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Abstract 
The action (the product of radiated energy and the time of emission) of the 
radiation fields generated by four types of radiators, namely, short electric di-
pole, small magnetic dipole, travelling wave antenna and bi-conical antenna  
is investigated with special reference to the charge associated with the cur-
rent waveform which is responsible for the radiation. The results obtained 
can be summarized by the order of magnitude inequality 2πA h q e≥ → ≥  
where A is the action (product of the radiated energy and the time of emis-
sion), h is the Planck constant, q is the charge associated with the current that 
gave rise to the radiation and e is the electronic charge. The condition 

2πA h q e≈ → ≈  is obtained when the length of the antenna and its radius 
are pushed to its extreme natural limits. Based on the results obtained here 
and elsewhere, it is suggested that this inequality is valid in general for elec-
tromagnetic radiation fields as predicted by classical electrodynamics. 
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1. Introduction 

Electromagnetic fields generated by transmitting antennas can be calculated 
once the current and its propagation characteristics along the antenna are 
known. In the case of short electric dipole and small magnetic dipole, one needs 
only the information concerning the temporal variation of the current waveform 
and the length of the electric dipole or the area of the magnetic dipole to eva-
luate the electromagnetic fields. As the dipole length increases it is necessary to 
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include the time delays caused by the propagation of the current along the an-
tenna in calculating the electromagnetic fields. Such antennas can be categorized 
as travelling wave antennas. In an ideal travelling wave antenna, a current pulse 
propagates from one end of the antenna to the other end with the speed of light 
without attenuation or dispersion. The scenario is somewhat similar to the 
transmission line model of lightning return strokes with a speed of light current 
propagation [1]. Another type of transmitting antenna used frequently is the 
bi-conical antenna. Such an antenna consists of a conducting cone located above 
a conducting half space. Current waveforms propagate along such an antenna 
with the speed of light in free space. Actually, in some studies, the lightning re-
turn stroke is also described as a limiting case of a bi-conical antenna where the 
semi-conical angle approaches zero [2]. 

Once the wave shape of the current and its propagation characteristics are 
known, the standard techniques based on classical electrodynamics can be used 
to analyze the features of radiation fields such as the energy, momentum and the 
action transported by these fields. The action of a radiation field is defined here 
as the product of the energy emitted by the radiation and the corresponding 
time of emission. 

In practical applications related to the transmission of electromagnetic signals 
or in the case of lightning, one is interested in current waveforms carrying 
charges on the order of milli-Coulombs to several Coulombs. For this reason, no 
one has investigated the nature of the lower limits of the energy and the action of 
the radiation fields as the charge associated with the current in the radiating an-
tenna is reduced to the smallest values allowed by nature. In a recent study Coo-
ray and Cooray [3] [4] [5] investigated the nature of the radiation fields, espe-
cially their action, as the charge associated with the radiating element is reduced 
to the elementary charge. They found that, for an electromagnetic radiator con-
fined by natural bounds, the action of the radiation field satisfies the inequality 

2πA h q e≥ → ≥  where A is the action associated with the radiation field, h is 
the Planck constant, q is the charge associated with the current and e is the elec-
tronic charge. This was shown to be valid also for the radiation produced by ac-
celerating or decelerating electrons as they strike a perfectly conducting plane in 
a recent publication by Cooray and Cooray [6]. Even though the Planck constant 
appears in the expression, the calculation is based purely on classical electrody-
namics. It is important to mention here that the charge of an electron is not 
something special in classical electrodynamics. The fact that the electric charge is 
quantized and the smallest charge that can occur in nature is the elementary 
charge was discovered nearly 35 years after the development of classical electro-
dynamics. In this paper, the validity of the inequality given earlier is established 
for the radiation fields emitted by short electric dipoles, small magnetic dipoles, 
travelling wave antennas and bi-conical antennas. 

