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Abstract 
Palmer amaranth (Amaranthus palmeri S. Wats.) invasion negatively impacts 
cotton (Gossypium hirsutum L.) production systems throughout the United 
States. The objective of this study was to evaluate canopy hyperspectral nar-
rowband data as input into the random forest machine learning algorithm to 
distinguish Palmer amaranth from cotton. The study focused on differentiat-
ing the Palmer amaranth from cotton near-isogenic lines with bronze, green, 
and yellow leaves. A spectroradiometer was used to acquire hyperspectral ref-
lectance measurements of Palmer amaranth and cotton canopies for two sep-
arate dates, December 12, 2016, and May 14, 2017. Data were collected from 
plants that were grown in a greenhouse. The spectral data were aggregated to 
twenty-four hyperspectral narrowbands proposed for study of vegetation and 
agriculture crops. Those bands were tested by the conditional inference ver-
sion of random forest (cforest) to differentiate the Palmer amaranth from 
cotton. Classifications were binary: Palmer amaranth and cotton bronze, Pal-
mer amaranth and cotton green, and Palmer amaranth and cotton yellow. 
Classification accuracies were verified with overall, user’s, and producer’s ac-
curacy. For the two dates combined, overall accuracy ranged from 77.8% to 
88.9%. The highest overall accuracies were observed for the Palmer amaranth 
versus the cotton yellow classification (88.9%, December 12, 2016; 83.3%, May 
14, 2017). Producer’s and user’s accuracies range was 66.7% to 94.4%. Errors 
were predominately attributed to cotton being misclassified as Palmer ama-
ranth. The overall results indicated that cforest has moderate to strong poten-
tial for differentiating Palmer amaranth from cotton when it used hyperspec-
tral narrowbands known to be useful for vegetation and agricultural surveys 
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as input variables. This research further supports using hyperspectral nar-
rowband data and cforest as decision support tools in cotton production sys-
tems. 
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1. Introduction 

Palmer amaranth, an aggressive and invasive weed, negatively impacts cotton 
growth and productively throughout the United States. It grows at a rapid rate 
(i.e., approximately 25 - 50 mm per day), produces several thousand seeds per 
plant, competes with cotton plants for sunlight and soil nutrients, and reduces 
cotton yield. Palmer amaranth populations are controlled by chemical and me-
chanical means. Its presence in fields is observed via site visits, which are time 
consuming when several hundred hectares need to be surveyed. To better im-
plement control strategies for Palmer amaranth invasions in cotton production 
systems, agriculturalists need tools that can help them differentiate it from cot-
ton. Researchers, consultants, and producers have shown interests in employing 
remote sensing technologies as weed detection and survey tools in crop produc-
tion systems. 

Remote sensing applications for weed survey have focused on comparing leaf 
and canopy light reflectance properties of weeds to crops with the intention to 
identify spectral bands showing statistically significant differences between 
them. Spectral profiles and statistical analyses were used to distinguish soybean 
(Glycine max L.) from pitted morning glory (Ipomea lacunose L.) [1], sunflower 
(Helianthus annuus L.) from corn caraway (Ridfolia segetum Moris.) [2], and 
Palmer amaranth and redroot pigweed from cotton [3]. Over the years, there has 
been a shift towards using multispectral and hyperspectral data as input into 
machine learners to differentiate crops from weeds. Machine learning involves 
training computer algorithms to discover patterns in datasets. 

