,ξ ξ  can be 
given arbitrarily and thus ( )1 2,η η  can be given arbitrarily or, equivalently, 
because the differential rank of div  is of course equal to 1 as div  has no CC. 
Now, the involutive system 2

3 0d ξ = , 1
3 0d ξ = , 2 1

1 2 0d dξ ξ− =  canot be 
parametrized by one arbitrary function because both 1ξ  and 2ξ  are 
autonomous in the sense that they both satisfy to at least one partial differential 
equation (PDE). Accordingly, we discover that div  can be parametrized by the 
curl  through 3 arbitrary functions ( )1 2 3, ,ξ ξ ξ  where 3ξ  may be given 
arbitrarily, the curl  being itself parametrized by the grad , but div  can also 
be parametrized by another operator with less arbitrary functions or potentials 
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which, in turn, cannot be parametrized again. Such a situation is similar to the 
one met in hunting rifles that may have one, two or more trigger mechanisms 
that can be used successively. It happens that the possibility to have one 
parametrization of div  is an intrinsic property described by the vanishing of 

( )1ext M  where the differential module M is determined by grad  while the 
property to have two successive parametrizations is an intrinsic property 
described by the vanishing of ( )1ext M  as we just said plus the vanishing of the 
second extension module ( )2ext M , and so on, but such a result has no classical 
interpretation. It follows that certain parametrizations are “better” than others 
and no student should even imagine the minimal parametrization of div  that 
we have presented above. A similar procedure has been adopted by J.C. Maxwell 
[28] and G. Morera [29] when they modified the parametrization of the Cauchy 
stress equations obtained by E. Beltrami in 1892 (see [30] and [31] for more 
details and references or [32] [33] and [34] [35] for computer algebra calculations).  

It is clear from the beginning of this Introduction that an isometry is a 
solution of a nonlinear system in Lie form [2] [5] [6] and that we have linearized 
this system over the identity transformation in order to study elastic waves. 
However, in general, no explicit solution may be known but most nonlinear 
systems of OD or PD equations of mathematical physics (constant riemannian 
curvature is a good example in [36]) are defined by differential polynomials. 
This is particularly clear for riemannian, conformal, complex, contact, 
symplectic or unimodular structures on manifolds [6]. Hence, in Section 2 we 
shall provide the main results that exist in the formal theory of systems of 
nonlinear PD equations in order to construct a formal linearization. The proof 
of many results is quite difficult as it involves delicate chases in 3-dimensional 
diagrams [2] [5] [11]. In physics, the linear system obtained may have 
coefficients in a certain differential field and we shall need to revisit differential 
algebra in Section 3 because Spencer and Kolchin never clearly understood that 
their respective works could be combined. It will follow that the linear systems 
will have coefficients in a differential field K and we shall have to introduce the 
ring [ ] [ ]1, , nD K d K d d= = �  of differential operators with coefficients in K, 
which is even an integral domain. This fact will be particularly useful in order to 
revisit differential duality in Section 4 before applying it to physics in Section 5 
and concluding in the last Section 6. This paper is an extended and improved 
version of a series of lectures given at the Albert Einstein Institute (Berlin/ 
Postdam), october 23-27, 2017, under the title: “General Relativity and Gauge 
Theory: Beyond the Mirror”.  

These purely mathematical results question the origin and existence of 
gravitational waves.  

2. Differential Geometry 

If X is a manifold with local coordinates ( )ix  for ( )1, ,i n dim X= =� , let   
be a fibered manifold over X with ( )Xdim m= , that is a manifold with local 
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coordinates ( ),i kx y  for 1, ,i n= �  and 1, ,k m= �  simply denoted by 
( ),x y , projection ( ) ( ): : ,X x y xπ → →  and changes of local coordinates 

( ) ( ), ,x x y x yϕ ψ= = . If   and   are two fibered manifolds over X with 
respective local coordinates ( ),x y  and ( ),x z , we denote by X×   the 
fibered product of   and   over X as the new fibered manifold over X with 
local coordinates ( ), ,x y z . We denote by ( ) ( )( ): : ,f X x x y f x→ → =  a 
global section of  , that is a map such that Xf idπ =�  but local sections over 
an open set U X⊂  may also be considered when needed. Under a change of 
coordinates, a section transforms like ( )( ) ( )( ),f x x f xϕ ψ=  and the 
derivatives transform like: 

( )( ) ( ) ( )( ) ( )( ) ( ), ,
l l l

r k
i ir i k

f x x x f x x f x f x
x x y

ψ ψ
ϕ ϕ

∂ ∂ ∂
∂ = + ∂

∂ ∂ ∂
 

We may introduce new coordinates ( ), ,i k k
ix y y  transforming like: 

( ) ( ) ( ), ,
l l

l r k
r i ii ky x x y x y y

x y
ψ ψ

ϕ
∂ ∂

∂ = +
∂ ∂

 

We shall denote by ( )qJ   the q-jet bundle of   with local coordinates 

( ) ( ), , , , ,i k k k
i ij qx y y y x y=�  called jet coordinates and sections ( ):qf x →

( ) ( ) ( )( ) ( )( ), , , , ,k k k
i ij qx f x f x f x x f x=�  transforming like the sections 

( ) ( ) ( ) ( ) ( )( ) ( )( )( ): , , , , ,k k k
q i ij qj f x x f x f x f x x j f x→ ∂ ∂ =�  where both qf  

and ( )qj f  are over the section f  of  . It will be useful to introduce a 
multi-index ( )1, , nµ µ µ= �  with length 1 nµ µ µ= + +�  and to set 

( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = +� � . Finally, a jet coordinate kyµ  is said to be 
of class i if 1 1 0, 0i iµ µ µ−= = = ≠� . As the background will always be clear 
enough, we shall use the same notation for a vector bundle or a fibered manifold 
and their sets of sections [2] [11]. We finally notice that ( )qJ   is a fibered 
manifold over X with projection qπ  while ( )q rJ +   is a fibered manifold over 

( )qJ   with projection , 0q r
q rπ + ∀ ≥  [2] [3] [4] [5]. 

DEFINITION 2.1: A (nonlinear) system of order q on   is a fibered 
submanifold ( )q qJ⊂   and a global or local solution of q  is a section f of 
  over X or U X⊂  such that ( )qj f  is a section of q  over X or U X⊂ . 

 DEFINITION 2.2: When the changes of coordinates have the linear form 
( ) ( ),x x y A x yϕ= = , we say that   is a vector bundle over X. Vector bundles 

will be denoted by capital letters , ,C E F  and will have sections denoted by 
, ,ξ η ζ . In particular, we shall denote as usual by ( )T T X=  the tangent bundle 

of X, by ( )* *T T X=  the cotangent bundle, by *r T∧  the bundle of r-forms 
and by *

qS T  the bundle of q-symmetric covariant tensors. When the changes 
of coordinates have the form ( ) ( ) ( ),x x y A x y B xϕ= = +  we say that   is an 
affine bundle over X and we define the associated vector bundle   over X by 
the local coordinates ( ),x v  changing like ( ) ( ),x x v A x vϕ= = .  

DEFINITION 2.3: If the tangent bundle ( )T   has local coordinates  

( ), , ,x y u v  changing like ( ) ( ) ( ), , ,
l l

j j i l i k
i i ku x u v x y u x y v

x y
ψ ψ

ϕ
∂ ∂

= ∂ = +
∂ ∂

, we 

may introduce the vertical bundle ( ) ( )V T⊂   as a vector bundle over   
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with local coordinates ( ), ,x y v  obtained by setting 0u =  and changes 

( ),
l

l k
kv x y v

y
ψ∂

=
∂

. Of course, when   is an affine bundle over X with 

associated vector bundle E over X, we have ( ) XV E= ×  . With a slight abuse 

of language, we shall set ( )E V=   as a vector bundle over  . 

For a later use, if   is a fibered manifold over X and f is a section of  , we 
denote by ( )( )1f V−   the reciprocal image of ( )V   by f as the vector bundle 
over X obtained when replacing ( ), ,x y v  by ( )( ), ,x f x v  in each chart. A 
similar construction may also be done for any affine bundle over  . Loking at 
the transition rules of ( )qJ  , we deduce easily the following results:  

PROPOSITION 2.4: ( )qJ   is an affine bundle over ( )1qJ −   modeled on 
*

qS T E⊗  but we shall not specify the tensor product in general.  
PROPOSITION 2.5: There is a canonical isomorphism ( )( )qV J �

( )( ) ( )q qJ V J E=  of vector bundles over ( )qJ   given by setting ,
k kv vµ µ=  at 

any order and a short exact sequence:  

( ) ( )
1*

10 0
q
q

q q qS T E J E J E
π −

−→ ⊗ → → →  

of vector bundles over ( )qJ   allowing to establish a link with the formal 
theory of linear systems.  

PROPOSITION 2.6: There is an exact sequence:  

( ) ( )
1 *

10
qj D

q qJ T J E
+

+→ → → ⊗   

where ( )1 1 1q q qDf j f f+ += −  is over qf  with components ( )1 ,

k k
q ii

Df fµµ+ = ∂

1
k

i
fµ+−  is called the (nonlinear) Spencer operator. As ( ) ( )( )1 1q qJ J J+ ⊂  , 

there is an induced exact sequence:  

( ) ( )1 * *
10

qj D

q q qJ T J E S T E+→ → → ⊗ ⊗   

where 1D  is called the first Spencer operator.  
DEFINITION 2.7: If ( )q qJ⊂   is a system of order q on  , then 

( ) ( ) ( ) ( )( )1 1 1 1 1q q q q qJ J J Jρ+ += = ⊂∩      is called the first prolongation 
of q  and we may define the subsets q r+ . In actual practice, if the system is 
defined by PDE ( ), 0qx yτΦ =  the first prolongation is defined by adding the 
PDE 1 0

i

k k
i id y yτ τ τ

µ µ+Φ ≡ ∂ Φ + ∂Φ ∂ = . accordingly, ( )( ),q q qf x f xτ∈ ⇔ Φ
0=  and ( )1 1 1 0

i

k k
q q if f x yτ τ

µ µ+ + +∈ ⇔ ∂ Φ + ∂Φ ∂ =  as identities on X or at 
least over an open subset U X⊂ . Differentiating the first relation with respect 
to ix  and substracting the second, we finally obtain:  

( ) ( )( ) *
1 10
i

k k k
i q qf x f x y Df T Rτ

µ µ µ+ +∂ − ∂Φ ∂ = ⇒ ∈ ⊗  

and the Spencer operator restricts to *
1: q qD T R+ → ⊗ . We set  

( ) ( )1 1
1

q r
q r q r q rπ + +
+ + + +=  .  

