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Abstract 
Project Evaluation and Review Technique (PERT) alongside recent modifica-
tions is a popular and useful tool in project risk analysis. Over the past seven 
decades, there have been some modifications in PERT owing to the shift from 
beta distributed activity times to other activity time distributions. This paper 
presents a review of activity time distributions in risk analysis as found in li-
terature up to date. 
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1. Introduction 

Project Evaluation and Review Technique (PERT) is widely used by project 
managers and practitioners as the probabilistic form of the Critical Path Method 
(CPM). The PERT method is not only useful for the estimation of project com-
pletion times but it is also workable and cost-effective for management of 
projects [1]. PERT has become of interest to management practitioners because 
of its simplicity, and flexibility to accommodate stochastic activity times. PERT 
was invented in 1958 for the POLARIS Missile Program by the Program Evalua-
tion branch of the Special projects Office of US Navy [2]. Malcom’s PERT net-
work, henceforth referred to as classical PERT network, assumes that all activi-
ties are independent random variables, having approximately beta distributions 
parameterized by three times estimates: the optimistic time a, the pessimistic 
time b, and the most likely time m. The expected time of each activity is ob-
tained using the formula ( )4 6a m b+ +  and standard deviation presented as 
one sixth of the range of the distribution resulting to ( )2 36b a−  as the va-
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riance. The critical path is then computed as the longest path. With the belief 
that the network is large enough, the central limit theorem is applied to estimate 
the project completion time. For detail application of PERT, interested readers 
are referred to [1] [2]. 

Although it is well accepted that the classical PERT gives useful estimates, its 
assumption introduces some potential sources of bias which results in the unde-
restimation of project completion time [3] [4] [5]. Sources of PERT bias as do-
cumented in literature include: the misspecification of the activity time distribu-
tion, the method of computing critical path by ignoring the near critical activi-
ties, and the possible violation of the normality assumption during the estima-
tion of project completion time. There exist a sharp divide among researchers 
with respect to the need for introduction of new activity duration distributions 
in PERT. For instance, earlier works by Clark [6], Kamburowski [7] supported 
the use of Beta distribution. Recently, Hajdu and Bokor [8] argued still in sup-
port of the Beta distribution. They considered the following “hypothetical” 
judgemental estimates: 60-optimistic, 100-most likely, and 150-pessimistic whose 
skewness coefficient is only 0.09826. The beta distribution defined by this coeffi-
cient of skewness is the one that approximates the normal distribution which is 
also supported by PERT-Beta approximation. Hence, there is no doubt about 
their conclusion. In spite of this, the graphical results that compared the PERT-Beta, 
triangular and uniform distributions still showed some obvious variations. It is 
possible that a set of data with much longer tail would have yielded worse re-
sults. Moreover, a comparison done with many more activity time distributions 
would have given more in-depth revelations. On the other hand, some research-
ers opine that the adoption of Beta distribution was intuitive as there was no 
empirical evidence for its usage. For instance, it has been demonstrated by Mac-
Crimmon and Ryavec [3] that the error for classical PERT calculated mean and 
standard deviation could be up to 33% and 16% respectively. This point was 
buttressed by Williams [9] using simulation and graphical approaches to dem-
onstrate the extent of discrepancies that exist between the beta and triangular 
distributions in the estimation of activity time parameters. Hahn and Martín 
[10] support the use of a more robust distribution that can accommodate outly-
ing events. An undisputed observation in project management is that most ac-
tivity time distributions are right skewed [11] [12] [13]. 

The importance of probability distributions in PERT cannot be overempha-
sized as both the simulation and analytical approaches assume probability dis-
tributions for activity durations a priori or a posteriori [5] [14] [15]. Conse-
quently, researchers have suggested various activity duration distributions for 
the analyses of project networks. Unfortunately, most basic texts in operations 
research and project management present only PERT-beta distribution without 
any mention of other activity time distributions.  

In this paper, we present a review of the various activity duration distributions 
that have been used for the analysis of project networks. Some modified versions 
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of PERT-Beta approach are also presented. We further highlight the various 
methods adopted for parameter estimation based on these distributions. 

