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Abstract 
Phosphorus is one of the bioelements most needed as a compound cell by liv-
ing organisms. Phosphorus is involved in several pathologies: in human with 
bone and kidney diseases, in mammals with metabolism disorder (glucose, 
insulin∙∙∙), in microorganisms whose phosphorus is involved in cell growth. 
Phosphorus has various forms including pyrophosphate, a by-product of mul-
tiple pathways of biosynthesis. Enzymes that hydrolyze pyrophosphate are 
called inorganic pyrophosphatases (PPases). Two major types of inorganic 
pyrophosphatases are distinguished: the soluble pyrophosphatases (sPPases) 
and the membrane pyrophosphatases (mPPases or H+/Na+-PPases). They play 
a key role in the control of intracellular inorganic pyrophosphate level and 
produce an important ions gradient (H+ or Na+) to the cells. In this work, we 
primarily focused on the physiological study in a phosphate-poor medium of 
two models Tetrahymena thermophila and Tetrahymena pyriformis, follow-
ing the mobility, the growth and the morphology of cells. Secondly, we eva-
luated the enzymatic activity of soluble and membrane pyrophosphatases in 
both species grown in the same complex medium. A decrease of cell growth is 
correlated with unusual morphologies and different mobility in the stress me-
dium. The measurement of soluble and membrane inorganic pyrophospha-
tases activities also shows a decrease which illustrates the lack of phosphate 
found in the stress medium. Deficiency of phosphate is a limiting factor for 
protozoan growth. These results indicate that Tetrahymena can be used as a 
model of cellular stress and consists of a target to study inorganic pyrophos-
phatases for a better understanding of phosphate cycle in higher organisms. 
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1. Introduction 

Phosphorus is an essential element of cellular metabolism. It is an important 
component of cells structure, incorporating in the skeleton of molecules to form 
phosphate groups such as adenosine triphosphate (ATP), nucleic acids (DNA, 
RNA), phospholipids and phosphoproteins of animals and plants cells. Phos-
phorus is also a component of bones and teeth, its absorption in vivo is ensured 
by vitamin D and its serum level is regulated by renal reabsorption [1]. 

In Humans, inorganic phosphate is involved in various pathological disorders 
such as bone, kidney, and vascular calcification [2]. Indeed, a deficiency of 
phosphate is found in rickets disease from children, osteomalacia in adults and 
Toni-Fanconi syndrome which leads to bone loss [3] [4]. In mammals, it is 
shown that a low phosphate diet alters glucose metabolism [5] [6] and the ex-
pression of insulin-sensitive genes [7] [8]. In addition, it is shown that phos-
phate increases oxidative stress such as Klotho deficiency in mice, causing 
phosphate retention and impairment of cognition due to increased oxidative 
damage and apoptosis in Hippocampus neurons [9]. In microorganisms, a defi-
ciency of phosphate in the culture medium induces a cell cycle arrest in Saccha-
romyces cerevisae [10]. 

Phosphorus is present in several forms, in nature with its most oxidized form 

( )2
4PO −  and generally bound to metal ions which are components of various 

rocks and minerals; in living cells whose phosphorus is transported as ortho-
phosphate anion ( )2

2 4H PO − , where it is a part of phosphate groups such as py-
rophosphate ( )2 2

3 3PO -O-PO− − . Pyrophosphate is a by-product of numerous 
synthetic reactions (nucleic acids, proteins, polysaccharides) and plays an im-
portant role of cellular metabolism. Consisting of two orthophosphate groups 
united by a phosphoanhydride bound, pyrophosphate constitutes a chemical 
grouping, whose fundamental binding energy is stored for energy requirements 
of the cell. However, intracellular inorganic pyrophosphate is constantly regu-
lated and the hydrolysis of this product indicates that the biosynthetic reactions 
proceed in the right direction [11] [12]. It is also shown that an intracellular py-
rophosphate deregulation is associated with various diseases [13]. 

