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Abstract 
In this paper we obtain an empirical mass formula of even-A nuclei based on 
residual proton-neutron interactions. The root-mean-squared deviation 
(RMSD) from experimental data is at an accuracy of about 150 Kev. While for 
heavy nuclei, we give another formula that fits the experimental data better 
(RMSD ≈ 119 Kev). We have successfully described the experimental data of 
nuclear masses and predicted some unknown masses (like 200Ir not involved in 
AME2003, the deviation of our predicted masses from the value in AME2012 
is only about 82 keV). The predictive power of our formula is more competi-
tive than other mass models. 
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1. Introduction 

The study of nuclear masses and energy levels has always been one of the most 
challenging frontiers in the field of nuclear physics. There are two types to de-
scribe and understand the nuclear masses, one of which is global relations, and 
the other is local. Some global nuclear mass models such as Weizäscker model 
[1], Duflo-Zuker model [2], the finite range droplet model [3], a recent macros-
copic-microscopic mass formula [4] [5] [6] etc., successfully produce the meas-
ured masses with accuracy at the level of 300 - 600 Kev. However, the global 
mass models require more physics and more information about nuclear force to 
get better description of the nuclear masses. On the other hand, the local mass 
relations, such as the isobaric multiplet mass equation (IMME), the Gar-
vey-Kelson (GK) relations, which use the predicted nuclear masses and the resi-
dual proton-neutron interactions to evaluate the mass. It is found that the local 
mass relations are just approximately satisfied in known masses, so it has a good 
potential to predict the unknown masses. 
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In this paper, our purpose is to obtain a residual proton-neutron interactions 
formula of even-A nuclei from those of neighboring nuclei. In Section II we in-
troduce the residual proton-neutron interactions and obtain our formula based 
on the proton-neutron interactions between the last proton and the last neutron. 
Then we introduce two modifications to improve our formula. The RMSD from 
experimental data is about 150 Kev. And for heavy nuclei, we obtain another 
formula fits with the experimental data even more precise. With our further re-
finement of heavy nuclei, the RMSD gets even smaller to about 120 Kev. In Sec-
tion III we successfully predict some unknown masses. The result shows that the 
predict power of our formula is competitive with others. In Section IV we dis-
cuss and summarize the results of this paper. 

2. The Residual Proton-Neutron Interactions 

The residual proton-neutron interaction plays an important role in the evolution 
of collective, deformation and phase transition [7] [8] [9] [10], so it has attracted 
many attentions [11]-[17]. The proton-neutron interactions between the last i 
protons and j neutrons is given by 

( ) ( ) ( ) ( ) ( ), , , , , .ip jnV Z N B Z N B Z i N j B Z N j B Z i N− = + − − − − − −  (1) 

The famous formula GKL and GKT were derived from the neutron-proton 
interactions between the last neutron and proton [18] [19]. The relationship 
between Garvey-Kelson quality is a semi empirical relationship between 6 adja-
cent nuclear mass. If the interaction between neighboring nuclei changes slowly 
in the local range, it can be completely counteracted by the addition and sub-
traction of many adjacent nuclei. Garvey-Kelson mass relationship has two 
common relationships: 

( ) ( ) ( )
( ) ( ) ( )

, 1 1, 1 1,

, 1 1, 1, 1 0,

M N Z M N Z M N Z

M N Z M N Z M N Z

+ + − − + +

− − − − − + + =
        (2) 

( ) ( ) ( )
( ) ( ) ( )

, 1 1, 1 1,

, 1 1, 1, 1 0,

M N Z M N Z M N Z

M N Z M N Z M N Z

− + − + + +

− + − − − + − =
        (3) 

where ( ),M N Z  denotes the mass of a nucleus with neutron number N and 
proton number Z. Equation (2) is called the longitudinal Garvey-Kelson relation 
(GKL), and Equation (3) the transverse (GKT). 