Hyperspectral and multispectral datasets were used with stepwise discriminate 
analysis and multilayer perceptron and radial base function neural networks to 
distinguish cruciferous weeds (Sinapis spp. and Diplotaxis spp.), wheat (Triti-
cum durum L.), and broad bean (Viciafaba L.) [4]. The multilayer perceptron 
model was the most accurate classifier. Artificial neural networks coupled with 
spectral data distinguished grass weed species [wild oat (Avena sterilis L.), ca-
nary grass (Phalaris spp.) and ryegrass (Lolium rigidum L.)] from winter wheat 
[5] and performed better than maximum likelihood classification to distinguish 
redroot pigweed (Amaranthus retroflexus L.) and wild oats (Avena fatua L.) [6]. 
Linear discriminate analysis and leaf hyperspectral and multispectral reflectance 
data separated wheat and canola (Brassica napus L.) from common lambsquarter 
(Chenopodium album L.), green foxtail (Setaria viridis L.), redroot pigweed, 
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wild mustard (Sinapis arvensis L.), and wild oak (Avena fatua L.) [7] and soy-
beans from pitted morning glory (Ipomoea lacunosa L.) [1]. Random forest and 
multispectral data have shown promise for soybean Palmer amaranth separation 
[8] [9]. The previously mentioned studies were based on laboratory and field 
measurements. Researchers have had success in employing hyperspectral data 
obtained with aerial systems as input into support vector machines, artificial 
neural networks, and discriminant analyses to detect several grass [yellow nut-
sedge (Cyperus esculenthus L.), barnyardgrass (Echinochloa crus galli L. 
Beauv.), and crab grass (Digitaria ischaemum (Schreb.) Schreb. exMuhl.)] and 
broadleaved weeds [Canada thistle (Cirsium arvensis L. Scop.), sow thistle 
(Sonchus oleraceus L.), redroot pigweed, and common lambsquarter] in corn 
(Zea mays L.) plots [10] [11]. Overall, [12] suggested that 15 to 28 spectral bands 
are needed for vegetation study, characterization, and mapping. 

As indicated earlier, machine learners coupled with spectral data have shown 
promise for weed-crop discrimination. The user has many learners to choose 
from. Random forest, a nonparametric machine learning method, uses a group 
of decision trees to estimate a value or assign an object to a class [13]. It is com-
petitive with other machine learners such as support vector machines and neural 
networks and was ranked as one of the best classifiers [14] [15]. Minimum data 
preparation is needed by the algorithm. Random forests work well with large 
datasets and are not affected by outliers. The algorithm does not require a sepa-
rate testing set because it uses bootstrap sampling for each tree, meaning each 
tree is built with 63% of the data and thus leaving 37% of the data for testing 
(i.e., the “out-of-bag” data). 

Crop plants with specific traits are being developed by plant breeders to meet 
the desired characteristics needed for crop production systems. Presently at ex-
periments stations, researchers are evaluating cotton near-isogenic lines that 
have bronze, green, and yellow colored leaves with the intention of using them 
in cotton production systems. Reference [3] statistically compared the leaf spec-
tral profile of the cotton lines to redroot pigweed and Palmer amaranth. Cur-
rently, no research is available that has explored application of canopy narrow-
band hyperspectral data and random forest machine learning algorithm for dif-
ferentiating Palmer amaranth from cotton with different colored leaves. The ob-
jective of this study was to evaluate canopy hyperspectral narrowband data as 
input into random forest machine learning algorithm to distinguish Palmer 
amaranth from cotton. The study focused on using optimal hyperspectral nar-
rowbands proposed for study of vegetation and agricultural crops [12] as input 
into the random forest algorithm. Additionally, the research concentrated on 
cotton near-isogenic lines that have bronze, green, or yellow leaf colors. 

2. Materials and Methods 
2.1. Experimental Setup 

The study was conducted in a greenhouse located at the United States Depart-
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ment of Agriculture (USDA), Agricultural Research Service (ARS), Jamie Whit-
ten Delta States Research Center, Stoneville, MS (33.425261 latitude, −90.912740 
longitude). Palmer amaranth and cotton near-isogenic line seeds (i.e., cotton 
bronze, cotton green, and cotton yellow seed) were obtained from established 
seed banks maintained at USDA-ARS, Stoneville, MS. A detailed description of 
the cotton near-isogenic lines is provided in [3]. 

The experimental design was a randomized complete block design with 18 
replications and 4 treatments per replication (i.e., 1 cotton bronze plant, 1 cotton 
green plant, 1 cotton yellow plant, and 1 Palmer amaranth plant). Data were 
collected from two separate experiments. Planting dates were November 7, 2016 
and April 18, 2017 for experiments one and two, respectively. For each experi-
ment, several seeds of the respective plants were planted into 11-cm pots con-
taining potting mix (Pro-Mix BX general professional growth medium, Premier 
Tech Horticulture, Quakertown, PA). Approximately 10 days after emergence, 
plants were thinned to 1 plant per pot. The plants were subjected to a 14-hr day 
length; the greenhouse temperature was maintained between 21.1˚C and 26.7˚C. 
Sodium vapor lamps were used as a supplemental light source at the beginning 
and ending of the day. The plants were fertilized weekly with a liquid fertilizer 
(approximately 4.9 ml of fertilizer to 3.8 L of water, Dyna-Gro All-Pro, Rich-
mond, CA); water was added as needed. 