DEFINITION 2.8: The symbol of q  is the family *
q q qg R S T E= ⊗∩  of 

vector spaces over q . The symbol q rg +  of q r+  only depends on qg  by a 
direct prolongation procedure. We may define the vector bundle 0F  over q  
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by the short exact sequence ( ) 00 0q qR J E F→ → → →  and we have the exact 
induced sequence *

00 q qg S T E F→ → ⊗ → . 
Setting ( ) ( ), ,k

k q qa x y y x yτµ τ
µ= ∂Φ ∂  whenever qµ =  and ( ), q qx y ∈ , 

we obtain:  

( ){ } ( )* | , 0 , , ,k k
q q k q q qg v S T E a x y v q x yτµ

µ µ µ= ∈ ⊗ = = ∈  

( ) ( ){ }
( )

* | , 0 ,

, , ,

k k
q r r q q r k q

q q

g g v S T E a x y v

q r x y

τµ
µ ν µ νρ

µ ν

+ + + +⇒ = = ∈ ⊗ =

= = ∈
 

In general, neither qg  nor q rg +  are vector bundles over q .  
On *sT∧  we may introduce the usual bases { }1 siiIdx dx dx= ∧ ∧�  where 

we have set ( )1 sI i i= < <� . In a purely algebraic setting, one has:  
PROPOSITION 2.9: There exists a map * * 1 *

1: s s
qT S T E Tδ +
+∧ ⊗ ⊗ → ∧

*
qS T E⊗ ⊗  which restricts to * 1 *

1: s s
q qT g T gδ +
+∧ ⊗ → ∧ ⊗  and 2δ δ δ= �

0= . 
Proof: Let us introduce the family of s-forms { },

k k I
Iv dxµ µω ω= =  and set 

( ) 1i

k i kdx µµ
δω ω += ∧ . We obtain at once ( )2

1 1 0
i j

k i j kdx dx µµ
δ ω ω + += ∧ ∧ =  and 

( ) ( )1 0
i

k i k
k ka dx aτµ τµ

µµδω ω += ∧ = .  
Q.E.D. 

The kernel of each δ  in the first case is equal to the image of the preceding 
δ  but this may no longer be true in the restricted case and we set: 

DEFINITION 2.10: Let ( ) ( )s s
q r q q r qB g Z g+ +⊆  and  

( ) ( ) ( )s s s
q r q q r q q r qH g Z g B g+ + +=  with ( ) ( )s s

q q qH g H g=  be the coboundary 

space ( )im δ , cocycle space ( )ker δ  and cohomology space at *s
q rT g +∧ ⊗  of 

the restricted δ-sequence which only depend on qg  and may not be vector 

bundles. The symbol qg  is said to be s- acyclic if 1 0, 0s
q r q rH H r+ += = = ∀ ≥� , 

involutive if it is n-acyclic and finite type if 0q rg + =  becomes trivially 
involutive for r large enough. In particular, if qg  is involutive and finite type, 

then 0qg = . Finally, *
qS T E⊗  is involutive for any 0q ≥  if we set 

*
0S T E E⊗ = .  

Having in mind the example of 0 0x xxxy y xy− = ⇒ =  with rank changing at 
0x = , we have:  

PROPOSITION 2.11: If qg  is 2-acyclic and 1qg +  is a vector bundle over 

q , then q rg +  is a vector bundle over , 1q r∀ ≥ .  
Proof: We may define the vector bundle 1F  over q  by the following 

ker/coker exact sequence where we denote by *
1 0h T F⊆ ⊗  the image of the 

central map:  
* *

1 1 0 10 0q qg S T E T F F+ +→ → ⊗ → ⊗ → →  

and we obtain by induction on r the following commutative and exact diagram 
of vector bundles over q :  
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* * *
1 1 1 0 1

* * * * * * *
0 1 1

2 * 2 * * 2 * *
1 1 1 0

3 * * 3 * *
2 2

0 0 0 0

0

0

0

q r q r r r

q r q r r r

q r q r r

q r q r

g S T E S T F S T F

T g T S T E T S T F T S T F

T g T S T E T S T F

T S T E T S T E

δ δ δ δ

δ δ δ

δ δ

+ + + + +

+ + −

+ − + − −

+ − + −

↓ ↓ ↓ ↓
→ → ⊗ → ⊗ → ⊗

↓ ↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ → ⊗ ⊗

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗

↓ ↓
∧ ⊗ ⊗ = ∧ ⊗ ⊗

 

where all the maps have been given after Definition 2.9. The image of the central 
map of the top row is ( )1 1r rh hρ+ =  and a chase proves that 1h  is ( )1s −
-acyclic whenever qg  is s-acyclic by extending the diagram. The proposition 
finally follows by upper-semicontinuity from the relation:  

( ) ( ) ( )*
1 1 1q r r q rdim g dim h mdim S T+ + + + ++ =  

Q.E.D.  
LEMMA 2.12: If qg  is involutive and 1qg +  is a vector bundle over q , 

then qg  is also a vector bundle over q . In this case, changing linearly the 
local coordinates if necessary, we may look at the maximum number β  of 
equations that can be solved with respect to k

n nv �  and the intrinsic number 
mα β= −  indicates the number of y that can be given arbitrarily.  

Using the exactness of the top row in the preceding diagram and a delicate 
3-dimensional chase, we have (See [2] and [11], p. 336 for the details):  

THEOREM 2.13: If ( )q qJ⊂   is a system of order q on   such that 

1qg +  is a vector bundle over q  and qg  is 2-acyclic, then there is an exact sequence:  
1

*
1 1

q r
q r r

q r q r rR R S T F
π κ+ +

+

+ + +→ → ⊗  

where rκ  is called the r-curvature and 0κ κ=  is simply called the curvature of 

q .  
We notice that ( )1 1q r r qρ+ + +=   and ( )q r r qρ+ =   in the following 

commutative diagram:  

( ) ( )

1
1

1 1
1 1

1 1

q r
q

q r
q

q r
q

q r q
q r q
q r q

q r q

q r q

π

π

π

π π

+ +
+

+

+

+ + +
+ + +
+

+

+

→
↓ ↓

→

→

∩ ∩

 

 

 

 

We also have ( ) ( )( )1 1
q r r qρ+ ⊆   because we have successively:  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( )( ) ( ) ( )( )

1 1 1
1 1 1

1
1

1 1

q r q r
q r q r q r q r r q q r

q
r q r q q r

r q q r r q

J J

J J J

J J

π π

π

ρ

+ + + +
+ + + + + + + +

+
+ +

+

= =

⊆

= =

∩

∩

∩

   

 

  

 

while chasing in the following commutative 3-dimensional diagram:  
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( ) ( )( )

( )
( ) ( )( )

( )

1 1

1 1

r q r q

q r q r

r q r q

q r q r

J J J

J

J J J

J

+ +

+ + + +

+ +

→

↓
→ ↓

↓ →

↓
→

↗ ↗

↗ ↗

 

 

 

 

 

with a well defined map ( ) ( )( ) ( )( )1
1:q

r q r q r qJ J J J Jπ +
+ →  . We finally obtain 

the following crucial Theorem and its Corollary (Compare to [2], p. 72-74 or 
[11], p. 340 to [37]):  

THEOREM 2.14: Let ( )q qJ⊂   be a system of order q on   such that 

1q+  is a fibered submanifold of ( )1qJ +  . If qg  is 2-acyclic and 1qg +  is a 
vector bundle over q , then we have ( ) ( )( )1 1

q r r qρ+ =   for all 0r ≥ .  
DEFINITION 2.15: A system ( )q qJ⊂   is said to be formally integrable 

if 1
1:q r

q r q r q rπ + +
+ + + +→   is an epimorphism of fibered manifolds for all 1r ≥  

and involutive if it is formally integrable with an involutive symbol qg . We 
have the following useful test [2] [37] [38] [39]:  

COROLLARY 2.16: Let ( )q qJ⊂   be a system of order q on   such 
that 1q+  is a fibered submanifold of ( )1qJ +  . If qg  is 2-acyclic (involutive) 
and if the map 1

1:q
q q qπ +

+ →   is an epimorphism of fibered manifolds, then 

q  is formally integrable (involutive).  
This is all what is needed in order to study systems of algebraic ordinary 

differential (OD) or partial differential (PD) equations.  

3. Differential Algebra 

We now present in an independent manner two OD examples and two PD 
examples showing the difficulties met when studying differential ideals and ask 
the reader to revisit them later on while reading the main Theorems. As only a 
few results will be proved, the interested reader may look at [3] [5] [11] for more 
details and compare to [40] [41] [42].  

EXAMPLE 3.1: If k = , y is a differential indeterminate and xd  is a 
formal derivation, we may set ,x x x x xxd y y d y y= =  and so on in order to 
introduce the differential ring [ ] { }, , ,x xxA k y y y k y= =� . We consider the 
(proper) differential ideal A⊂a  generated by the differential polynomial 

2 4xP y y= − . We have ( )2 2x x xxd P y y= −  and a  cannot be a prime 
differential ideal. Hence, looking for the “solutions” of 0P = , we must have 
either 0 0xy y= ⇒ =  or 2xxy =  and thus ( )2y x c= +  where c should be a 
“constant” with no clear meaning. However, we have successively:  

( )
( )2

( 2)
2

x xx

x xxx xx xx

x xxx

xxx

xxxx x xxx

P y y
y y y y

y y
yy
yy y y

∈ ⇒ − ∈

⇒ + − ∈

⇒ ∈

⇒ ∈

⇒ + ∈

a a

a

a

a

a
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( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2

2 2

2 3

2 2 2 4

2 2 4

2 2
4 2 2
4 2 2
4 2

x xxx

x xxx xxxx xx xxx x xxx xxxx xx xxx

xx xxx xxxx x xxxx x xxx xxxxx xxx

xx xxx xxxx x xxx xxxx x xxx xxxxx xxx

xx xxx xxxx x xxx xxxx xxx

y y
y y y y y y y y y y mod
y y y y y y y y y
y y y y y y y y y y
y y y y y y y

⇒ ∈

⇒ + ∈ ⇒ = −

⇒ + + + ∈

⇒ + + + ∈

⇒ + + ∈

a

a a

a

a

a

 

( ) ( )
( ) ( )

( ) ( )

2 4

2 4

5

3

6

xx xxx xxxx xxx

x xxx xxxx xxx

xxx xxx

y y y y

y y y y

y y rad

⇒ + ∈

⇒ − + ∈

⇒ ∈ ⇒ ∈

a

a

a a

 

and thus a  is neither prime nor perfect, that is equal to its radical, but ( )rad a  
is perfect as it is the intersection of the prime differential ideal generated by y 
with the prime differential ideal generated by 2 4xy y−  and 2xxy − , both 
containing xxxy .  

EXAMPLE 3.2: With the notations of the previous Example, let us consider 
the (proper) differential ideal A⊂a  generated by the differential polynomial 

2 34xP y y= − . We have ( )22 6x x xxd P y y y= −  and a  cannot be prime 
differential ideal. Hence, looking for the “solutions” of 0P = , we must have 
either 0 0xy y= ⇒ =  or 2 34 0xy y− =  and 26 0xxy y− = . However, we have:  

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( )

2 222 2 3 2

2

22

2 2 22 2 2 2 4 2

42 2

6 6 4 6

6 12

6

6 12 6 36 6

6 6

x xx x xx xx

xx xx x xxx x

xx xx

xx xx xx xx xx

xx xx

P y y y y y y y y y

y y y y y yy

y y y

y y y y y y y y y y

y y y y rad

∈ ⇒ − ∈ ⇒ − ∈ ⇒ − ∈

⇒ − + − ∈

⇒ − ∈

⇒ − − − + − ∈

⇒ − ∈ ⇒ − ∈

a a a a

a

a

a

a a

 

and thus a  is neither prime or perfect as before but ( )rad a  is the prime 
differential ideal generated by 2 34xy y−  and 26xxy y− .  