In this section, we use the residual proton neutron interactions between the 
last proton and the last neutron to form our formula. According to the Equation 
(1), it is easy to obtain that the residual proton-neutron interactions between the 
last proton and the last neutron is defined as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 , , 1, 1 , 1 1,

, 1, 1 , 1 1,
p nV Z N B Z N B Z N B Z N B Z N

M Z N M Z N M Z N M Z N
− = + − − − − − −

= + − − − − − −
 (4) 

The Garvey-Kelson mass relations require six nuclei, but our formula requires 
only four. So our formula involves less number of nuclei, its predictions in itera-
tive extrapolations is the more reliable, and its deviations are smaller in the 
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extrapolation process. 
In recent years, many papers tried to find formulas to describe and evaluate 

the nuclear masses, but many of them have a large RMSD. In this work, we focus 
on the even-A nuclei, through the study on the neighboring nuclei with the da-
tabase in AME2012 [20]. 

For the residual nuclear proton-neutron interactions which 42A ≥ , we cal-
culate the 1 1p nVδ −  as shown in Figure 1. Based on that, we empirically obtained 
the residual proton-neutron interactions formula of even-A nuclei. The formula 
is as follows: 

( ) ( ) ( ) ( )1 1

2

, 1 1, , 1, 1

515.6 62.78 0.1079 keV

p nV B Z N B Z N B Z N B Z N

AA

δ − = + + − − − − +

≅ + +
    (5) 

1 1p nVδ −  is the average values of 1 1p nVδ −  for nuclei with the same mass num-
ber A. 

We find that the average binding energy of our predicted mass agrees well 
with the specific binding energy curve. We successfully describe and predict 
some even-A nuclear masses by using these equations and some known experi-
mental nuclear masses in AME2012 for calculation of 1 1p nVδ − . 

It can be seen from the Figure 1 that the interaction of proton-neutron is 
 

 
Figure 1. Circles show that the residual proton-neutron interactions 1 1p nVδ − .The curve is 

plotted by using the average values of 1 1p nVδ −  for nuclei with the same mass number A, 

expressed as 1 1p nVδ −
. The smoothed curve are plotted in terms of equation 

( )1 1 2

515.6 62.78 0.1079 keVp nV A
A A

δ − = + +  for even-A nuclei with 42A ≥ . 
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more stable in the heavy nuclei region than in the light nuclei region. 
In order to better describe the quality of the nucleus, we will improve the 

above formula with some amendments, donated by 1 1
cal
p nVδ −  as the final im-

provement results [4] [5] [6]. The first is called the Coulomb correction, denoted 
by C∆ : 

( ) 4 3 7 3 4 3 2 7 3 1 3 4 34 2 4 4, ,
9 3 9 9C CZ N a Z A ZA Z A Z A− − − − ∆ ≈ − − + + 

 
 

the second is called the symmetry energy correction, denoted by sym∆ : 

( )
( )

1
3

1, ,
2

sym sym symZ N a b A
A IA

−∆ = +
+

 

where ( )I N Z A= −  and 10.51Ca = , 20126syma = , 61.25symb = −  as para-
meters [17] [21]. 

The revised ( )1 1 ,p nV Z Nδ −  is as follows: 

( ) ( ) ( )1 1 1 1, , , .cal
p n p n C symV Z N V Z N Z Nδ δ− −= − ∆ − ∆            (6) 

The improvement of these two corrections on our predicted 1 1p nVδ −  is about 
5 keV. Although the two contributions are small, but with more understanding 
of the symmetry energy of the nucleus, we believe that these contributes will be-
come more important in the future. 

In order to describe the nuclear mass obtained by our theory vividly, we 
compare the average RMSD of the nuclear mass with the experimental data to 
represent the difference, and the formula is as follows: 

( )2

1

1 .
n

exp cal
i i

i
M M

n
σ

=

= −∑  

The RMSD is about 150 Kev. In Figure 2 we show deviations (in units of keV) 
between our calculated 1 1

cal
p nVδ −  by applying Equations (6) and those experi-

mental data of binding energies compiled in AME2012 [20]. It can be seen that 
the RMSDs of these 1 1p nVδ −  decrease with A. The description is better in the 
medium mass nucleus and heavy nucleus. 