2.2. Data Collection 

Canopy reflectance measurements of Palmer amaranth and cotton plants were 
obtained with a hyperspectral spectroradiometer (Fieldspec 3 Full Range, ASD 
Inc. Boulder, CO) sensitive to a spectral range of 350 to 2500 nanometers (nm). 
Reflectance measurements were acquired in the vegetative growth stage (i.e., 
Palmer amaranth 10 leaf stage and cotton 4 leaf stage). Herbicide management 
programs are more effective when weeds are treated in the vegetative phase; and 
most users want to kill or treat weeds prior to seeding. 

Canopy reflectance measurements were acquired on December 12, 2016 and 
May 14, 2017. They were obtained outside of the greenhouse under sunlit condi-
tions. Measurements were obtained ± 2 hours of solar noon. Prior to measure-
ments, a black felt cloth was placed across the top of the pot to cover the potting 
mix, thus providing a uniform background. The black felt cloth’s spectral reflec-
tance was less than 2 percent in all regions of the spectrum measured by the 
spectroradiometer. 

The spectroradiometer was calibrated at approximately 15-minute intervals 
with a white calibration panel. For canopy measurements, the spectroradiome-
ter’s fiber optic cable was held 15 cm from the top of the plant canopy, resulting 
in a ground field of view of 35 cm2. For each plant canopy, the spectral reading 
was an average of 15 scans collected by the instrument. 

2.3. Post Processing 

The 1-nm hyperspectral reflectance data were post processed as follows [16]: (1) 
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splice correction of each spectra, (2) removal of water absorption bands and 
bands not commonly used by remote sensing systems (350 - 400 nm, 1330 - 1480 
nm, 1780 - 1990 nm, 2400 - 2500 nm), and (3) smoothing (i.e., removal of noise 
from the data) of the spectrum with Savitzky-Golay filter [17] (The filter removes 
noise from the spectral data while maintaining the shape of the spectrum). Splice 
correction eliminated gaps in the spectral data caused by the different detector 
arrays in the spectroradiometer. For the FieldSpec3 spectroradiometer, correc-
tion is needed at 1000 nm and 1800 nm. It was completed with the View SpecPro 
software (Version 6.2; ASD, Inc., Boulder, CO). The Hyperspectral Data Analy-
sis in R (HSDAR, [18] [19]) package was employed to remove water absorption 
bands, to smooth spectra with the Savitzky-Golay filter (smoothing parameter; n 
= 25), and to create the optimal hyperspectral narrowband bands proposed for 
study of vegetation and agricultural crops [12]. The center wavelengths and 
bandwidths of the hyperspectral narrowbands are summarized in Table 1 [12]. 

 
Table 1. Hyperspectral narrowbands evaluated as input into cforest for Palmer amaranth and cotton discrimination. These bands 
have been identified as optimal for vegetation and agricultural studies [12]. 

Spectral Region Central Wavelength (nm) Bandwidth (nm) Vegetation and Agricultural Applications 

Blue 405 5 Nitrogen; senescing 

 490 5 Carotenoid; light use efficiency; stress in vegetation 

Green 515 5 Carotenoid; anthocyanins; nitrogen; vigor 

 531 1 Light use efficiency; xanophyll cycle; stress in vegetation; pest and disease 

 550 5 Chlorophyll 

 570 5 Anthocyanins; chlorophyll; nitrogen 

Red 682 5 Biophysical quantities; yield 

Red-edge 705 5 Stress; chlorophyll 

 720 5 Stress; chlorophyll 

Near-infrared 855 20 Biophysical quantities and yield 

 910 5 Moisture; biomass; and protein 

 970 10 Water; moisture; and biomass 

 1075 5 Biophysical and biochemical quantities 

 1180 5 Water absorption band 

 1245 5 Water sensitivity 

Shortwave-infrared 1518 5 Moisture; biomass 

 1650 5 Heavy metal stress; moisture sensitivity 

 1725 5 Lignin; biomass; starch; moisture 

 2025 5 Plant litter; lignin; cellulose; plant litter-soil differentiation 

 2133 5 Plant litter; lignin; cellulose 

 2205 5 Litter; lignin; cellulose; sugar; starch; protein; heavy metal stress 

 2260 5 Moisture and biomass 

 2295 5 Stress 

 2359 5 Cellulose; protein; nitrogen 

https://doi.org/10.4236/ajps.2017.812219


R. S. Fletcher, R. B. Turley 
 

 