EXAMPLE 3.3: If k =  as before, y is a differential indeterminate and 
( )1 2,d d  are two formal derivations, let us consider the differential ideal 
generated by ( )2

1 22 11
1
2

P y y= −  and 2 12 11P y y= −  in { }k y . Using crossed 
derivatives, we get successively:  

( )
( ) ( )

( ) ( )

1 2 112 111 122 11 111 222 11 111

2 2 1 1 1 2 11 111

2
1 111 11 1111

3
111 111

, , ,
1

1

P P y y y y y y y y
Q d P d P d P y y

d Q y y y

y y rad

∈ ⇒ − ∈ − ∈ − ∈

⇒ = − + = − ∈

⇒ = + − ∈

⇒ ∈ ⇒ ∈

a a a a

a

a

a a

 

and thus a  is neither prime nor perfect but ( )rad a  is a perfect differential 
ideal and even a prime differential ideal p  because we obtain easily from the 
last section that the resisual differential ring { } [ ]1 2 11, , ,k y k y y y y�p  is a 
differential integral domain. Its quotient field is thus the differential field 

{ }( ) ( )1 2 11, , ,K Q k y k y y y y= �p  with the rules:  

1 1 1 1 11 1 11 2 2 2 1 11 2 11, , 0, , , 0d y y d y y d y d y y d y y d y= = = = = =  

https://doi.org/10.4236/jmp.2017.813130


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2017.813130 2136 Journal of Modern Physics 
 

as a way to avoid looking for solutions. The formal linearization is the linear 
system ( )2 2J E⊂  obtained in the last section where it was defined over 2 , 
but not over K, by the two linear second order PDE:  

22 11 11 12 110, 0Y y Y Y Y− = − =  

changing slightly the notations for using the letter v only when looking at the 
symbols. It is at this point that the problem starts because 2  is indeed a 
fibered manifold with arbitrary parametric jets ( )1 2 11, , ,y y y y  but ( )3 1 2ρ=   
is no longer a fibered manifold because the dimension of its symbol changes 
when 11 1y = . We understand therefore that there should be a close link existing 
between formal integrability and the search for prime differential ideals or 
differential fields. The solution of this problem has been provided as early as in 
1983 for studying the “Differential Galois Theory” but has never been 
acknowledged and is thus not known today ([3] [5]). The idea is to add the third 
order PDE 111 0y =  and thus the linearized PDE 111 0Y =  obtaining therefore a 
third order involutive system well defined over K with symbol 3 0g = . We 
invite the reader to treat similarly the two previous examples and to compare.  

EXAMPLE 3.4: If k =  as before, y is a differential indeterminate and 
( )1 2,d d  are two formal derivations, let us consider the differential ideal  

generated by ( )3
1 22 11

1
3

P y y= −  and ( )2
2 12 11

1
2

P y y= −  in { }k y . Using 

crossed derivatives, we get successively:  

1 2 2 2 1 1 11 1 2 2, = 0 involutiveP P d P d P y d P∈ ⇒ − + ⇒a   

( ) ( )3 2
222 11 111 122 11 111 112 11 1110, 0, 0,y y y y y y y y y⇒ − = − = − = �  

and thus ( ) 1, 1qdim g q= ∀ ≥ . As the symbol 2g  is involutive, there is an 
infinite number of parametric jets ( )1 2 11 111, , , , ,y y y y y �  and thus { }k y �a

[ ]1 2 11 111, , , , ,k y y y y y �  is a differential integral domain with 2 2 22d y y=  

( )3
11

1
3

y= , 2 11 112 11 111d y y y y= = , � . It follows that =a p  is a prime 

differential ideal with ( )rad =p p . The second order linearized system is:  

( )2
22 11 11 12 11 110, 0Y y Y Y y Y− = − =  

is now well defined over the differential field { }( )K Q k y= p  and is involutive.  
DEFINITION 3.5: A differential ring is a ring A with a finite number of 

commuting derivations ( )1, , n∂ ∂�  such that ( )i i ia b a b∂ + = ∂ + ∂ , ( )i ab∂ =

( )i ia b a b∂ + ∂  that can be extended to derivations of the ring of quotients 
( )Q A  by setting Aasssaassa iii ∈≠∀∂−∂∂ ,0,)/(=)/( 2 . We shall 

suppose from now on that A is even an integral domain and use the differential 
field ( )K Q A= . For example, if 1, , nx x�  are indeterminates over  , then 
[ ] 1, , nx x x =  �   is a differential ring for the standard ( )1, , n∂ ∂�  with 

quotient field ( )x .  
If K is a differential field as above and ( )1, , my y�  are indeterminates over K, 

we transform the polynomial ring { } limq qK y K y→∞  =    into a differential 
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ring by introducing as usual the formal derivations 1i

k k
i id y yµ µ+= ∂ + ∂ ∂  and we 

shall set { }( )K y Q K y= .  
DEFINITION 3.6: We say that { }K y⊂a  is a differential ideal if it is stable 

by the id , that is if , , 1, ,id a a i n∈ ∀ ∈ ∀ = �a a . We shall also introduce the 
radical ( ) { }| , rrad a A r a= ∈ ∃ ∈ ⊇a a a  and say that a  is a perfect (or radical) 
differential ideal if ( )rad =a a . If S is any subset of A, we shall denote by { }S  
the differential ideal generated by S and introduce the (non-differential) ideal 

( ) { }| , 0r S d a a S rνρ ν= ∈ ≤ ≤  in A.  
LEMMA 3.7: If A⊂a  is a differential ideal, then ( )rad a  is a differential 

ideal containing a .  

Proof: If d is one of the derivations, we have { }1 1r r ra da da a
r

− = ∈  and thus:  

( ) ( ) { } ( ) { } ( ) { }2 3 2 12 1 2 21 rr r r r r rr a da a d a a a da a da a−− − −− + ∈ ⇒ ∈ ⇒ ∈�  

Q.E.D.  
LEMMA 3.8: If { }K y⊂a , we set q qK y =  ∩a a  with [ ]0 K y= ∩a a  

and ∞ =a a . We have in general ( )r q q rρ +⊆a a  and the problem will be to 
know when we may have equality.  

We shall say that a differential extension { }( )L Q K y= p  is a finitely 
generated differential extension of K and we may define the evaluation 
epimorphism { } { }K y K Lη→ ⊂  with kernel p  by calling η  or y  the 
residue of y modulo p . If we study such a differential extension L K , by 
analogy with Section 2, we shall say that qR  or qg  is a vector bundle over 

q  
if one can find a certain number of maximum rank determinant Dα  that 
cannot be all zero at a generic solution of qp  defined by differential 
polynomials Pτ , that is to say, according to the Hilbert Theorem of Zeros, we 
may find polynomials { }, qA B K yα τ ∈  such that: 

1A D B Pα α τ τα τ+ =∑ ∑  

The following Lemma will be used in the next important Theorem:  
LEMMA 3.9: If p  is a prime differential ideal of { }K y , then, for q 

sufficiently large, there is a polynomial qD K y ∈    such that qD∉p  and:  

( )( ) , 0q r r q q rD rad rρ+ +⊂ ⊂ ∀ ≥p p p  

THEOREM 3.10: (Primality test) Let q qK y ⊂  p  and 1 1q qK y+ + ⊂  p  be 
prime ideals such that ( )1 1q qρ+ =p p  and 1q q qK y+   = ∩p p . If the symbol qg  
of the algebraic variety q  defined by qp  is 2-acyclic and if its first 
prolongation 1qg +  is a vector bundle over q , then ( )qρ∞=p p  is a prime 
differential ideal with ( ) , 0q r r qK y rρ+  = ∀ ≥ ∩p p .  

COROLLARY 3.11: Every perfect differential ideal of { }y  can be expressed 
in a unique way as the non-redundant intersection of a finite number of prime 
differential ideals.  

COROLLARY 3.12: (Differential basis) If r  is a perfect differential ideal of 
{ }K y , then we have ( )( )qrad ρ∞=r r  for q sufficiently large.  
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EXAMPLE 3.13: As { }K y  is a polynomial ring with an infinite number of 
variables it is not noetherian and an ideal may not have a finite basis. With 

, 1K n= =�  and xd d= , then { } ( )2, , ,x x xx xx xxx x xxyy y y y y y yy= ⇒ +�a

( ) { }xrad y∈ ⇒ =a a  is a prime differential ideal.  
PROPOSITION 3.14: If ζ  is differentially algebraic over K η  and η  is 

differentially algebraic over K, then ζ  is differentially algebraic over K. Setting 
ξ ζ η= − , it follows that, if L K  is a differential extension and L∈ηξ ,  are 
both differentially algebraic over K, then ξ η+ , ξη  and id ξ  are differentially 
algebraic over K.  

If { }( )L Q K y= p , { }( )M Q K z= q  and { }( ),N Q K y z= r  are such that 
{ }K y= ∩p r  and { }K z= ∩q r , we have the two towers K L N⊂ ⊂  and 

K M N⊂ ⊂  of differential extensions and we may therefore define the new 
tower ,K L M L M N⊆ ⊆ ⊆∩ . However, if only L K  and M K  are 
known and we look for such an N containing both L and M, we may use the 
universal property of tensor products an deduce the existence of a differential 
morphism KL M N⊗ →  by setting ( ) ( ) ( )L Md a b d a b a d b⊗ = ⊗ + ⊗  
whenever | |L Md K d K= = ∂ . The construction of an abstract composite 
differential field amounts therefore to look for a prime differential ideal in 

KL M⊗  which is a direct sum of integral domains [3].  
DEFINITION 3.15: A differential extension L of a differential field K is said 

to be differentially algebraic over K if every element of L is differentially 
algebraic over K. The set of such elements is an intermediate differential field 
K L′ ⊆ , called the differential algebraic closure of K in L. If L K  is a 
differential extension, one can always find a maximal subset S of elements of L 
that are differentially transcendental over K and such that L is differentially 
algebraic over K S . Such a set is called a differential transcedence basis and 
the number of elements of S is called the differential transcendence degree of 
L K .  

THEOREM 3.16: The number of elements in a differential basis of L K  
does not depent on the generators of L K  and his value is ( )difftrd L K α= . 
Moreover, if K L M⊂ ⊂  are differential fields, then  

( ) ( ) ( )difftrd M K difftrd M L difftrd L K= + .  
THEOREM 3.17: If L K  is a finitely generated differential extension, then 

any intermediate differential field K ′  between K and L is also finitely generated 
over K.  