2. Current Waveform Used in the Analysis 

In the analysis, the current waveform associated with the antenna is represented 
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by a Gaussian pulse. It can be described mathematically as 

( ) 2 22
0e

ti t i σ−=                             (1) 

In the above equation i0 is a constant having units of Amperes, t is the time 
and σ is a parameter that controls the width of the Gaussian current pulse. The 
charge, q, associated with this current pulse is given by 

0q i τ=                                (2) 

In Equation (2), τ is the duration of the current pulse and it is given by 
22πτ σ=                              (3) 

Thus, the current pulse can also be written as 

( ) 2 22

2
e

2π
tqi t σ

σ
−=                          (4) 

In order to make the analysis general, let us define a non-dimensional para-
meter β as 

( )l cβ τ=                              (5) 

where l is the length of the antenna and c is the speed of light (later, we will de-
fine β in a different way for a magnetic dipole). Observe that β defines the ratio 
between the duration of the current and the time of travel of the current along 
the antenna. 

3. Analysis 

In the analysis to follow we will consider four types of time domain radiators 
namely, short electric dipole, small magnetic dipole, travelling wave antenna and 
bi-conical antenna. 

3.1. Short Electric Dipole 

A classic example of an electromagnetic radiating system is the short electric di-
pole (or Hertzian electric dipole). A unique aspect of the short electric dipole is 
that most of the complex and spatially extended radiating systems can be de-
scribed as a distribution of short electric dipoles. The radiation field generated 
by the complex system can be described, in this case, as the sum of radiation 
fields generated by the collection of short dipoles. In this analysis we will con-
sider a short electric dipole of length l excited by a transient current. In a short 
electric dipole l c τ  where, τ as denoted previously, is the duration of the 
current. That is for a short dipole 1β  . 

3.1.1. Electromagnetic Fields of a Short Electric Dipole 
The electric field produced by a short electric dipole consists of three terms, 
namely, electrostatic, induction and radiation [7]. Since our goal is to study the 
energy radiated by the dipole it is sufficient to concentrate only on the radiation 
field terms. Let us consider a short dipole excited by a current which is denoted 
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here by i(t) where t is the time. The electric radiation field produced by a short 
dipole of length l in free space is given by (see Figure 1 for the relevant geometry) 
[7]: 

( )
2

0

dsin
d4π

i t r cl
tc rθ θ

θ
ε

−
=E a                       (6) 

Note that aθ and aφ are unit vectors in the increasing θ and φ directions. This 
equation is valid provided that 1β   and 1r  . The magnetic flux density 
(or the B-field) associated with the radiation is directed along aφ and has the 
magnitude Eθ/c. The Poynting vector associated with the radiation field is di-
rected in the radial direction and it is given by 

( ) ( ) 22

0

dsin 1,
4π d r

i t r clt
cr c t
θ

θ
ε

−  =   
   

S a                 (7) 

The power radiated by the dipole as a function of time can be obtained by in-
tegrating the Poynting vector over a spherical surface centered at the dipole. The 
result is 

( ) ( ) 22

3

d
d6π

i t r clP t
tcε
− 

=  
 

                    (8) 

3.1.2. Energy Dissipation and the Action Associated with the Radiation 
of a Short Dipole 

The total energy radiated by the dipole, U, can be obtained by integrating the 
power given by Equation (8) over time. The result, based on the current wave-
form given in Equation (4), is 
 

 
Figure 1. The geometry relevant to the description of electromagnetic 
fields of a short electric dipole of length l located at the origin of the axes. 
In the diagram ar and aθ are unit vectors in the direction of increasing r 
and θ respectively. The unit vector aφ is directed along the vector r θ×a a . 
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2 2

2 3 3
0

2π 1
12π

q lU
cε σ

=                         (9) 

Substituting for σ in terms of τ from Equation (3) we obtain 
2 2

3 3
0

1
3
q lU

cε τ
=                          (10) 

The action associated with the radiation field is then given by 
22

0

1
3
qA U

c
τ

ε β
 

= =  
 

                      (11) 