DOI: 10.4236/ajps.2017.812219 3263 American Journal of Plant Sciences 
 

2.4. Classifications 

The spectral data were highly correlated according to Pearson correlation ana-
lyses. Therefore, classifications were completed with the conditional inference 
version (cforest) of random forest. It produces more stable variable of impor-
tance readings than random forest, especially when variables are highly corre-
lated [20]. Also, cforest is different than random forest in that it employs condi-
tional inference trees as base learners and the conditional permutation scheme 
described by [20] [21] to rank variables. To complete the classifications, the de-
cision trees (i.e., forest) were developed using subsampling without replacement 
[22]. That procedure reduces the bias in variable importance rankings and is ap-
propriate to use when potential predictor variables vary in their scale of mea-
surement or their number of categories [22]. 

Cforest required adjustments of two parameters to develop the classification 
models, ntree and mtry. Ntree characterized the number of decision trees to use 
in each forest. Mtry represented the number of variables randomly chosen to de-
rive tree split points. 

Cforest models were developed and tested based on the following procedures. 
A set seed value of 100 was chosen; the set seed value represented the start point 
of a set of pseudo-random numbers. Using the same seed number, the analyst 
will be able to produce identical results. Then the model was evaluated using 
ntree values of 50, 75, and 100 to 1000 in increments of 100 (i.e., 100, 200, 300, 
etc.). The ntree value in which the “out-of-bag” (samples not used in a tree) clas-
sification error stabilized was selected as the appropriate number of trees. Then, 
mtry values of 3, 5, 10, 15, 20, and 24 were evaluated with the selected optimal 
ntree value. The mtry value in which the “out-of-bag” error stabilized was cho-
sen as the optimal model. To test the consistency in the variable importance 
scores, the classification was repeated with the optimal ntree and mtry values 
and a different starting seed [22]; 200 was selected as the starting seed value 
when checking consistency of the model. For each date, the classifications were 
binary: (1) Palmer amaranth versus cotton bronze, (2) Palmer amaranth versus 
cotton green, and (3) Palmer amaranth versus cotton yellow. Cforest classifica-
tions were conducted with the Party package of R 3.4.0 [18] [21] [22] [23]. 

2.5. Accuracy Assessment of Cforest Models 

Accuracy of cforest models was determined with user’s, producer’s, and overall 
accuracies [24]. User’s accuracy was tabulated by dividing the sum of the cor-
rectly classified plants for a specific class by the total number of plants deter-
mined by the classifier for that class [24] [25]. It described the reliability of the 
classification. Producer’s accuracy was calculated by dividing the number of 
plants correctly classified into a category by the total number of reference plants 
in that category [24] [25]. It represented the accuracy in classifying the reference 
samples. Overall accuracy was determined by dividing the total number of cor-
rectly classified plants for all classes by the total number of plants. User’s, pro-
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ducer’s, and overall accuracies were manually tabulated using error matrix re-
sults obtained with cforest. 

3. Results 

Cforest model parameters are summarized in Table 2 for each classification. The 
default ntree (500) and mtry (5) values were adequate to use for five out of six 
classifications. The only exception was the May 14, 2017, Palmer amaranth ver-
sus cotton bronze classification. For that classification, the best accuracies were 
obtained when all variables were considered for splitting a tree node. 