EXAMPLE 3.18: With k = , let us introduce the manifolds X with local 
coordinate x and Y with local coordinates ( )1 2,y y . We may consider the 
algebraic Lie pseudogroup ( )aut YΓ ⊂  of (local, invertible) transformations of 
Y preserving the 1-form 2 1y dy , that is to say made up by transformations 

( )y g y=  solutions of the Pfaffian system 2 1 2 1y dy y dy= . Equivalently, we 
have to look for the invertible solutions of the algebraic first order involutive 
system ( )1 1J Y Y⊂ ×  defined over ( )1 2,k y y  by the first order involutive 
system of algebraic PD equations in Lie form: 
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( )
( )

1 21 1
2 2 2

1 2 1 2

,
, 0 1

,

y yy yy y y
y y y y

∂∂ ∂
= = ⇒ =

∂ ∂ ∂
 

By chance one can obtain the generic solution ( )1 1y g y= ,  

( )( )2 2 1 1y y g y y= ∂ ∂  where g is an arbitrary function of one variable. Now, if 
we introduce a function ( )y f x=  and consider the corresponding transformations 
of the jets ( )1 2 1 2, , , ,x xy y y y � , we obtain the only generating differential invariant 

2 1 2 1
x xy y y yΦ ≡ = . Hence, setting 2 1

xK k y y=  and 1 2,L k y y= , we have the 
tower of differential extensions k K L⊂ ⊂ . As any intermediate differential 
field K K L′⊂ ⊂  is finitely generated, let us consider 2 1 2,x xK k y y y′ = . Then:  

2 2 2 2
2 1 1 1 2 2

1 2 1 20, 1 ,x x
y y y yy y y y cst y y
y y y y

∂ ∂ ∂ ∂
+ ⇒ = = ⇒ = + =

∂ ∂ ∂ ∂
 

allows to define a Lie subpseudogroup ′Γ ⊂ Γ  with generating differential 
invariants 1 2,xy y  in such a way that, if we set 1 2,xK k y y′′ = , we have the 
strict inclusions K K K′ ′′⊂ ⊂  and it does not seem possible to obtain a 
differential Galois correspondence between algebraic subpseudogroups and 
intermediate differential fields, similar to the classical one. We have explained in 
[3] how to overcome this problem but this is out of the scope of this paper. It is 
finally important to notice that the fundamental differential isomorphism [3] 
[43] [44]:  

( ) ( ) [ ]( )K k yQ L L Q L k⊗ ⊗ Γ�  

is the Hopf dual of the projective limit of the action graph isomorphisms 
between fibered manifolds:  

q X q q Y q× ×�     

of fibered dimension ( )2 2q + . The corresponding automorphic system 
2 1

xy y ω=  in Lie form where ω  is a geometric object as in the Introduction 
and its prolongations has been introduced as early as in 1903 by E. Vessiot [7] 
[45] as a way to study principal homogeneous spaces (PHS) for Lie pseudogroups, 
namely if ( )y f x=  is a solution and ( )y f x=  is another solution, then 
there exists one and only one transformation ( )y g y=  of Γ  such that 
f g f= � .  

This is all what is needed in order to study systems of infinitesimal Lie 
equations defined, like the classical and conformal Killing systems, over ω  
where ω  is a geometric object solution of a system of algebraic Vessiot 
structure equations (constant Riemann curvature, zero Weyl tensor).  

4. Differential Duality 

Let A be a unitary ring, that is 1, , , ,1 1a b A a b ab A a a a∈ ⇒ + ∈ = =  and even an 
integral domain ( 0 0ab a= ⇒ =  or 0b = ) with field of fractions K = ( )Q A . 
However, we shall not always assume that A is commutative, that is ab  may be 
different from ba  in general for ,a b A∈ . We say that AM M=  is a left 
module over A if , , ,x y M ax x y M a A∈ ⇒ + ∈ ∀ ∈  or a right module BM  
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over B if the operation of B on M is ( ), ,x b xb b B→ ∀ ∈ . If M is a left module 
over A and a right module over B with ( ) ( ) , , ,ax b a xb a A b B x M= ∀ ∈ ∀ ∈ ∀ ∈ , 
then we shall say that A BM M=  is a bimodule. Of course, A AA A=  is a 
bimodule over itself. We define the torsion submodule  
( ) { }| 0 , 0t M x M a A ax M= ∈ ∃ ≠ ∈ = ⊆  and M is a torsion module if 
( )t M M=  or a torsion-free module if ( ) 0t M = . We denote by ( ),Ahom M N  

the set of morphisms :f M N→  such that ( ) ( )f ax af x= . We finally recall 
that a sequence of modules and maps is exact if the kernel of any map is equal to 
the image of the map preceding it.  

When A is commutative, ( ),hom M N  is again an A-module for the law 
( )( ) ( )bf x f bx=  as we have ( )( ) ( ) ( ) ( )bf ax f bax f abx af bx= = = =

( )( )a bf x . In the non-commutative case, things are more complicate and, given 

A M  and A BN , then ( ),Ahom M N  becomes a right module over B for the law 
( )( ) ( )fb x f x b= .  

DEFINITION 4.1: A module F is said to be free if it is isomorphic to a (finite) 
power of A called the rank of F over A and denoted by ( )Ark F  while the rank 

( )Ark M  of a module M is the rank of a maximum free submodule F M⊂ . It 
follows from this definition that M F  is a torsion module. In the sequel we 
shall only consider finitely presented modules, namely finitely generated 
modules defined by exact sequences of the type 

1

1 0 0
d p

F F M→ → →  where 0F  
and 1F  are free modules of finite ranks 0m  and 1m  often denoted by m and p 
in examples. A module P is called projective if there exists a free module F and 
another (projective) module Q such that P Q F⊕ � . 

PROPOSITION 4.2: For any short exact sequence 0 0
f g

M M M′ ′′→ → → → , 
we have the relation ( ) ( ) ( )A A Ark M rk M rk M′ ′′= + , even in the non-commutative 
case. As a byproduct, if M admits a finite length free resolution 

2 1

1 0

d d
F F→ →�

0
p

M→ → , we may introduce the Euler-Poincaré characteristic ( )A Mχ =

( ) ( ) ( )1 r
A r Ar rk F rk M− =∑  (See [11], p. 469). 

The following proposition will be used many times in Section 5, in particular 
for exhibiting the Weyl tensor from the Riemann tensor ([17], p. 73) ([21], p. 33): 

PROPOSITION 4.3: We shall say that the following short exact sequence 
splits if one of the following equivalent three conditions holds:  

0 0

u v

f g
M M M

← ←

′ ′′→ → → →  

● There exists a monomorphism :v M M′′ →  called lift of g and such that 

Mg v id ′′=� . 
● There exists an epimorphism :u M M ′→  called lift of f  and such that 

Mu f id ′=� . 
● There exist isomorphisms ( ), :u g M M Mϕ ′ ′′= → ⊕  and :f v M Mψ ′ ′′= + ⊕

M→  that are inverse to each other and provide an isomorphism 
M M M′ ′′⊕�  with Mf u v g id+ =� �  and thus ( ) ( )ker u im v= .  

These conditions are automatically satisfied if M ′′  is free or projective.  
Using the notation ( )* ,AM hom M A= , for any morphism :f M N→ , we 

https://doi.org/10.4236/jmp.2017.813130


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2017.813130 2141 Journal of Modern Physics 
 

shall denote by * * *:f N M→  the morphism which is defined by ( )*f h =

( ), ,Ah f h hom N A∀ ∈�  a n d  s a t i s f i e s  ( ) ( )( ) ( )* ,A A Ark f rk im f rk f= =

( ),Af hom M N∀ ∈  (See [24], Corollary 5.3, p. 179). We may take out M  in  

order to obtain the deleted sequence 
2 1

1 0 0
d d

F F→ → →�  and apply ( ),Ahom A•  

in order to get the sequence 
* *
2 1* *

1 0 0
d d

F F← ← ←� .  

PROPOSITION 4.4: The extension modules ( ) ( ) ( )0 *
1 ,A Aext M ker d hom M A= =

*M=  and ( ) ( ) ( ) ( )* *
1 , 1i i

A i iext M ext M ker d im d i+= = ∀ ≥  do not depend on 
the resolution chosen and are torsion modules for 1i ≥ .  

Let A be a differential ring, that is a commutative ring with n commuting 
derivations { }1, , n∂ ∂� , that is , , 1, ,i j j i ij i j n∂ ∂ = ∂ ∂ = ∂ ∀ = �  while ( )i a b∂ +

i ia b= ∂ + ∂  and ( ) ( ) , ,i i iab a b a b a b A∂ = ∂ + ∂ ∀ ∈ . We shall use thereafter a 
differential integral domain A with unit 1 A∈  whenever we shall need a 
differential field ( )K Q A⊂ =�  of coefficients, that is a field ( 1a K a K∈ ⇒ ∈ ) 
with ( ) ( )21 1i ia a a∂ = − ∂ , in order to exhibit solved forms for systems of 
partial differential equations as in the preceding section. Using an implicit 
summation on multi-indices, we may introduce the (noncommutative) ring of 
differential operators [ ] [ ]1, , nD A d d A d= =�  with elements P a dµ µ=  such 
that µ < ∞  and i i id a ad a= + ∂ . The highest value of µ  with 0aµ ≠  is 
called the order of the operator P and the ring D with multiplication 
( ),P Q P Q PQ→ =�  is filtred by the order q of the operators with the filtration 

1 0 10 qD D D D D D− ∞= ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ =� � . Moreover, it is clear that D, as an 
algebra, is generated by 0A D=  and 1 0T D D=  with 1D A T= ⊕  if we 
identify an element i

id Tξ ξ= ∈  with the vector field ( )i
ixξ ξ= ∂  of 

differential geometry, but with i Aξ ∈  now. It follows that D DD D=  is a 
bimodule over itself, being at the same time a left D-module D D  by the 
composition P QP→  and a right D-module DD  by the composition 
P PQ→  with , , 0r s r sD D D r s+= ∀ ≥  in any case.  

If we introduce differential indeterminates ( )1, , my y y= � , we may extend 

1i

k k
id y yµ µ+=  to 1

i

i

dk k k
k i k i ka y d a y a yτ τµ τ τµ τµ

µ µ µ+Φ ≡ → Φ ≡ + ∂  for 1, , pτ = � . 
Therefore, setting 1 m mDy Dy Dy D+ + =� �  and calling I D Dy= Φ ⊂  the 
differential module of equations, we obtain by residue the differential module or 
D- module M Dy D= Φ , introducing the canonical projection 0

p
Dy M→ →  

and denoting the residue of kyµ  by kyµ  when there can be a confusion. 
Introducing the two free differential modules 0 1

0 1,m mF D F D� � , we obtain 
equivalently the free presentation 

1

1 0 0
d p

F F M→ → →  of order q when 

1 qd j= = Φ � . It follows that M can be endowed with a quotient filtration 
obtained from that of mD  which is defined by the order of the jet coordinates 

qy  in qD y . We shall suppose that the system ( )qR ker= Φ  is formally 
integrable. We have therefore the inductive limit 1 0 10 qM M M M−= ⊆ ⊆ ⊆ ⊆�

M M∞⊆ ⊆ =�  with 1i q qd M M +⊆  which is the dual of the projective limit 

0 0qR R R R∞= → → → →�  if we set ( ),KR hom M K=  with 
 ( ),q K qR hom M K=  and *

1q qDR T R+ ⊆ ⊗ , the main reason for using a 
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differential field K. We have in general , 0,r s r sD I I r s q+⊆ ∀ ≥ ∀ <  with 

r rI I D y= ∩ . Also, R is a left D-module with  

1( )  and  ( ) .
i

k k k k k
µ µ i if y f d f f fµ µ µ+= = ∂ −  

More generally, introducing the successive CC as in the preceding Section 
while changing slightly the numbering of the respective operators, we may 
finally obtain the free resolution of M, namely the exact sequence 

3 2

2 1

d d
F F→ →�

1

0 0
d p

F M→ → →  where p is the canonical projection. Also, with a slight abuse of 
language, when qD j= Φ �  is involutive, that is to say when ( )qR ker= Φ  is 
involutive, one should say that M has an involutive presentation of order q or 
that qM  is involutive.  