Inorganic pyrophosphatases are enzymes that hydrolyze inorganic pyrophos-
phate into orthophosphate. They are distinguished in two groups: soluble pyro-
phosphatases (sPPases) and membrane pyrophosphatases (mPPases or  
H+/Na+-PPases). Both enzymes are heterologous which have difference in struc-
ture and amino acid sequences, but they have similar patterns in catalytic site 
sequences [14]. Soluble pyrophosphatases are ubiquitous enzymes that play a 
key role in phosphorus metabolism by catalyzing the hydrolysis of metabolically 
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produced pyrophosphate. According to their omnipresence, sPPases are impor-
tant in case of absence an accumulation of pyrophosphate causes metabolic dys-
functions [15] [16]. sPPases consist of three families: family I most frequent and 
found in most eukaryotic, archaea and bacteria organisms; family II sPPases 
found in some bacteria, archaea and primitive eukaryotes; the unexplored family 
III found in some bacterial species [17] [18]. On the one hand, family I sPPases 
are distinguished from family II sPPases by their activation cofactor: Mg2+ is the 
main cofactor of sPPases whereas Mn2+ is the main cofactor of sPPases II [19] 
[20]. On the other hand, the sequences of both proteins are not similar, never-
theless the active site of the two enzymes remains conserved [19] [21]. In addi-
tion Family I sPPases are more sensitive to fluoride than family II sPPases [22] 
[23]. 

Soluble pyrophosphatases are essential in metabolic reactions of bacteria and 
yeasts [16] [24]. They are involved in bacteria growth such as Escherichia coli. A 
dysfunction of sPPases leads to the cell cycle arrest and death of fermenting yeast 
[25]. Similarly, soluble pyrophosphatases are overexpressed in breast cancer cells 
[26]. The structure and the function of these enzymes are important in biomed-
ical field because family II pyrophosphatases are specific to certain pathogens 
such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mutans 
and Bacillus anthracis, which may be potential targets for discovery and devel-
opment of new antibacterial products [27]. 

Membrane PPases are ionic pumps and found in plants, algae, some protozoa, 
bacteria, archaea. They produce a proton (H+-PPases) or sodium (Na+-PPases) 
gradient by coupling the hydrolysis energy of pyrophosphate [28]. H+-PPases are 
found in prokaryotes (vesicles, acidocalcisomes) [29] [30], protists and euka-
ryotes (vacuolar plant membranes, acidocalcisomal membranes of protists) [31] 
[32]. H+-PPases provide important energy reserves to organisms, especially un-
der stress conditions and lack of energy [30] [33]. Na+-PPases are mainly en-
countered in prokaryotes. 

Membrane pyrophosphatases provide an ion gradient under stress conditions, 
when ATP is almost absent [30] [34]. These enzymes do not appear to be present 
in mammals but could be potential targets for vaccines and drugs development 
against parasitic protists. 

However, inorganic pyrophosphatases are rarely studied in protozoa, particu-
larly in ciliates, which are the first used organisms to understand the genetic 
phenomenon of higher organisms. Ciliates are also characterized by a different 
evolution from commonly studied organisms in the opistokont lineage [35]. The 
protozoan Tetrahymena is one of the most studied ciliated organisms and con-
stitutes a eukaryotic cell model. Tetrahymena thermophila is a species widely 
used in cell physiology and molecular genetics studies which have led to the ac-
quisition of much fundamental knowledge in biology [36] [37]. The species Te-
trahymena pyriformis is also a very useful species in physiological and toxico-
logical studies [38]. The protozoan Tetrahymena combines the biological com-
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plexity of eukaryotes and the accessibility of unicellular organisms. It is intro-
duced very early into the laboratory due to the easy culture in axenic media, the 
ideal length for studies under light or electronic microscope (30 - 50 µm). 

In this work, we primarily focused on the physiological study in a phos-
phate-poor medium of two models Tetrahymena thermophila and Tetrahymena 
pyriformis, following the mobility, the growth and the morphology of cells. Se-
condly, we evaluated the enzymatic activity of soluble and membrane pyro-
phosphatases in both species grown in the same complex medium. 