Accuracy assessment results of the classifications are shown in Table 3. Over-
all accuracies were greater than 77% with the lowest overall accuracy achieved 
for Palmer amaranth versus cotton green and Palmer amaranth versus cotton 
bronze classifications for December 12, 2016 and May 14, 2017, respectively. The 
greatest overall accuracy was obtained for the Palmer amaranth versus cotton 
yellow classifications for both dates. User’s and producer’s accuracies ranged 
from 66.7% to 94.4% (Table 3). Overall, Palmer amaranth user’s accuracy was 
less than its producer’s accuracy; whereas, the opposite was observed for the 
cotton classes (Table 3). The highest user’s and producer’s accuracies for the 
Palmer amaranth class varied for the classifications (Table 3). For both dates, 
the user’s accuracy of cotton yellow was greater than the user’s accuracies of 
cotton bronze and cotton green. Producer’s accuracy varied from one classifica-
tion to the next for the cotton classes (Table 3). The user’s accuracy of the Pal-
mer amaranth class was less than the user’s accuracy of the cotton classes; in 
contrast, the producer’s accuracy of the Palmer amaranth class was greater than 
the producer’s accuracy of the cotton classes (Table 3). 

The variable importance rankings of the classifications for both dates are 
shown in Figure 1 and Figure 2. The results of the December 12, 2016 dataset 
indicated that 14 to 15 bands were important for differentiating Palmer ama-
ranth from cotton. Those bands encompassed the blue, green, red, red-edge, 
near-infrared, and shortwave-infrared regions of the spectrum (Figure 1, Table 
1). The top ranked bands were 705 nm (red-edge), 720 nm (red-edge), and 570  
 
Table 2. Cforest model parameters (i.e., ntree and mtry) used in Palmer amaranth versus 
cotton classifications. 

Date Comparison ntree mtry 

December 12, 2016 PAL-CB a 500 5 

 PAL-CG 500 5 

 PAL-CY 500 5 

May 14, 2017 PAL-CB 500 24 

 PAL-CG 500 5 

 PAL-CY 500 5 

aCB: cotton bronze, CG: cotton green, CY: cotton yellow, PAL: Palmer amaranth, ntree = number of trees 
grown, mtry = number of predictors to use when splitting a node. 
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Table 3. Accuracy assessment results of Palmer amaranth versus cotton classifications 
based on cforest algorithm using hyperspectral narrowbands as input. 

Date Comparison User’s Accuracy Producer’s Accuracy Overall Accuracy 

December 12, 2016 PALa 73.9% 94.4%  

 CB 92.3% 66.7%  

    80.6% 

 PAL 72.7% 88.9%  

 CG 85.7% 66.7%  

    77.8% 

 PAL 85.0% 94.4%  

 CY 93.8% 83.3%  

    88.9% 

May 14, 2017 PAL 72.7% 88.9%  

 CB 85.7% 66.7%  

    77.8% 

 PAL 78.9% 83.3%  

 CG 82.4% 77.8%  

    80.6% 

 PAL 77.3% 94.4%  

 CY 92.9% 72.2%  

    83.3% 

aCB: cotton bronze, CG: cotton green, CY: cotton yellow, and PAL: Palmer amaranth 

 
nm (green) corresponding to Palmer amaranth versus cotton bronze, Palmer 
amaranth versus cotton green, and Palmer amaranth versus cotton yellow classi-
fications, respectively. 

For the May 14, 2017 dataset, 2, 11, and 15 bands were identified as important 
to Palmer amaranth versus cotton bronze, Palmer amaranth versus cotton green, 
and Palmer amaranth versus cotton yellow classification models, respectively 
(Figure 2). Those bands encompassed the blue, green, red, red-edge, near-infrared, 
and shortwave-infrared regions of the spectrum (Figure 2, Table 1). The top 
ranked bands were 705 nm (red-edge), 2025 nm (shortwave-infrared), and 705 
nm (red-edge) for the Palmer amaranth versus cotton bronze, Palmer amaranth 
versus cotton green, and Palmer amaranth versus cotton yellow classifications, 
respectively. 