REMARK 4.5: In actual practice, one must never forget that qj= Φ �  acts 
on the left on column vectors in the operator case and on the right on row 
vectors in the module case. For this reason, when E is a (finite dimensional) 
vector bundle over X, we may apply the correspondence  

( ) ( )* *:K q q KJ E D E J E D E∞ ↔ ⊗ ↔ ⊗  with ( ) ( )1
1:q

q q q qJ E J E Dπ +
+ → ↔

1qD +⊂  and ( )* ,KE hom E K=  between jet bundles and left differential 
modules in order to be able to use the double dual isomorphism **E E�  in 
both cases. We shall say that ( ) ( )* *

KD E D E ind E= ⊗ =  is the the left 
differential module induced by *E . Hence, starting from a differential operator 

D
E F→ , we may obtain a finite presentation 

*
* * 0

p
K KD F D E M⊗ → ⊗ → →


 

and conversely, keeping the same operator matrix if we act on the right of row 
vectors. This comment becomes particularly useful when dealing with the 
Poincaré sequence in electromagnetism ( 4n = ) or even as we already saw in the 
Introduction ( 3n = ).  

Roughly speaking, homological algebra has been created in order to find 
intrinsic properties of modules not depending on their presentations or even on 
their resolutions and we now exhibit another approach by defining the formal 
adjoint of an operator P and an operator matrix  :  

DEFINITION 4.6: Setting ( ) ( )1
ad

P a d D ad P d a Dµµ µ
µ µ= ∈ ↔ = − ∈ , we 

have ( )( )ad ad P P=  and ( ) ( ) ( ) , ,ad PQ ad Q ad P P Q D= ∀ ∈ . Such a 
definition can be extended to any matrix of operators by using the transposed 
matrix of adjoint operators and we get:  

( ) ( ), , ...ad divλ ξ λ ξ= +   

from integration by part, where λ  is a row vector of test functions and  the 
usual contraction. We quote the useful formulas ( ) ( )( )D Drk rk ad=   as in 
([1] or [5], p. 339-341). 

The following technical Lemma is crucially used in the next proposition:  
LEMMA 4.7: If ( )f aut X∈  is a local diffeomorphisms on X, we may set 

( ) ( )1x f y g y−= =  and we have the identity:  

( )( ) ( )( )1 0.k
ik f g y

y g y

 ∂
∂ ≡  ∂ ∆ 

 

PROPOSITION 4.8: If we have an operator E F→


, we may obtain by 
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duality an operator 
( )* * * *adn nT E T F∧ ⊗ ← ∧ ⊗


.  
Now, with operational notations, let us consider the two differential sequences:  

1ξ η ζ→ →


 

( ) ( )1ad ad
ν µ λ← ←

 
 

where 1  generates all the CC of  . Then ( ) ( )1 10 0ad ad≡ ⇔ ≡� �     
but ( )ad   may not generate all the CC of ( )1ad   as we already saw in the 
Introduction. Passing to the module framework, we just recognize the definition 
of ( )1ext M  when M is determined by  .  

As D DD D=  is a bimodule, then ( )* ,DM hom M D=  is a right D-module 
according to Lemma 3.1 and we may thus define a right module DN  by the 
ker/coker long exact sequence 

*
* * *

1 00 0DN F F M← ← ← ← ←


 but we have 
[11] [31] [46] [47]:  

THEOREM 4.9: We have the side changing procedures D DM M M= →
*n

AT M= ∧ ⊗  and ( )*,n
D D A DN N N hom T N→ = = ∧  with ( )D DM M=  and 

( )D DN N= .  
Now, exactly like we defined the differential module M from  , we may 

define the differential module N from ( )ad  . For any other presentation of M 
with an accent, we have [11] [48]:  

THEOREM 4.10: The modules N  and N ′  are projectively equivalent, that 
is one can find two projective modules P  and P′  such that 
N P N P′ ′⊕ ⊕�  and we obtain therefore ( ) ( ) , 1i i

D Dext N ext N i′ ∀ ≥� .  
THEOREM 4.11: The operator   is simply parametrizable if ( )1 0ext N =  

and doubly parametrizable if ( )1 0ext N =  and ( )2 0ext N = . Moreover, we 
have the ker/coker long exact sequence:  

( ) ( )1 ** 20 0ext N M M ext N→ → → → →


 

where ( )( )( ) ( )m f f m=  whenever *f M∈  and we have ( ) ( )1t M ext N= =

( )ker  .  
Proof: We prove first that ( ) ( )t M ker⊆  . Indeed, if ( )m t M∈ , then one 

may find 0 P D≠ ∈  such that 0Pm =  and thus ( ) ( ) 0f Pm Pf m= =

( ) 0f m⇒ =  because [ ]D K d=  is an integral domain and thus 
( ) ( )t M ker⊆  . 
Let us now start with a free presentation of ( )1M cocker d= :  

1

1 0 0
pd

F F M→ → →  

Applying ( ),Dhom M D , we may define ( )*
1DN coker d=  and exhibit the 

following free resolution of N by right D-modules:  
** *
01 1* * * *

1 0 1 20
dd d

DN F F F F−

− −← ← ← ← ←  

where ( ) ( ) ( )* * * *
1 0 1M ker d im d coker d−= = � . The deleted sequence is:  

** *
01 1* * * *

1 0 1 20
dd d

F F F F−

− −← ← ← ←  
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Applying again ( ),Dhom D•  and using the canonical isomorphism **F F�  
for any free module F of finite rank, we get the sequence of left D-modules:  

01 1

1 0 1 2

**

0

0 0

dd d
F F F F

M M

−

− −→ → → →
↓ ↑

→
↓ ↑

↘
  

Denoting as usual a coboundary space by B, a cocycle space by Z and the 
corresponding cohomology by H Z B= , we get the commutative and exact 
diagram:  

0 0

**
0 0

0 0

0

B F M

Z F M

→ → → →
↓ ↓

→ → →
�   

An easy chase provides at once ( ) ( )1
0 0 0 DH Z B ext N ker= = �  . It follows 

that ( )ker   is a torsion module and, as we already know that ( ) ( )t M ker⊆ 
M⊆ , we finally obtain ( ) ( )t M ker=  . Also, as ( )1B im− =   and **

1Z M− � , 
we obtain ( ) ( )2

1 1 1 ,AH Z B ext N A coker− − −= = �  . Accordingly, a torsion-free 
(   injective)/reflexive (   bijective) module is described by an operator that 
admits respectively a single/double step parametrization. 

 Q.E.D.  
We now turn to the operator framework;  
DEFINITION 4.12: If a differential operator ξ η→


 is given, a direct 

problem is to find generating compatibility conditions (CC) as an operator 
1η ζ→


 such that 1 0D Dξ η η= ⇒ = . Conversely, given 
1η ζ→


, the inverse 
problem will be to look for ξ η→


 such that 1  generates the CC of   and 

we shall say that 1  is parametrized by   if such an operator   is existing. 
We finally notice that any operator is the adjoint of a certain operator because 

( )( ) ,ad ad P P P D= ∀ ∈  and we get:  
THEOREM 4.13: (reflexivity test) In order to check whether M is reflexive or 

not, that is to find out a parametrization if ( ) 0t M =  which can be again 
parametrized, the test has 5 steps which are drawn in the following diagram 
where ( )ad   generates the CC of ( )1ad   and 1′  generates the CC of 

( )( )ad ad=   while ( )1ad −  generates the CC of ( )ad   and ′  
generates the CC of 1− :  

( ) ( ) ( )

1

1 1

1 1

5

4 1

3 2
ad ad ad

η ζ

φ ξ η ζ

θ ν µ λ

−

−

′′

′ ′

→ → →

← ← ←

↗ ↗
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( ) ( )1
1 1 1parametrized by 0 injective 0ext N t M′⇔ = ⇔ = ⇔ ⇔ =      

( )2
1parametrized by 0 surjectiveext N− ′⇔ = ⇔ = ⇔      

COROLLARY 4.14: In the differential module framework, if 
1

1 0

D p
F F M→ →

0→  is a finite free presentation of ( )1M coker=   with ( ) 0t M = , then we 
may obtain an exact sequence 

1

1 0F F E→ →
 

 of free differential modules where 
  is the parametrizing operator. However, there may exist other 
parametrizations 

1

1 0F F E
′

′→ →
 

 called minimal parametrizations such that 
( )coker ′  is a torsion module and we have thus )(=)( ErkMrk DD ′ .  

REMARK 4.15: The following chains of inclusions and short exact sequences 
allow to compare the main procedures used in the respective study of differential 
extensions and differential modules:  

( )
0 0

0 0

K K S L F M T

K K L t M M M

⊂ ⊂ ⇒ → → → →

′ ′⊂ ⊂ ⇒ → → → →
 

where F is a maximum free submodule of M, T M F=  is a torsion-module 
and ( )M M t M′ =  is a torsion-free module. The next examples open the way 
towards a new domain of research.  