2. Materials and Methods 
2.1. Strains and Culture Conditions 

The strains Tetrahymena thermophila SB1969 and Tetrahymena pyriformis used 
in our study were cultured axenically in the standard medium (PPYE) contain-
ing proteose peptone (1.5%, w/v) and yeast extract (0.25%, w/v) [39]. The cul-
ture medium was inoculated with 1% (v/v) of Tetrahymena thermophila or Te-
trahymena pyriformis preculture in the same medium. Tetrahymena thermo-
phila cells were incubated at 32˚C without shaking, while Tetrahymena pyrifor-
mis cells were incubated at 28˚C without shaking. Medium without strains were 
also prepared in same condition to control eventual contamination. 

2.2. NBRIP Medium 

National Botanical Research Institute Phosphate medium (NBRIP) [40] was 
aseptically prepared and represent the stress-medium used in our study. NBRIP 
is deprived of phosphate and is composed of: MgCl2∙6H2O (5 g/l); MgSO4∙7H2O 
(0.25 g/l); KCl (0.2 g/l); (NH4)2SO4 (0.1 g/l); glucose (10 g/l); Ph = 7 ± 0.2. The 
culture medium is inoculated with 1% (v/v) of Tetrahymena thermophila or Te-
trahymena pyriformis preculture from PPYE medium and incubated at 32˚C 
(Tetrahymena thermophila) or 28˚C (Tetrahymena pyriformis) without shaking. 
Medium without strains were also prepared in same condition to control even-
tual contamination. 

2.3. Microscopic Observation 

The behavior of both species is analyzed into PPYE and NBRIP culture media 
under light microscope. This study is carried out by sterilely sampling at 3H in-
terval time. Samples are prepared and slide-based, and observed at objective ×10 
with Leica DM 500 and A.KRÜSS Optronic microscopes. Protozoan growth is 
also verified in both culture media by absorbance measurement at 600 nm using 
Hitachi U-1100 spectrophotometer. The optical zero corresponds to the control 
media without strain. 

2.4. Proteins Extraction by Glass Beads 

Cells were harvested at 6000 g for 10 minutes (Beckman Coulter Avanti J-25) 
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and suspended in Buffer A containing 10 mM Tris-HCl pH8, 10% glycerol (p/v), 
1 mM EDTA pH8, 1 mM PMSF, 10 mM β-mercaptoethanol (at ratio of 1 g 
cells/5 ml Buffer A), in which 1 g of glass beads (0.4 - 0.6 mm of diameter) was 
added. Cells were broken through the beads by vortexing in 8 cycles (1 minute 
agitating-1 minute in ice). Then, beads and unbroken cells were removed by 
centrifugation at 700 g for 10 minutes (Beckman Coulter AllegraTM 21 Centri-
fuge). Soluble and membrane fractions were obtained by centrifuging the total 
extract at 120.000 g for 40 minutes (Beckman KL-80 Utracentrifuge). The su-
pernatant corresponds the soluble crude extract and the pellet was washed in 
two steps: with Buffer B (60 mM Tris-Hcl pH 8; 12% glycerol; 0.72 M KCl; 1 mM 
CaCl2∙2H2O; 1 mM PMSF) and centrifugation at 120.000 g/30 minutes–with 
Buffer A and centrifugation at 120.000 g/30 minutes. The final obtained pellet 
was suspended in Buffer A and corresponds to membrane crude extract. 

2.5. Determination of Proteins Concentration 

Proteins concentration was estimated according to Bradford technique [41]. Bo-
vine Serum Albumin (0.1 mg/ml) was used as standard protein. 

2.6. Pyrophosphatases Activity Assay 

The determination of enzymatic activity is based on the method established by 
Rathbun and Betlach [42] which consist to measure released phosphate Pi after 
the hydrolysis of pyrophosphate PPi. The released phosphate form with molyb-
date ammonium a phosphomolybdate complex and the latter is reduced by 
stannous chloride giving a blue color. A unit of enzymatic activity corresponds 
to the amount of enzyme that hydrolyzes 1 µmol of PPi. 

2.6.1. Soluble Pyrophosphatases Activity 
Measurement of enzymatic activity was carried out in a reaction mixture (200 
µl) containing 50 mM Tris-HCl pH 7.5; 2 mM MgCl2; 0.5 mM Fluoride sodium 
(optional); adequate volume of soluble crude extract. The reaction was started 
with addition of 1mM Na4PPi and incubation at 30˚C for 10 minutes. Subse-
quently the reaction was stopped by adding the stop solution containing 37% 
Formaldehyde-3.5 M Acetate acid-30% Trichloroacetic acid). Then, ammonium 
molybdate (0.2% p/v) and stannous chloride (0.16% p/v) were added and absor-
bance was measured at 735 nm after 10 minutes of incubation. 