4. Discussion 

Hyperspectral narrowbands proposed for vegetation and agricultural surveys 
were evaluated as input into cforest classification algorithm to differentiate Pal-
mer amaranth from cotton. The spectral data and machine learning algorithm 
were tested for three different scenarios and for two separate dates (Table 3).  
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Figure 1. Variable importance rankings derived from cforest model for each classifica-
tion, December 12, 2016: (a) Palmer amaranth versus cotton bronze; (b) Palmer ama-
ranth versus cotton green; and (c) Palmer amaranth versus cotton yellow. 
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Figure 2. Variable importance rankings derived from cforest model for each classifica-
tion, May 14, 2017: (a) Palmer amaranth versus cotton bronze; (b) Palmer amaranth ver-
sus cotton green; and (c) Palmer amaranth versus cotton yellow. 
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Overall, the best classification accuracies were achieved for the Palmer amaranth 
versus cotton yellow classifications with accuracies ranging from 77.3% to 94.4% 
(Table 3). For December 12, 2016, the second best classification accuracies were 
observed for the Palmer amaranth versus cotton bronze classification (Table 3). 
The second best overall accuracy for the May 14, 2017 classifications occurred 
for Palmer amaranth versus cotton green (Table 3). The user’s and producer’s 
accuracies rankings were not consistent for the Palmer amaranth and cotton 
bronze versus Palmer amaranth and cotton green classifications (Table 3). Us-
er’s and producer’s accuracies indicated that errors in the classifications were 
caused by cotton being misclassified as Palmer amaranth. From the weed man-
agement perspective, that misclassification error is not as bad as Palmer ama-
ranth being misclassified as cotton. 

The results suggested that there still exist areas for continued development of 
the models. Several research studies have found that narrowband vegetation in-
dices performed well in characterizing agricultural crops [12] [26]. An alterna-
tive is to explore the narrowband vegetation indices as input variables for cforest 
algorithms. The analyst could also test other machine learning algorithms such 
as support vector machines or artificial neural networks. Overall, the results for 
all three classification scenarios were in agreement with other studies promoting 
hyperspectral narrowbands for vegetation and agricultural surveys [12] [26] [27] 
and showing potential of random forest for crop-weed discrimination [8] [9]. 

Variable importance rankings suggested that 15 spectral bands or less were 
needed for Palmer amaranth cotton discrimination (Figure 1, Figure 2). Other 
researchers have also shown that 15 to 30 spectral bands are needed for vegeta-
tion and crop surveys [12] [26]. Additionally, one or more of the red-edge bands 
(i.e., 705 nm, 720 nm) were ranked in the top five variable importance for all 
classifications. The red-edge region (680 - 740 nm) of the optical spectrum is the 
transition zone between red and near-infrared reflectance of vegetation, and 
represents the change between chlorophyll absorption and light scattering 
caused by leaf internal structure [28]. Changes in both chlorophyll content and 
leaf structure are often reflected in the red-edge region of the spectrum. Shifts in 
the red-edge position are caused by chlorophyll content [29] [30], leaf area index 
[31], and plant biomass [32]. 

For this study, differences in leaf chlorophyll content and canopy architecture 
impacted red-edge bands variable importance ranking. The cotton canopies 
consisted of bronze, green, or yellow leaves, hence difference in chlorophyll 
content when compared with the green leaves of Palmer amaranth. Also, the 
cotton plants consisted of broad leaves and had a closed canopy compared with 
the narrower leaves and open canopy of the Palmer amaranth plants. The cano-
py architecture of Palmer amaranth would have more in-canopy shadowing 
compared to cotton, hence affecting its reflectance. Furthermore, the rankings 
indicated that visible, near-infrared, and shortwave-infrared bands contributed 
to the models derived for the classifications (Figure 1, Figure 2; Table 1), fur-
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ther substantiating that differences in leaf pigment, canopy architecture, and leaf 
water content, respectively affected the classification results. 

5. Conclusion 

This study demonstrated that canopy hyperspectral narrowband data could be 
used in tandem with random forest machine learning algorithm to differentiate 
cotton from Palmer amaranth, an invasive weed of cotton production systems. 
This study not only focused on cotton with green leaves, but also evaluated the 
hyperspectral narrowbands and classification algorithm on cotton with bronze 
and yellow leaves. Out of the 24 bands evaluated in this study, 15 or less were 
important to Palmer amaranth-cotton discrimination. The next step will be to 
determine whether random forest (i.e., cforest and other versions of the algo-
rithm) could be used with airborne hyperspectral imaging data to differentiate 
Palmer amaranth from cotton with different colored leaves or not. When using 
airborne imaging systems, the user must consider that in-canopy shadowing, soil 
background, bi-directional reflectance, spatial resolution of the imagery, and ra-
diometric resolution of the imaging system will influence the spectral response 
of the feature of interest. Overall, this research further supports using hyper-
spectral narrowband data and cforest as decision support tools for weed dis-
crimination in cotton production systems. 
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