EXAMPLE 4.16: With 2, 3,n m K= = = , let us consider the first order 
nonlinear involutive system:  

1 3 1 2 3 2
1 2 1 2 2 10, 0P y y y P y y y≡ − = ≡ − =  

This system defines a prime differential ideal { }K y⊂p  and the differential 
extension { }( )L Q K y= p  is differentially algebraic over 3K y  with 
parametric jets ( )1 2 1 2 1 2

1 1 11 11, , , , , ,y y y y y y � . 
The linearized system 1 0Y =  over L is:  

1 3 1 1 3 2 3 2 2 3
2 1 1 2 1 10, 0d Y y d Y y Y d Y y d Y y Y− − = − − =  

Multiplying by test functions ( )1 2,λ λ  and integrating by part, we get 
( )1ad λ µ=  in the form:  

1 1 3 1 3 1 1
2 1 1

2 2 3 2 3 2 2
2 1 1

3 1 1 2 2 3
1 1

Y d y d y

Y d y d y

Y y y

λ λ λ µ

λ λ λ µ

λ λ µ

 → − + + =
 → − + + =
 → − − =

 

Using only the parametric jets for y and λ  in the PD equations provided, we 
get:  

( ) ( ) ( ) ( )1 3 1 3 1 3 1 1 3 1 2 3 3 1 3 2 2 3 2
1 1 1 11 1 1 1 1 2 1 11 1 1

3 1 1 2 2
2 1 1

y y d y y y y y y y d y y y y y

d y y

λ λ λ λ λ λ

µ µ µ

− + − + − + − +

= − −
 

3 1 1 3 1 1 3 2 2 3 2 2 1 3 1 2 3 2
1 1 11 1 1 11 1 1 1 1

3 3 3 3
1 1

2 2

2

y y d y y y y d y y y y y y

y d y

λ λ λ λ λ λ

µ µ

− − − − − −

= +
 

and the only CC ( ) 0ad µ =  over L:  
3 3 3 1 1 2 2 3 3

2 1 1 1 12 0d y d y y yµ µ µ µ µ− + + + + =  
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Multiplying by a test function ξ  and integrating by part, we get Yξ =  
over L in the form:  

1 1 2 2 3 3 3
1 1 2 1 1, ,y Y y Y d y d y Yξ ξ ξ ξ ξ= = − + =  

admitting the CC 1 0Y =  of course but also the additional zero order CC:  
1 2 2 1
1 1 0y Y y Yω ≡ − =  

which provides a torsion element ω  satisfying 3 3
2 1 1 0d y d yω ω ω− − = . Setting 

Y yδ=  as the standard variational notation used by engineers, we obtain easily 
0ω δω∧ ≠  and ω  cannot therefore admit an integrating factor, a result 

showing that K is its own differential algebraic closure in L.  
EXAMPLE 4.17: If 1 3 2 *dx x dx Tα = − ∈ , the linear system obtained over 

( )1 2 3, ,K x x x=  by eliminating the factor ( )xρ  in the linear system 
( ) ( )xξ α ρ α=  admits the injective parametrization 3 1

3x φ φ ξ− ∂ + = , 
2

3φ ξ−∂ = , 3 3 1 3 2
2 1x xφ φ ξ ξ ξ φ∂ − ∂ = ⇒ − = . It defines therefore a free 

differential module M D�  which is thus reflexive and even projective. Any 
resolution of this module splits, like the short exact sequence 2 30 D D→ →

0D→ → , and the corresponding differential sequence of operators is locally 
exact like the Poincaré sequence ([3], p. 684-691).  

5. Applications 

We start this section with a general (difficult) result on the actions of Lie groups, 
covering at the same time the study of the classical and conformal Killing systems. 
For this, we notice that the involutive first Spencer operator 1 0: qD C R=

( ) ( ) ( )1 *
1 1 1 1 1

j

q q q q qJ R J R R T R g Cδ+ +→ → ⊗ =�  of order one is induced by the 
Spencer operator ( ) { }*

1 1 1 1 1: : | 0k k
q q q q q i i

D R T R j qµ µξ ξ ξ ξ ξ µ+ + + +→ ⊗ → − = ∂ − ≤ . 
Introducing the Spencer bundles ( )* 1 *

1
r r

r q qC T R T gδ −
+= ∧ ⊗ ∧ ⊗ , the first 

order involutive ( 1r + )-Spencer operator 1 1:r r rD C C+ +→  is induced by 
( )* 1 *

1 1 1: : 1 rr r
q q q q qD T R T R d Dα ξ α ξ α ξ+
+ + +∧ ⊗ → ∧ ⊗ ⊗ → ⊗ + − ∧ . We obtain 

therefore the canonical linear Spencer sequence ([5], p. 150 or [38]) (See [49] [50] 
[51] [52] for other applications):  

31 2

0 1 20 0
q nj D DD D

nC C C C→Θ→ → → → → →�  

PROPOSITION 5.1: The Spencer sequence for the Lie operator describing 
the infinitesimal action of a Lie group G is (locally) isomorphic to the tensor 
product of the Poincaré sequence by the Lie algebra ( )eT G=  where e G∈  is 
the identity element. It follows that 1rD +  generates the CC of rD  ⇔  ( )rad D  
generates the CC of ( )1rad D + , a result not evident at all.  

Proof: We may introduce a basis ( ){ }i
ixτ τθ θ= ∂  of infinitesimal generators 

of the action with ( )1, ,dim Gτ = �  and the commutation relations ,ρ σθ θ  = 
cτρσ τθ  discovered by S. Lie giving the structure constants c of   (See [34] and 
[44] for more details). Any element λ∈  can be written { }cstτλ λ= = . 
“Gauging” such an element, that is to say replacing the constants by functions or, 
equivalently, introducing a map ( ) ( )( )0 * :X T x xτλ→ ∧ ⊗ → , we may obtain 
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locally a map ( ) ( ) ( )0 * : kT T x x xτ τ
τλ λ θ∧ ⊗ → →  or, equivalently, vector 

fields ( )( )i
ix Tξ ξ= ∂ ∈  of the form )()(=)( xxx kk

τ
τ θλξ , keeping the index 

i for 1-forms. More generally, we can introduce a map:  

( ) ( ) ( )
( ) ( ) ( )

* *

,

:r r
q q q

k k I
I

T T J T j X x

x x X x dx

τ

τ
µ τ µ

λ λ θ λ

λ θ

∧ ⊗ → ∧ ⊗ = → ⊗ =

→ ∂ =


 

that we can lift to the element ( ) ( )*
1 1 1

r
q q qj X T J Tλ θ+ + +⊗ = ∈∧ ⊗ . It follows 

from the definitions that 1r q qD X DX +=  by introducing any element of ( )rC T  
through its representative ( )*r

q qX T J T∈∧ ⊗ . We obtain therefore the crucial 
formula:  

( )( )
( ) ( ) ( )
( )

1

1

11

r q q

q

r
q q

q

D X DX

D j

d j Dj

d j

λ θ

λ θ λ θ

λ θ

+

+

+

=

= ⊗

= ⊗ + − ∧

= ⊗

 

allowing to identify locally the Spencer sequence with a tensor product of the 
Poincaré sequence, because *0 r

q r qg C T R= ⇒ = ∧ ⊗ . When the action is 
effective, the map ( )0 *

qT J T∧ ⊗ →  is injective. We obtain therefore an 
isomorphism ( )0 *

q qT R J T∧ ⊗ → ⊂  when q is large enough allowing to 
exhibit an isomorphism between the canonical Spencer sequence and the tensor 
product of the Poincaré sequence by   when q is large enough in such a way 
that qR  is involutive with ( ) ( )qdim R dim=   and 0qg = .  

Q.E.D.  
We now study what happens when 3n ≥  because the case 2n =  has 

already been provided, proving that conformal geometry must be entirely 
revisited.  
● 3n = : Using the euclidean metric ω , we have 6 components of 0FΩ∈

*
2S T=  with ( ) ( )0 1 2 6dim F n n= + =  in the case of the classical Killing 

system/operator and obtain easily the ( )2 2 1 12 6n n − =  components of the 
second order Riemann operator, linearization of the Riemann tensor at ω . 
We have ( )( )2 2 1 2 24 3n n n− − =  first order Bianchi identities ([3], p. 625). 
Introducing the respective adjoint operators while taking into account the 
last Proposition and the fact that the extension modules do not depend on 
the resolution used (a difficult result indeed !), we get the following diagram 
where we have set ( )Riemann Beltramiad =  for historical reasons [30] and 
each operator generates the CC of the next one:  

( )

Killing Riemann Bianchi

BianchiCauchy Beltrami

3 6 6 3 0

0 3 6 6 3
ad

→ → → →

← ← ← ←

 

As in the Introduction where ( )Airy Riemannad= , the Beltrami operator is now 
parametrizing the 3 Cauchy stress equations [30] but it is rather striking to discover 
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that the central second order operator is self-adjoint and can be given as follows:  

33 23 22

33 23 13 12

23 22 13 12

33 13 11

23 13 12 11

22 12 11

0 0 0 2
0 2 2 0 2 2
0 2 2 2 2 0

0 2 0 0
2 2 2 0 2 0

2 0 0 0

d d d
d d d d

d d d d
d d d

d d d d
d d d

− 
 − − 
 − −
 

− 
 − −
  − 

 

The study of the conformal case is much more delicate. As 0̂F  can be 
described by trace-free symmetric tensors, we have ( ) ( )0 0

ˆ 1 5dim F dim F= − =  
and it remains to discover the operator that will replace the Riemann operator. 
Having in mind the diagram of Proposition 2.11 and the fact that ( )2ˆ 3dim g =  
while 3 4ˆ ˆ0 0g g= ⇒ = , we have successively:  
● NO CC order 1: 

( )* *
2 2 0 1 1

ˆ ˆ ˆˆ0 0 3 18 15 0g S T T T F F dim F→ → ⊗ → ⊗ → ⇒ ⇒ = − + = . 
● NO CC order 2: 

( )* *
3 3 2 0 1 1

ˆ ˆ ˆˆ0 0 0 30 30 0g S T T S T F F dim F→ → ⊗ → ⊗ → ⇒ ⇒ = − + = .  
● OK CC order 3: 

( )* *
4 4 3 0 1 1

ˆ ˆ ˆˆ0 0 0 45 50 5g S T T S T F F dim F→ → ⊗ → ⊗ → ⇒ ⇒ = − + = .  
Once again, the central third order operator is self-adjoint as can be easily 

seen by proving that the last 5 3→  operator, obtained in [6] by means of 
computer algebra, can be chosen to be the transpose of the first 3 5→  
conformal Killing operator, just by changing columns. 

This result can also be obtained by using the fact that, when an operator/a 
system is formally integrable, the order of the generating CC is equal to the 
number of prolongations needed to get a 2-acyclic symbol plus 1 ([5], p. 120, 
[6]). In the present case, neither 1ĝ  nor 2ĝ  are 2-acyclic while 3ˆ 0g =  is 
trivially involutive, so that ( )3 1 1 3− + = .  
● 4n = : In the classical case, we may proceed as before for exibiting the 20 

components of the second order Riemann operator and the 20 components 
of the first order Bianchi operator.  

 The study of the conformal case is much more delicate and still unknown. 
Indeed, the symbol 2ĝ  is 2-acyclic when 4n ≥  and 3-acyclic when 5n ≥ . 
Accordingly, the Weyl operator, namely the CC for the conformal Killing 
operator, is second order like the Riemann operator. However, when 4n =  
only (care), the symbol 2̂h  of the Weyl system is not 2-acyclic while its first 
prolongation 3̂h  becomes 2-acyclic. It follows that the CC for the Weyl 
operator are second order, ... and so on. For example, we have the long exact 
sequence:  

* * *
5 5 4 0 2 1 2

ˆ ˆ ˆˆ0 0g S T T S T F S T F F→ → ⊗ → ⊗ → ⊗ → →  

and deduce that ( ) ( ) ( ) ( ) ( )2̂ 0 56 4 35 9 10 10 9dim F = − + × − × + × = , a result that 
can be ckecked by computer algebra in a few milliseconds but is still unknown.  