2.6.2. Membrane Pyrophosphatases Activity 
Membrane crude extract was used to realize the measurement of mPPases activ-
ity. Thus, reaction mixture (200 µl) was composed of: 50 mM Tris-HCl pH 7.5; 2 
mM MgCl2; 0.1 M KCl (optional); adequate volume of sample. The reaction was 
started with addition of 1 mM Na4PPi and incubation at 30˚C for 10 minutes. 
The reaction was stopped by adding 670 µl of stop solution, ammonium molyb-
date and stannous chloride were added and absorbance was measured 10 mi-
nutes later at 735 nm. 
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3. Results and Discussion 
3.1. Analysis on Morphology, Mobility and Growth of Protozoa 

The behavior of the two species Tetrahymena thermophila (TT) and Tetrahy-
mena pyriformis (TP) is followed in PPYE and NBRIP culture media as de-
scribed in material and methods. The cells are inoculated at 1% (v/v) and incu-
bated at 32˚C (TT) or 28˚C (TP). Samples of each culture medium are taken ste-
rile and three parameters are studied: density, mobility and morphology. The 
Table 1 summarizes the results obtained from various observations under light 
microscope. 

There is a high cell density the normal PPYE medium while a low density of 
protozoa is observed in NBRIP medium. This difference is accompanied by a 
change in mobility: protozoa move quickly in the PPYE medium and slowly in 
the NBRIP medium. As regards the cellular structure, the cells observed in the 
PPYE medium present a pear-shaped characterizing the normal cells of Tetra-
hymena and move very quickly in anarchic direction (Figure 1). In NBRIP me-
dium, except of some pear-shaped protozoa that move slowly (Figure 2(a)), 
several cells are found in atypical form and are immobile (Figure 2(b)). These 
parameters measured in both culture media do not show a significant difference 
between both species TT and TP.  
 

 
Figure 1. Microscopic image of Tetrahymena thermophila in PPYE medium (×10). CV = 
Contractile Vacuole. 
 
Table 1. Parameters illustrating the behavior of both species T. thermophila and T. 
pyriformis according to culture media after 72 hours of incubation. 

 

Tetrahymena thermophila Tetrahymena pyriformis 

Density Morphology Mobility Density Morphology Mobility 

PPYE +++ Pear-Shaped 
Rapid 

moving 
+++ Pear-Shaped 

Rapid 
moving 

NBRIP + 

Atypical 
Form 
>>> 

Pear-Shaped 

Slow 
moving 

+ 

Atypical 
Form 
>>> 

Pear-Shaped 

Slow moving 

(+: presence; >: higher than). 
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Figure 2. Microscopic images of Tetrahymena thermophila in NBRIP medium (×10). (a) 
Pear shaped; (b) Broken cell; (c) Degenerate cell. 
 

Structurally, there is a difference in the architecture of cells vacuoles from 
PPYE and NBRIP media. The vacuoles are well defined and visible in the normal 
medium (Figure 1) while they are narrower in NBRIP medium (Figure 2(a)). 
Also the contractile vacuole is clearly visible in the PPYE cells and absent in the 
cells of the NBRIP medium. The contractile vacuole is an osmoregulatory orga-
nelle for Tetrahymena [43] and his absence may illustrate the disrupting cells 
observed in NBRIP medium (Figure 2(c)). 

NBRIP medium is a medium known for its phosphate deficiency. It is gener-
ally supplemented with complex phosphate to evaluate the capacity of phosphate 
solubilizing microorganisms. We found no difference of growth in NBRIP me-
dium or NBRIP supplemented with tricalcium phosphate (TCP), indicating that 
Tetrahymena has no solubilizing activity of complex phosphate. Thus, protozoa 
are confronted with a medium low in phosphate and limited in nutrients. 