Now, as mentioned previously, in the case of a short dipole 1t c , i.e. 
1β  . Thus the upper limit to the action associated with the radiation produced 

by a short dipole, Am, depends on the smallest possible value of β. Since 1β  , 
the smallest possible value of β, still within the dipole limit, is about 3. Since the 
action increases with decreasing value of β an absolute upper ceiling for the ac-
tion can be obtained by substituting β = 1 in Equation (11). That is, 

2

03m
qA

cε
=                           (12) 

Figure 2 shows how this action varies as a function of charge. In the diagram 
the action is given as a fraction of h/2π where h is the Planck constant and the 
charge is given as a fraction of the elementary charge e. Note that the charge ne-
cessary to reach one unit of action is about 6e. This shows that the short electric 
dipole radiation satisfies the inequality 2πA h q e> → > . 

3.2. Small Magnetic Dipole 

A magnetic dipole consists of a closed loop around which an electric current is  
 

 
Figure 2. The maximum action (in multiples of h/2π) as a function of the 
charge q (in multiples of the electronic charge) pertinent to a short dipole. 
Note that the diagram corresponds to the case with the limiting value of β = 1. 
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flowing. In this analysis we will consider a small loop of radius a excited by a 
transient current. In the case of a magnetic dipole 2πa c τ  where, τ as de-
noted previously, is the duration of the current. That is, the time for the current 
to propagate around the loop is much smaller than the duration of the current. 
In order to make the analysis very general let us define a parameter βm as fol-
lows: 

2πm a cτ β=                         (13) 

Thus, for a magnetic dipole 1mβ  . 

3.2.1. Electromagnetic Fields of a Small Magnetic Dipole 
Since our goal is to study the energy radiated by the magnetic dipole it is suffi-
cient to concentrate only on the radiation field terms. The geometry relevant to 
the field calculation is given in Figure 3. The electric radiation field produced by 
a magnetic dipole of radius a in free space is given by [7]: 

( )0

0

dsin
4π d

i t r cA
cr tφ φ

µ θ
ε

−
= −E a                  (14) 

In the above equation A is the area of the magnetic dipole. This equation is 
valid provided that 1mβ   and r a

. The magnetic flux density (or the 
B-field) associated with the radiation is directed along aθ and has the magnitude 
Eφ/c. The Poynting vector associated with the radiation field is directed in the 
radial direction and it is given by 

( ) ( )
22 2

0
3 2

dsin,
4π d r

i t r cAt
r c t

µθ
θ

 − =   
    

S a               (15) 

 

 
Figure 3. The geometry relevant to the description of electromagnetic 
fields of a small magnetic dipole of length radius a located at the origin of 
the axes. In the diagram ar and aθ are the unit vectors in the direction of 
increasing r and θ. The unit vector aφ is directed along the vector r θ×a a . 
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The power radiated by the magnetic dipole as a function of time can be ob-
tained by integrating the Poynting vector over a spherical surface centered at the 
dipole. The result is 

( ) ( )
222

0
3 2

d
6π d

i t r cAP t
c t

µ  −
=  

  
                   (16) 

3.2.2. Energy Dissipation and the Action Associated with the Radiation 
of a Small Magnetic Dipole 

The total energy radiated by the magnetic dipole, U, can be obtained by inte-
grating the power given by Equation (16) over time. The result, based on the 
current waveform given in Equation (4), is 

2 2
0

3 2 3 5

1
16π

q AU
c

µ
σ

=                          (17) 

Substituting for σ in terms of τ from Equation (3), the energy dissipated as 
radiation can be expressed as 

42
0

3 2

1
64π m

q cU µ
σ β
 

=  
 

                       (18) 

The action associated with the radiation field is then given by 
42

0

1
32π 2 m

qA U
c

τ
βε

 
= =  

 
                    (19) 

Now, as mentioned previously, in the case of a small magnetic dipole 
2πa cτ  , i.e. 1mβ  . Thus the upper limit to the action associated with the 

radiation produced by a small dipole, Am, depends on the smallest possible value 
of βm. Since 1mβ  , the smallest possible value of βm, still within the dipole lim-
it, is about 3. Since the action increases with decreasing value of βm, as in the case 
of the electric dipole, an absolute upper ceiling for the action can be obtained by 
substituting 1mβ =  in Equation (19). That is, 

2

032π 2m
qA

cε
=                        (20) 

Figure 4 shows how this action varies as a function of charge. In the diagram 
the action is given as a fraction of h/2π and the charge is given as a fraction of 
the elementary charge. Note that the charge necessary to reach one unit of action 
is about 38e. This is much larger than the value we obtained for the electric di-
pole. In other words, for a given charge the electric dipole is a much more effi-
cient radiator than a magnetic dipole. However, the magnetic dipole radiation 
still satisfies the inequality 2πA h q e> → > . 