As early as 1960s, the nuclear structure theory predicts the existence of a 
number of new elements in the long life near the proton number Z = 114 and 
neutron number N = 184 (i.e. island of super heavy nuclei) and the island of su-
per heavy nuclear plays an important role in the entire nuclear physics field. So 
for the heavy nuclei, we obtain another formula to describe the mass and it fits 
more closely with the experimental data. And in order to achieve better result, 
the different parameters are given between even-even nuclei and odd-odd nuclei, 
the formula is as follows: 

( )1 1 2 .p n
a bV A c

AA− = + +                       (7) 

Parameter a b c 

Even-even −9464 146.3 −0.06435 

Odd-odd 46000 −324.1 0.9124 
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Figure 2. (Color online) Deviations (in units of keV) of our calculated 1 1

cal
p nVδ −  by using 

Equations (6) with respect to those extracted from experimental binding energies [Equa-
tion (4)], for the nuclei with 16A ≥ . 
 

When we use the Equation (6) to describe the nuclear masses, the RMSD is 
about 150 Kev, but if we try the Equation (7) where A > 200, the RMSD is 119 
Kev, it shows that our formula of heavy nuclei is more accurate. 

Figure 3 displays the difference between the experimental values and calcu-
lated values, we compare it with Ref [21], one can see that our result is better. 

3. Mass Predictions 

Through above study, we find our formula has a good performance in describing 
the nuclear masses. In this section, we use our formula and the residual pro-
ton-neutron interaction to predict the nuclear mass not obtained in the experi-
ment. Based on the Equation (4), we can obtain 

( ) ( ) ( ) ( ) ( )1 1, 1, , 1 1, 1 .p nM Z N M Z N M Z N M Z N V Aδ −= − + − − − − +  

The unknown mass ( ),M Z N  is predicted by using the three nuclei masses 
around it and the ( )1 1 ,p nV Z Nδ −  we empirical obtained. 

Now let’s focus on a few examples of our predictions. Table 1 shows mass 
excess of some nuclei are not predictive in ame 2003 or ame 2012 databases. 
These unknown masses are important not only in the context of astrophysics, 
but also in the nuclear structure. Interestingly, our predicted values show good 
in comparison with the experimental results. For 182Lu, the deviation of our pre-
dicted masses from the value in AME2012 is only ∼63 keV. Three additional  
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(a) 

 
(b) 

Figure 3. Shows the RMSDs of even-A nuclei. (a) represents the odd-odd nuclei; (b) 
represents the even-even nuclei. We obtain the even-A nuclear masses from some expe-
rimentally known nuclear masses and the residual proton-neutron interactions formula. 
Comparing calculated values with the AME2012 databases obtain the RMSDs. The trian-
gles are plotted by using the RMSDs of our calculated values. The circles are plotted by 
using the formula in Ref [21]. 
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Table 1. Mass excess of some mass nuclei with us and predicted results in the AME2003 
database and the AME2012 databsae. (keV). 

Nucleus AME2003 AME2012 predM  
52Ni −22,650 −23,470 −23,187 

74Sr −40,700 −40,830 −40,952 

86As −59,150 −58,962 −58,316 

98Kr −44,800 −44,310 −44,555 

126Pr −60,260 −60,320 −60,573 

148Tm −39,270 −38,765 −38,713 

164Re −27,640 −27,523 −27,422 

182Lu −41,880 −41,880 −41,817 

190At null null 10,290 

200Ir null −21,611 −21,693 

202Pt −22,600 −22,692 −22,592 

224Np null 31,876 31,793 

232Am 43,400 43,268 43,376 

272Mt 133,890 133,582 133,671 

286Ed 168,120 169,725 169,700 

 
nuclei are 202Pt, 232Am and 286Ed, the differences between our predicted values 
and those in AME2012 are approximately 100 keV. It seems our formula shows a 
great accuracy and can be used predict nuclear masses. 

4. Discussion and Conclusions 

In this paper, we obtain the residual proton-neutron interactions formula to de-
scribe and predict the mass of even-A nuclei. In order to improve the accuracy 
of the 1 1p nVδ − , we use the average value of the 1 1p nVδ −  (denoted as 1 1p nVδ −  
modification) and introduce two modifications. 

For further understanding of the super heavy nuclei, we use another formula 
to describe the 1 1p nVδ − , and its results fit the experiment data more accurate, 
one can see that the RMSD decreases considerably. 

Then we investigate the predictive power of these new formulas by numerical 
experiments. They are competitive with other local mass relations. The deviation 
of predicted results from experimental values is less compared with other mod-
els. 

Based on results so far, our method of studying the neighboring nuclei has a 
good performance. We can predict other unknown masses by using our empiri-
cal formula to provide useful reference points for experimental physics. 
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