We shall finally prove below that the Einstein parametrization of the stress 
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equations is neither canonical nor minimal in the following diagrams:  

( )

Killing Riemann Bianchi

Einstein

BianchiCauchy Beltrami

Einstein

4 10 20 20 6 0

10 10 4 0

0 4 10 20 20

10 10

div

ad

→ → → → →
↓ ↓

→ → →

← ← ← ←
↑

←

�

�

 

obtained by using the fact that the Einstein operator is self-adjoint, where by 
Einstein operator we mean the linearization of the Einstein equations at the 
Minkowski metric, the 6 terms being exchanged between themselves [1] [52].  

Indeed, setting ( )1
2ij ij ijE R tr Rω= −  with ( ) ij

ijtr R Rω= , it is essential to notice 

that the Ricci operator is not self-adjoint because we have for example:  

( ) ( )adij rs rs ij
ij rs ij rsd dλ ω ω λΩ → Ω  

and ad  provides a term appearing in ( )ijtr Rω−  but not in 2 ijR  because we 
have, as in (5.1.4) of [12]:  

( ) ( ) ( )rs rs rs
rs rs rstr tr R d tr dω ωΩ = Ω ⇒ = Ω − Ω  

The upper div  induced by Bianchi has nothing to do with the lower Cauchy 
stress equations, contrary to what is still believed today while the 10 on the right 
of the lower diagram has nothing to do with the perturbation of a metric which 
is the 10 on the left in the upper diagram. It also follows that the Einstein 
equations in vacuum cannot be parametrized as we have the following diagram 
of operators recapitulating the five steps of the parametrizability criterion (See 
[1] [24] for more details or [6] [25] for a computer algebra exhibition of this 
result):  

Riemann

Killing Einstein

Cauchy Einstein

20

4 10 10

4 10 10

→ →

← ←

↗
 

We are facing only two possibilities, both leading to a contradiction:  
1) If we use the operator 

Einstein* *
2 2S T S T→  in the geometrical setting, the 

*
2S T  on the left has indeed someting to do with the perturbation of the metric 

but the *
2S T  on the right has nothing to do with the stress.  

2) If we use the adjoint operator 
Einstein* *

2 2
n nT S T T S T∧ ⊗ ← ∧ ⊗  in the physical 

setting, then *
2

nT S T∧ ⊗  on the left has of course something to do with the 
stress but the *

2
nT S T∧ ⊗  on the right has nothing to do with the perturbation 

of a metric.  
These purely mathematical results question the origin and existence of 
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gravitational waves.  
We may summarize these results, which do not seem to be known, by the 

following differential sequences where the order of an operator is written under 
its arrow:  
● 3n = : 

1 3 1
3 5 5 3 0→ → → →   

● 4n = : 
1 2 2 1

4 9 10 9 4 0→ → → → →   
● 5n = : 

1 2 1 2 1
5 14 35 35 14 5 0→ → → → → →  

THEOREM 5.2: Recalling that we have 2 3 3ˆ0 0, 0g g g= ⇒ = =  and thus:  

( ) ( ) ( ) ( ) ( )2 2 2 2 *
1 1 1 1 1 1 2

ˆ ˆ ˆ,F H g Z g F H g Z g T gδ= = = = ⊗  

we have the following commutative and exact “fundamental diagram II”:  

( ) ( )

( ) ( )

*
2

2 2
1 1

* 2 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ ˆ0 0

0 0

0 0

S T

Z g H g

T g Z g H g

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

The following theorem will provide all the classical formulas of both 
Riemannian and conformal geometry in one piece but in a totally unusual 
framework not depending on any conformal factor:  

THEOREM 5.3: All the short exact sequences of the preceding diagram split 
in a canonical way, that is in a way compatible with the underlying tensorial 
properties of the vector bundles involved.  

( ) ( ) ( ) ( )
( ) ( )

* * * 2 *
2

2 2 * 2 2 *
1 1 2 1

2 2 *
1 1 2

ˆ ˆ

ˆ

T T S T T

Z g Z g T g Z g T

H g H g S T

δ

⊗ ⊕∧

⇒ = + ⊗ ⊕∧

⇒ ⊕

�

�

�

 

Proof: First of all, we recall that:  

{ }*
1

*
1

| 0

2ˆ | 0

k r r
i rj i ir j

k r r r
i rj i ir j ij r

g T T

g T T
n

ξ ω ξ ω ξ

ξ ω ξ ω ξ ω ξ

= ∈ ⊗ + =

 ⊂ = ∈ ⊗ + − = 
 

 

{ }*
2 2 2ˆ0 |k k k r k r ks r

ij ij i rj j ri ij rsg g S T T nξ ξ δ ξ δ ξ ω ω ξ⇒ = ⊂ = ∈ ⊗ = + −  

Now, if ( ) *
, 2ˆk

li j T gτ ∈ ⊗ , then we have:  

, , , ,
k k r k r ks r
li j l ri j i rl j li rs jnτ δ τ δ τ ω ω τ= + −  

and we may set , , ,
r
ri j i j j iτ τ τ= ≠  with ( ) *

,i j T Tτ ∈ ⊗  and such a formula does 
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not depend on any conformal factor [53]. We have:  

( ) ( ) ( ) ( ) ( )2 2
, , , , 1 1ˆ ˆk k k k

li j li j lj i l ij B g Z gδ τ τ τ ρ= − = ∈ ⊂  

with:  

( ) ( ) ( ){ }2 2 *
1 , 1 , ,ˆ ˆ | 0 0k k r

l ij l ij ij r ijZ g T gρ δ ρ ϕ ρ= ∈∧ ⊗ = ⇒ = ≠  

( ) ( )( ) 3 *
, , , , ,, ,
k k k k k
l ji l ij l ij i jl j lil i j T Tδ ρ ρ ρ ρ ρ= = + + ∈∧ ⊗∑  

● The splitting of the lower row is obtained by setting ( ) * *
,i j T Tτ ∈ ⊗

( ) *
, , 2

1
2 i j j i S Tτ τ → + ∈ 

 
 in such a way that ( ) *

, , 2i j j i ij S Tτ τ τ= = ∈ ⇒

( )1
2 ij ji ijτ τ τ+ = .  

Similarly, ( ) 2 * * *1
2ij ji ijT T Tϕ ϕ ϕ = − ∈∧ → ∈ ⊗ 

 
 and ( )1 1

2 2ij ji ijϕ ϕ ϕ − = 
 

2 *T∈∧ .  
● The most important result is to split the right column. For this, we first need 

to describe the monomorphism ( )* 2
2 10 S T H g→ →  which is in fact 

produced by a diagonal north-east snake type chase. Let us choose 

( ) * * *
, , 2ij i j j i ji S T T Tτ τ τ τ= = = ∈ ⊂ ⊗ . Then, we may find ( ) *

, 2ˆk
li j T gτ ∈ ⊗  

by deciding that , , , ,
r r
ri j i j j i rj iτ τ τ τ= = =  in ( )2

1ˆZ g  and apply δ  in order to 
get , , , ,

k k k
l ij li j k lj iρ τ τ= −  such that , 0r

r ij ijρ ϕ= =  and thus ( ) ( )2
, 1
k
l ij Z gρ ∈ =

( )2
1H g . We obtain:  

( )
( ) ( )

, , , , , , ,
k k r k r k r k r ks r r
l ij l ri j l rj i i rl j j rl i li rs j lj rs i

k k ks
i lj j li li sj lj si

nρ δ τ δ τ δ τ δ τ ω ω τ ω τ

δ τ δ τ ω ω τ ω τ

= − + − − −

= − − −
 

Contracting in k and i while setting simply ( ) ( ),ij ij
ij ijtr trτ ω τ ρ ω ρ= = , we 

get:  

( ) ( ) ( )
( ) ( ) ( )

2

2 1
ij ij ij ij ij ij ij jin n tr n tr n

ntr n tr

ρ τ τ τ ω τ τ ω τ ρ

ρ τ

= − − + = − + =

⇒ = −
 

Substituting, we finally obtain 
( )( ) ( )

2 2 1 2ij ij ij
n n tr

n n n
τ ρ ω ρ= −

− − −
 and 

thus the tricky formula:  

( )( )

( )( ) ( ) ( )

,
1

2
1

1 2

k k k ks
l ij i lj j li li sj lj si

k k
i lj j li

n

tr
n n

ρ δ ρ δ ρ ω ω ρ ω ρ

δ ω δ ω ρ

= − − −
−

− −
− −

 

Contracting in k and i, we check that ij ijρ ρ=  indeed, obtaining therefore 
the desired canonical lift ( )2 *

1 2 , ,0 : k r
i lj i rj ijH g S T ρ ρ ρ→ → → = . Finally, using 

Proposition 4.3, the epimorphism ( ) ( )2 2
1 1ˆ 0H g H g→ →  is just described by 

the formula:  

( )( )

( )( ) ( ) ( )

, ,
1

2
1

1 2

k k k k ks
l ij l ij i lj j li li sj lj si

k k
i lj j li

n

tr
n n

σ ρ δ ρ δ ρ ω ω ρ ω ρ

δ ω δ ω ρ

= − − − −
−

+ −
− −
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which is just the way to define the Weyl tensor. We notice that , , 0r r
r ij r ijσ ρ= =  

and , 0r
i rjσ =  by using indices or a circular chase showing that ( )2

1ˆZ g =

( ) ( )2 *
1 2ˆZ g T gδ+ ⊗ . This purely algebraic result only depends on the metric 

ω  and does not depend on any conformal factor. In actual practice, the lift 
( )2 *

1 2H g S T→  is described by , ,
k r
l ij i rj ij jiρ ρ ρ ρ→ = =  but it is not evident at 

all that the lift ( ) ( )2 2
1 1ˆH g H g→  is described by the strict inclusion 

, , ,
k k k
l ij l ij l ijσ ρ σ→ =  providing a short exact sequence as in Proposition 4.3 

because , , 0r r
ij i rj i rjρ ρ σ= = =  by composition. 

Q.E.D.  
COROLLARY 5.4: When 4n ≥ , each component of the Weyl tensor is a 

torsion element killed by the Dalembert operator   whenever the Einstein 
equations in vacuum are satisfied by the metric. Hence, there exists a second 
order operator   such that we have an identity:  

Weyl Ricci=� �   

Proof: According to Proposition 4.4, each extension module ( )iext M  is a 
torsion module, 1i∀ ≥ . It follows that each additional CC in 1′  which is not 
already in 1  is a torsion element as it belongs to this module. One may also 
notice that:  

( ) ( ) ( )

( ) ( ) ( )

1 1
Einstein ,

2 2
1 1

Riemann
2 2

D

D

n n n n
rk n

n n n n
rk n

+ −
= − =

+ −
= − =

 

The differential ranks of the Einstein and Riemann operators are thus equal, 
but this is a pure coincidence because ( )EinsteinDrk  has only to do with the 
div  operator induced by contracting the Bianchi identities, while 

( )RiemannDrk  has only to do with the classical Killing operator and the fact 
that the corresponding differential module is a torsion module because we have  

a Lie group of transformations having 
( ) ( )1 1

2 2
n n n n

n
− +

+ =  parameters  

(translations + rotations). Hence, as the Riemann operator is a direct sum of the 
Weyl operator and the Einstein or Ricci operator according to the previous 
theorem, each component of the Weyl operator must be killed by a certain 
operator whenever the Einstein or Ricci equations in vacuum are satisfied. A 
direct tricky computation can be found in ([53], p. 206) and ([54], exercise 7.7).  