3.3. Travelling Wave Antenna 

In an ideal travelling wave antenna, a current pulse propagates from one end of a 
conductor to the other end with the speed of light and without attenuation [8]. 
The current is assumed not to be reflected at the point of termination. Indeed, 
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Figure 4. The maximum action (in multiples of h/2π) as a func-
tion of the charge q (in multiples of the electronic charge) perti-
nent to a small magnetic dipole. Note that the diagram corres-
ponds to the case with the limiting value of βm = 1. 

 
this scenario is valid for an ideal antenna where all the losses are neglected. As 
mentioned earlier, this physical picture is identical to that utilized in the trans-
mission line model used to represent lightning return strokes when the speed of 
propagation of the return stroke front is equal to the speed of light [1] [2]. 

3.3.1. Electromagnetic Fields of a Travelling Wave Antenna 
The geometry relevant to the derivation of the electromagnetic field equations is 
shown in Figure 5. A current pulse is initiated at S1 and propagates toward S2 
with the speed of light without attenuation or dispersion. The current is termi-
nated at S2. The system will generate two radiation field pulses one at the initia-
tion of the current and another one during the termination of the current. Let us 
consider a point P which satisfies the condition r l

 and where only the radi-
ation fields exist. When point P is located far away from the antenna the three 
lines connecting P in Figure 5 are essentially parallel and that allows us to write, 

1 cosr r l θ= −                           (21) 

Let us also define the parameters δ  as 

( )1 cosl cδ θ= −                          (22) 

The electric radiation field at the point of observation is given for 
r c t r c δ< < +  (reader is referred to [7] for the details of this derivation) 

( )
[ ]

sin
4π 1 coso

i t r c
crθ θ
θ

ε θ
−

=
−

E a                      (23) 

and for t r c δ> +  the field is given by 

[ ] ( ) ( )( )sin
4π 1 coso

i t r c i t r c
crθ θ

θ
δ

ε θ
= − − − −

−
E a           (24) 
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Figure 5. Geometry relevant to the derivation of field equations 
pertinent to a travelling wave antenna. The unit vector aφ is di-
rected along the vector r θ×a a . 

 
The radiation field consists of two bursts, one generated during the initiation 

of the current pulse at S1 and the other during the termination of the current 
pulse at S2. The duration of the radiation field pulses generated during the cur-
rent initiation and current termination at the two ends of the conductor is equal 
to the duration of the current. The magnetic flux density (or the B-field) asso-
ciated with the radiation is directed along aφ and has the magnitude Eθ/c. The 
Poynting vector associated with these fields is given, for r c t r c δ< < + , by 

( ) ( )
( ) [ ]

2 2

2 22
0

sin 1,
4π 1 cos

r
i t r c

t
cr

θ
θ

ε θ

−
=

−
S a               (25) 

and for t r c δ> +  

( )
( )

( ) ( )
[ ]

22

2 22
0

sin,
4π 1 cos

r

i t r c i t r c
t

cr

δθ
θ

ε θ

− − − −  =
−

S a          (26) 

The power dissipated by the radiation field is then given by 

( ) ( )
2π π

2

0 0

, sin d dP t S t rθ θ θ φ= ∫ ∫                  (27) 

The net energy dissipated by the radiation field can be obtained by integrating 
the above expression over time. 