Although the growth in NBRIP medium is slowed down and illustrates the 
low density of the cells observed under an optical microscope, a resistance phe-
nomenon is observed in this medium because viable cells are found even after 
144H of culture. This resistance can be explained by the fact that protozoa have 
polyphosphate reserves [44] which can be used in the event of stress. In addition 
protozoa have pyrophosphate granules reserves whose appearance depend on 
calcium and magnesium rate and accumulate during the stationary phase or in 
case of large amount of phosphate in culture medium [45]. 

3.2. Enzymatic Activity Assays 

Inorganic pyrophosphatases play an important role in the hydrolysis mechanism 
of inorganic pyrophosphate and their activity depends on cellular living condi-
tions. Enzymatic activity of soluble pyrophosphatases (sPPases) and membrane 
pyrophosphatases (mPPases) is measured in both species Tetrahymena thermo-
phila (TT) and Tetrahymena pyriformis (TP), according to standard (PPYE) or 
complex (NBRIP) media. 
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In standard medium, mPPases dependent on KCl activity is about 25 mU/mg 
in both species. In NBRIP medium, enzymatic activity also dependent on KCl 

decreased to 10 mU/mg (Figure 3). 
The activity of sPPases under standard medium is in the order of 30 mU/mg 

in TT and 10 mU/mg in TP whereas in the NBRIP medium the activity of 
sPPases decreased considerably in TT (4 mU/mg) and TP where it is absent 
(Figure 3). These activities are sensitive to fluoride and seem to correspond to 
the family I sPPases activity. 

Soluble pyrophosphatases play an important role in the regulation of pyro-
phosphate by preventing its accumulation which disturbs the metabolic reac-
tions [15] [16]. The mPPases constitute ion pumps and use pyrophosphate as a 
substrate to create a gradient of Na+ or H+ ions [28] essential for cellular meta-
bolism. Under stress, cellular metabolism is reduced and a decreased pyrophos-
phatases activity is normal because of the restriction of metabolic reactions. The 
absence of soluble pyrophosphatases activity in the NBRIP stress medium results 
in a small amount of pyrophosphate released through metabolic pathways. 
Membrane pyrophosphatases activity, however low, ensures the maintenance of 
ion gradient essential for cell survival. This decline accompanied a reduction of 
the growth rate of protozoa, the appearance of form of resistance and broken 
cells by osmotic pressure. 
 

 
 

 
Figure 3. sPPases and mPPases activities of both species Tetrahymena thermophila (TT) 
and Tetrahymena pyriformis (TP) in PPYE (TT, TP) and NBRIP (TT + N, TP + N) me-
dia. 
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Phosphate, by its omnipresence in cells of living organisms, is therefore of 
capital interest particularly in cellular organelles such as mitochondria which are 
the site of several biosynthetic reactions involving the hydrolysis of pyrophos-
phate (activation of fatty acids, [46]). The pyrophosphate hydrolysis in these or-
ganelles is essentially assured by soluble inorganic pyrophosphatases (sPPases) 
and a decrease of metabolic reactions as NBRIP medium also shows a decreased 
activity of these enzymes. 

Protozoa survival in the NBRIP medium can be explained by the fact that the 
cells have reserves of phosphate (polyphosphates, pyrophosphate granules) 
which are used to ensure their growth and compensate the lack of nutrients in 
stress medium. It is shown that the hydrolysis of these reserves is not assured by 
inorganic pyrophosphatases [45] and does not contradict the low pyrophospha-
tases activity found in NBRIP medium. Nevertheless, a subsequent study of these 
enzymes involved in the hydrolysis of these reserves would be of great interest 
for understanding the phosphate cycle from the Tetrahymena model. 

4. Conclusion 

This study shows the importance of phosphate as a cellular compound. Cellular 
damage that phosphate can generate is elucidated in the protozoa Tetrahymena 
thermophila and Tetrahymena pyriformis are considered as unicellular eukaryo-
tic models. Our results indicate that the lack of phosphate affects the morpholo-
gy, mobility, growth of protozoa and induces a decrease in inorganic pyrophos-
phatases activity. Proteomics and transcriptomics studies of these enzymes of 
interest in Tetrahymena will be important for further investigations for a better 
understanding of phosphate cycle in higher organisms. 
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