 Q.E.D.  
REMARK 5.5: In a similar manner, the EM wave equations 0F =  are 

easily obtained when the second set of Maxwell equations in vacuum is satisfied, 
avoiding therefore the Lorenz (no “t”) gauge condition for the EM potential 
[55]. Indeed, let us start with the Minkowski constitutive law with electric 
constant 0  and magnetic constant 0µ  such that 2

0 0 1cµ =  in vacuum:  

0

1 ˆ ˆ ~rs ri sj ri sj
ij ijF Fω ω ω ω

µ
=  

where ( ) ( )1ˆ ˆ 1
n

ij ijdet detω ω ω ω
−

= ⇒ = , 2 *F T∈∧  is the EM field and the 
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induction   is thus a contravariant skewsymmetric 2-tensor density. From the 
Maxwell equations we have:  

0, 0 0r r
r ij i jr j ri ri riF F F F∂ + ∂ + ∂ = ∇ = ⇒∇ =  

( ) 0r r
ij r ij i rj j riF F F F⇒ =∇ ∇ =∇ ∇ −∇ =  

REMARK 5.6: Using Proposition 4.3 and the splittings of Theorem 5.3 for the 
second column, we obtain the following commutative and exact diagram:  

Riemann Bianchi

Einstein

0 0 0

0 10 16 6 0

10 20 20 6 0

10 10 4 0

0 0 0

div

↓ ↓ ↓
→ → →

↓ ↓↑ ↓

→ → → →
↓↑ ↓ ↓

→ → →
↓ ↓ ↓

�

�
 

It follows that the 10 components of the Weyl tensor must satisfy a first order 
linear system with 16 equations, having 6 generating first order CC. The 
differential rank of the corresponding operator is thus equal to 16 6 10− =  and 
such an operator defines a torsion module in which we have to look separately 
for each component of the Weyl tensor in order to obtain Corollary 5.4. The 
situation is similar to that of the Cauchy-Riemann equations when 2n = . 
Indeed, any complex transformation ( )y f x=  must be solution of the (linear) 
first order system 2 1 1 2

2 1 2 10, 0y y y y− = + =  of finite Lie equations though we 
obtain 1 1 2 2

11 22 11 220, 0y y y y+ = + = , that is 1y  and 2y  are separately killed by 
the second order Laplace operator 11 22d d∆ = + .  

Collecting the above results, we obtain the striking theorem:  
THEOREM 5.7: The Cauchy operator can be parametrized by the operator 
( )Ricciad  (with only 4 terms) and there is thus no need to introduce the 

Einstein operator (with 6 terms) in GR.  
Proof: Linearizing the Ricci tensor over the Minkowski metric, we obtain the 

Ricci operator RΩ→ :  

( )2 2rs
ij ij rs rs ij ri sj sj ri jiR d d d d Rω= Ω + Ω − Ω − Ω =  

( ) ( )ij ij ru sv
ij ij rs uvtr R R d tr dω ω ω ω= = Ω − Ω  

The Einstein operator EΩ→  is defined by setting ( )1
2ij ij ijE R tr Rω= −  

that we shall write Einstein RicciC= �  where * *
2 2:C S T S T→  is a symmetric 

matrix only depending on ω , which is invertible whenever 3n ≥ . We may also 
introduce the linear transformation ( )1:

2
C trωΩ→Ω =Ω− Ω  and the unknown 

composite operator : EΩ→Ω→  in such a way that Einstein C= �  
where   is defined by (See [12], 5.1.5 p. 134):  

2 rs rs ru sv
ij ij ri sj sj ri ij rs uvE d d dω ω ω ω ω= Ω − Ω − Ω + Ω  
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Now, introducing the test functions ijλ , we get:  

( )1 1=
2 2

ijij ij ij rs ij
ij ij ij rs ij ijE R tr R R Rλ λ ω λ ω ω λ λ   − = − =   

   
 

Integrating by parts, we obtain:  

( )rs rs ij sj ri ri sj rs
ij ij ij rs rsd d dλ ω λ ω λ ω λ σ+ − − Ω = Ω  

Moreover, suppressing the “bar” for simplicity, we have:  

0rs ij rs rs ij sj ri ri sj
r rij rij rij rijd d d d dσ ω λ ω λ ω λ ω λ= + − − =  

As Einstein is a self-adjoint operator (contrary to the Ricci operator), we have 
the identities:  

( ) ( ) ( ) ( )
( ) ( )

Einstein Einstein

Ricci Ricci

ad ad C ad C ad

ad ad

= ⇒ =

⇒ = ⇒ =

� � 

 
 

because C is a symmetric matrix, we have ( )ad C C=  and we know that 
( )Einstein Einsteinad = . Accordingly, the operator ( )Ricciad  parametrizes 

the Cauchy equations, without any reference to the Einstein operator which has 
no mathematical origin, in the sense that it cannot be obtained by any diagram 
chasing. The three terms after the Dalembert operator factorize through the 
divergence operator ri

id λ . We may thus add the differential constraints ri
id λ

0=  without any reference to a gauge transformation in order to obtain a 
(minimum) relative parametrization (see [31] and [56] for details and explicit 
examples). When 4n =  we finally obtain the adjoint sequences:  

( )

RicciKilling

RicciCauchy

4 10 10

0 4 10 10
ad

→ →

← ← ←

 

without any reference to the Bianchi operator or the induced div  operator.  
 Q.E.D. 

This last result even strengthens the doubts we already had about the origin 
and existence of gravitational waves.  

6. Conclusions 

Whenever ( )q qR J E⊆  is an involutive system of order q on E, we may define 
the Janet bundles rF  for 0,1, ,r n= �  by the short exact sequences:  

( ) ( )* 1 * * *
10 0r r r

q q q rT R T S T E T J E Fδ −
+→ ∧ ⊗ + ∧ ⊗ ⊗ →∧ ⊗ → →  

We may pick up a section of rF , lift it up to a section of ( )*r
qT J E∧ ⊗  that 

we may lift up to a section of ( )*
1

r
qT J E+∧ ⊗  and apply D in order to get a 

section of ( )1 *r
qT J E+∧ ⊗  that we may project onto a section of 1rF +  in order 

to construct an operator 1 1:r r rF F+ +→  generating the CC of r  in the 
canonical linear Janet sequence ([5], p. 145):  

1 2

0 10 0n

nE F F F→Θ→ → → → → →�
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If we have two involutive systems ( )ˆ
q q qR R J E⊂ ⊂ , the Janet sequence for 

qR  projects onto the Janet sequence for ˆ
qR  and we may define inductively 

canonical epimorphisms ˆ 0r rF F→ →  for 0,1, ,r n= �  by comparing the 
previous sequences for qR  and ˆ

qR .  
A similar procedure can also be obtained if we define the Spencer bundles rC  

for 0,1, ,r n= �  by the short exact sequences:  

( )1 * *
10 0r r

q q rT g T R Cδ −
+→ ∧ ⊗ →∧ ⊗ → →  

We may pick up a section of rC , lift it to a section of *r
qT R∧ ⊗ , lift it up to 

a section of *
1

r
qT R +∧ ⊗  and apply D in order to construct a section of 

1r
qR+∧ ⊗  that we may project to 1rC +  in order to construct an operator 

1 1:r r rD C C+ +→  generating the CC of rD  in the canonical linear Spencer 
sequence which is another completely different resolution of the set Θ  of 
(formal) solutions of qR :  

31 2

0 1 20 0
q nj D DD D

nC C C C→Θ→ → → → → →�  

However, if we have two systems as above, the Spencer sequence for qR  is 
now contained into the Spencer sequence for ˆ

qR  and we may construct 
inductively canonical monomorphisms ˆ0 r rC C→ →  for 0,1, ,r n= �  by 
comparing the previous sequences for qR  and ˆ

qR .  
When dealing with applications, we have set E T=  and considered systems 

of finite type Lie equations determined by Lie groups of transformations and 
( )rad   generates the CC of ( )1rad +  while ( )rad D  generates the CC of 
( )1rad D + . We have obtained in particular * * ˆˆr r

r q q rC T R T R C= ∧ ⊗ ⊂ ∧ ⊗ =  
when comparing the classical and conformal Killing systems, but these bundles 
have never been used in physics. Therefore, instead of the classical Killing 
system ( )2 2R J T⊂  defined by ( ) 0ξ ωΩ ≡ =  and ( ) 0ξ γΓ ≡ =  or the 
conformal Killing system ( )2 2R̂ J T⊂  defined by ( ) ( )A xξ ω ωΩ ≡ =  and 

( ) ( ) ( ) ( )( ) *
2

k k ks
i j j i ij sA x A x A x S T Tξ γ δ δ ω ωΓ ≡ = + − ∈ ⊗ , we may introduce 

the intermediate differential system ( )2 2R J T⊂�  defined by ( ) Aξ ω ω=  
with A cst=  and ( ) 0ξ γΓ ≡ = , for the Weyl group obtained by adding the 
only dilatation with infinitesimal generator i

ix ∂  to the Poincaré group. We 
have 1 1 1

ˆR R R⊂ =�  but the strict inclusions 2 2 2
ˆR R R⊂ ⊂�  and we discover 

exactly the group scheme used through this paper, both with the need to shift by 
one step to the left the physical interpretation of the various differential 
sequences used. Indeed, as *

2ĝ T� , the first Spencer operator 
1 *

2 2
ˆ ˆD
R T R→ ⊗  is 

induced by the usual Spencer operator ( )*
3 2

ˆ ˆ : 0,0, , 0
D r r

rj rijR T R ξ ξ→ ⊗ = →

( )0, 0 , 0r r
i ri i rjξ ξ∂ − ∂ −  and thus projects by cokernel onto the induced operator 

* * *T T T→ ⊗ . Composing with δ , it projects therefore onto * 2 * :
d

T T A→∧ →
dA F=  as in EM and so on by using the fact that 1D  and d are both involutive 
or the composite epimorphisms  

( )* *
2 2 2

ˆ ˆ ˆ ˆr r
r r rC C C T R R T g→ = ∧ ⊗ ∧ ⊗� � � � * * 1 *r rT T T

δ +∧ ⊗ →∧ . The main 
result we have obtained is thus to be able to increase the order and dimension of 
the underlying jet bundles and groups, proving therefore that any 1-form with 
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value in the second order jets 2ĝ  (elations) of the conformal Killing system 
(conformal group) can be decomposed uniquely into the direct sum ( ),R F  
where R is a section of the Ricci bundle *

2S T  and the EM field F is a section of 
2 *T∧  as conjectured by H. Weyl in 1918 [13] [14] [57]. 
The mathematical structures of electromagnetism and gravitation only 

depend on the second order jets. 
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