3.3.2. Energy Dissipation and the Action Associated with the Radiation 
of the Travelling Wave Antenna 

The total energy radiated, ΔU, by the travelling wave antenna can be calculated 
numerically for any given value of β. However, Cooray and Cooray [4] showed 
that the cumbersome expression for the energy dissipation reduces to a simple 
expression when β < 10−6. That expression is given by (this can be obtained by 
performing the integral in Equation (27) of [4]) 

2

3 2
0

1ln
4π

qU
c βε σ

∆ =                        (28) 

S2

r

r1

S1

P

θ
l

aθ

ar
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Note that the energy emitted by the radiation for a given β is both a function 
of charge and σ. The action associated with the radiation field, A, is given by 

A Uτ= ∆                            (29) 

Substituting for ΔU from Equation (28) we obtain 
2

3 2
0

1ln
4π

qA
c

τ
βε σ

=                        (30) 

Substituting for τ from Equation (3) and noting that l cβ τ=  we obtain 
2

0

2 ln
4π

q lA
c cε τ

=                          (31) 

In writing down the expression for the radiation fields we have not considered 
the effect of the radius of the conductor. However, we have tacitly assumed that 
the radiation generated from any point across the cross section of the antenna is 
in phase. This is strictly true only when the duration of the current waveform is 
larger than the time a/c where a is the radius of the conductor. Thus, the smal-
lest value of τ that one can use in the equation is on the order of a/c and when 
this is substituted in Equation (31) we obtain 

2

0

2 ln
4π

q lA
c aε

=                           (32) 

In Equation (32) we have the final expression necessary to study how the up-
per limit of the action of the radiation field varies as a function of q, a and l. Ob-
serve from Equation (32) that the action associated with a given charge increases 
with increasing l and with decreasing a. The radius of a conductor or a con-
ducting channel in nature cannot be smaller than the atomic dimensions or the 
Bohr radius, a0. Thus, for a given q and l the maximum action is obtained for a = 
a0. Note also that the action increases with increasing l. The maximum value of l 
that can be achieved in nature cannot be larger than the radius of the universe, 
Ru. For this reason, the maximum action that can be obtained for a travelling 
wave antenna excited by a given charge q is given by 

2

0 0

2 ln
4π

u
m

RqA
c aε

=                          (33) 

This action (given in units of h/2π) as a function of charge q (given in units of 
electronic charge) is shown in Figure 6. In making this diagram we have taken 

11
0 5.29 10 ma −= ×  and 264.4 10 muR = ×  (one can of course use either the size 

of the observable universe or the current Hubble radius but in either case the 
order of magnitude of the result remains the same). Observe that as the charge 
reduces to the electronic charge, the maximum action reduces to a value on the 
order of h/2π. This shows that, within the confines of the natural limits, the 
maximum action of the radiation field of a travelling wave antenna excited by an 
electronic charge is about h/2π. If the charge is reduced below this critical value 
the action will also be reduced below h/2π. We can summarize this result using 
the inequality 2πA h q e≥ → ≥ . 

https://doi.org/10.4236/jemaa.2017.911015


V. Cooray, G. Cooray 
 

 

DOI: 10.4236/jemaa.2017.911015 177 Journal of Electromagnetic Analysis and Applications 
 

 
Figure 6. The maximum action (in multiples of h/2π) as a function 
of the charge q (in multiples of electronic charge) pertinent to a wave 
antenna. Note that as q reaches the electronic charge the maximum 
action reaches about h/2π. 

 
Observe that if we consider a smaller antenna length the action becomes 

smaller and a larger charge will be needed to maintain the action above h/2π. 
The same is true if we increase the duration of the current while keeping the an-
tenna length constant. For a given antenna length, as the duration of the current 
increases the action decreases and again one needs a larger charge to reach the 
critical action. This is also true if we try to increase the radius of the conductor 
while keeping the duration of the current constant. As the radius increases a 
stage will be reached at which the radiation from different parts of the cross sec-
tion of the current path interfere destructively reducing the action. The case is 
the same if we take into account any attenuation of the current waveform along 
the channel. This will reduce the action leaving the inequality given above unaf-
fected. 

3.4. Bi-Conical Antenna 

A bi-conical antenna (or a bi-conical transmission line) is formed by placing two 
perfectly conducting cones tip to tip with their axis in opposite directions. 
Bi-conical antennas can also be formed by placing a perfectly conducting cone 
over a perfectly conducting ground as shown in Figure 7. In this case, the cone 
and its image through the ground plane form the bi-conical antenna. Since our 
analysis is conducted for a radiating system excited by a single current pulse we 
will use the latter in our analysis. An application of a voltage pulse across the 
input terminals at O will give rise to a current pulse that propagates along the 
surface of the cone with the speed of light, c. The current density associated with 
the current pulse is spread uniformly around the surface of the cone. This will 
give rise to a radiation field in the space located between the surface of the an-
tenna and the ground. 
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Figure 7. Bi-conical antenna with a semi cone angle of α. 
The unit vector aφ is directed along the vector r θ×a a . 

3.4.1. Electromagnetic Fields of a Bi-Conical Antenna 
Expressions for the electromagnetic fields generated by a bi-conical antenna are 
available in many text books dealing with antenna theory [9]. According to these 
expressions the electric field at point P (see Figure 7) generated by a bi-conical 
antenna with half apex angle α with a current i(t) flowing from the origin is giv-
en for t l c<  (i.e. the current has not reached the end of the antenna of length  
l) by 

( )
0

,
2π sin

i t r c
r cθ θ θ α
ε θ
−

= >E a                    (34) 

The magnetic flux density (or the B-field) associated with the radiation is di-
rected along aφ and has the magnitude Eθ/c. The Poynting vector associated with 
this electromagnetic field at point P is given by 

( )
( )

2

2 2
02π sin

r

i t r c

r cε θ

−  =S a                      (35) 

Note that in writing down the above equation we have assumed that l cτ < . 
The total power radiated away at any given time t is obtained by integrating the 
Poynting vector over a semi-spherical region of radius r excluding the region of 
the antenna. The result of the exercise will be 

( )
( )
( )

2 π 22π

2
00

d
sin2π

i t r c
P t

c α

θ
θε

−  = ∫ ∫                   (36) 

This spatial integral can be evaluated analytically and the result is 

( )
( ) 2

0

ln cot
2π 2

i t r c
P t

c
α

ε
−    =  

 
                 (37) 

3.4.2. Energy Dissipation and the Action Associated with the Radiation 
of the Bi-Conical Antenna 

The total energy radiated by the current pulse as electromagnetic radiation can 

P
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O

z

Ground plane

θ
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be obtained by integrating the expression obtained for the power over time and 
the result is 

2

3 2
0

ln cot
24π

qU
c

α
ε σ

 =  
 

                    (38) 

The action associated with the radiation field is given by 
2

3 2
0

ln cot
24π

qA
c

τ α
ε σ

 =  
 

                    (39) 

Substituting for τ from Equation (3) we obtain 
2

0

2 ln cot
4π 2

qA
c

α
ε

 =  
 

                      (40) 

Observe from Equation (40) that the action associated with a given charge in-
creases with decreasing value of the semi-conical angle. Equation (40) can be 
written as 

2

0

2 2ln
4π

q lA
c aε

 =  
 

                       (41) 

In the above equation l is the length of the bi-conical antenna and a is the ra-
dius of the antenna at its end. Observe that the action increases with increasing l 
and it decreases with increasing a. The maximum action is realized when l has 
its maximum value and when a has its minimum value. Considering, as pre-
viously, that the largest length of the antenna that can be realized in nature is the 
radius of the universe and the smallest value of a is on the order of a0, the max-
imum action corresponding to a given charge q is given by 

2

0 0

22 ln
4π

u
m

RqA
c aε

 
=  

 
                     (42) 

This action (given in units of h/2π) as a function of charge q (given in units of 
electronic charge) is shown in Figure 8. In making this diagram we have taken 

11
0 5.29 10 ma −= ×  and 264.4 10 muR = × . Observe that as the charge reduces to 

the electronic charge the maximum action reduces to a value on the order of 
h/2π. This shows that, within the confines of the natural limits, the maximum 
action that the radiation field of a bi-conical antenna excited by an electronic 
charge is about h/2π. If the charge is reduced below this the action will also be 
reduced below h/2π. We can summarize this result again using the inequality 

2πA h q e≥ → ≥ . It is important to point out that in the above analysis we have 
tacitly assumed that, since the antenna is tapering off towards the ground, the 
radius of the conductor at sections below the upper end is less than a0. However, 
in nature the limit of the radius that one can have is the Bohr radius. In practical 
applications the radius has to be larger and the length has to be smaller than the 
values used in estimating the above limiting value. But, a larger radius and a 
smaller length will not disturb the inequality derived here because they will give 
rise to a reduction in the action and the result being that much larger charges are 
needed to satisfy the condition 2πA h> , thus keeping the inequality still valid. 
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Figure 8. The maximum action (in multiples of h/2π) as a func-
tion of the charge q (in multiples of electronic charge) pertinent 
to a bi-conical antenna. Note that as q reaches the electronic 
charge the maximum action reaches about h/2π. 

4. Discussion 

In the previous sections, we have analyzed the radiation fields generated by four 
types of radiators, namely, short electric dipole, small magnetic dipole, travelling 
wave and bi-conical. The final conclusion we have reached after studying the ac-
tion associated with the radiation fields generated by these radiators is the same. 
Of course, in the analysis we have assumed ideal conditions by neglecting losses 
associated with the attenuation and dispersion of the current as it travels along 
the radiator. But, as pointed out before, the final conclusion, namely, 

2πA h q e> → > , would not change if the losses are taken into account. It is 
important to stress here that the above inequality is an order of magnitude rela-
tionship and the left hand side of the inequality may vary between 4πA h>  
and 2πA h>  from one case to another. 

In the analysis presented here, the current is represented by a Gaussian pulse. 
We have repeated the analysis also using other symmetrical current waveforms 
such as finite step function and half sinusoidal function. All these waveforms 
generated results which are within 10% of each other and, therefore, do not dis-
turb the order of magnitude inequality presented in this paper. 

It is also important to point out that in the radiating systems analyzed here 
what is propagating along the radiator with the speed of light is the current 
waveform and not individual charges. One might wonder whether the final con-
clusion reached here would still remain valid if the radiation fields are generated 
by the acceleration of free electrons. Such an analysis was carried out by Cooray 
and Cooray [6]. In that work they have studied the radiation generated by the 
deceleration of uniformly moving electrons when they strike a perfectly con-
ducting solid boundary. The study confirmed that the above inequality is satis-
fied also by the radiation fields generated by acceleration or deceleration of free 
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electrons. That result, when combined with the results presented here shows that 
the above inequality is a condition that may be satisfied by electromagnetic radi-
ation in general. 

The above mentioned general result does not prove that electron is the smal-
lest free charge that one can find in nature. If we have to prove that electron in-
deed is the smallest free charge available in nature then we have to show that 

2πA h≥  (or 4πA h≥ ) is a law of nature. Fortunately, such a law exists in 
nature and it is called the time-energy uncertainty principle [10]. Cooray and 
Cooray [4] showed that the inequality 2πA h≥  is valid for electromagnetic 
radiation generated by travelling wave antennas. Indeed, the results given above 
can be combined with this qualitative law to obtain an expression for the ele-
mentary charge. Details of this exercise are described in references [3] [4] [5] [6]. 

5. Conclusion 

The results presented in this paper show that the action generated by the radia-
tion fields of short electrical dipoles, small magnetic dipoles, travelling wave an-
tennas and bi-conical antennas satisfy the order of magnitude inequality 

2πA h q e≥ → ≥  where A is the action (product of energy radiated and the 
duration of emission), h is the Planck constant, q is the charge associated with 
the current that gave rise to the radiation and e is the elementary charge. The 
results obtained here, in combination with the results obtained elsewhere, show 
that this inequality may be valid in general for the radiation fields as predicted 
by classical electrodynamics. 
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