2. Activity Time Distributions in Literature 

1) The Beta Distribution 
The originators of classical PERT [2] assumed that project activity time fol-

lows the generalized beta distribution with probability density function 

( ) ( )
( ) ( )

( ) ( )
( )

1 1

1 ; , , 0
x a b x

f x a x b
b a

α β

α β

α β
α β

α β

− −

+ −

Γ + − −
= < < >
Γ Γ −

 

where α  and β  are the shape parameters, ( ).Γ  is the gamma function. The 
mean, variance and skewness are respectively given as 
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= + −

+
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( ) ( )
22

2 1
x b a αβ

σ
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In classical PERT, the mean and variance were estimated to be 4ˆ
6x

a m b
µ

+ +
=  

and ( )2
2ˆ

36x
b a

σ
−

= . A study by Farnum and Stanton [16] revealed that the mean  

of the beta distribution in classical PERT is appropriate within some range of 
modal values, namely, ( ) ( )0.13 0.13a b a m b b a+ − < < − − . This means that the 
estimate performs poorly outside this interval. This can either happen when the 
most likely estimate, m, is chosen to be very close to the two extreme values, a 
and b, (less than 13% of the range from either a or b). In other words the classic-
al PERT estimate fails when activity time distributions are heavily tailed. More-
over, previous works reveal that the classical PERT assumptions of the mean and 
variance restrict us to only three members of the beta family, namely, 1) 

4α β= = ; 2) 3 2α = − , 3 2β = + ; 3) 3 2α = + , 3 2β = − . In which  

case the skewness will be 0, 
1
2

 and 
1
2

−  respectively [17] [18] [19]. This  

restriction led to various modifications on the classical PERT to accommodate 
more members of the beta family. We will discuss some of these modifications. 
Most of these modifications are based on the adjustments of the parameters of 
beta distribution.  

Gollenko-Ginzburg [20] worked on the improvement of the classical PERT 
estimates based on only two subjective estimates the pessimistic 1) and optimis-
tic 2) times. He posited that analysis of many project networks with lengthy pe-
riods reveals that the most likely activity time is practically useless. He pointed 
out that its relative location in time interval [ ],a b  is usually close to the point  

2
3

a bm +
= . Given the density function ( ) ( )

( ) ( ) ( ) ( )1Γ 2
1

Γ 1 Γ 1
xp mpp q

f x x x
p q

−+ +
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( xm  = mode of x) which was obtained after a re-parametisation of the standard 
beta distribution, with additional assumption that p q Z+ ≅  (constant). The  

following results 2 9 2
13y

a m b
µ

+ +
=  and  

( )2 2
2 22 81 81

1268y
b a m a m a

b a b a
σ

 − − −   = + −    − −     
 were obtained for the estimation  

of the mean and variance of activity distribution. He showed that these formulae 
provide better results as compared to the classical pert formulae when the esti-
mated mode is located in the tails of the distribution. These formulae were fur-
ther reduced to ( )0.2 3 2y a bµ = +  and ( )22 0.04y b aσ = −  on the basis of the  

earlier assumption of the mode, 2
3

a b+
≅ . A similar modification was carried  

out by Shankar and Sireesha [21] on the classical PERT. The approximation was 
achieved by their so called generalization of the assumptions on the parameters 
of the classical PERT method. Given the density function,  

( ) ( )
( ) ( ) ( ) ( )1Γ 2

1
Γ 1 Γ 1

xp mpp q
f x x x

p q
−+ +

= −
+ +

 with the relation p q K+ ≅  (constant). 

Also, substituting 1p +  and 1q +  for p and q respectively they obtained the 

results 
17 5
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=  and 
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2300
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σ
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27x
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2300x
m a b a m

σ
− + − −

=  for the ge- 

neral beta distribution. Their method further created allowance for the accom-
modation of some events in the tail of the distribution. Trout [22] considered a 
modification of the classical PERT method by replacing the most likely time 
(Mode) with the median. Other approximations and extensions on classical 
PERT are widely documented in literature [8] [16] [18] [23]-[31]. 

2) The Normal Distribution 
The proponents of the normal activity time distribution posit that activity 

times can as well be normally distributed regardless of the popular opinion of 
the right skewed activity times. A random variable X is said to be normally dis-
tributed with mean ( µ ) and variance ( 2σ ) if the probability density function is  

given as ( )
( )2

22
2

1 e
2π

x

f x
µ

σ

σ

−

= ; x−∞ < < ∞ . Its coefficient of skewness is zero.  

Kamburowski [32] assumed that the activity durations of PERT network are in-
dependent and normally distributed random variables. He obtained a lower and 
upper bounds for the expected project completion time using a simple recursive 
algorithm. The tightness of the bounds was examined for some numerical exam-
ples. It was apparent that the lower bounds are tighter than the estimates of the 
classical PERT procedure when empirical activity distribution is symmetric but 
otherwise when the distribution is asymmetric. Kamburowski’s method [32] 
followed after Dodin [33]. Sculli [34] proposed an approximation for the com-
pletion time mean and variance of PERT networks. His method assumed that 
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activity durations are normally and independently distributed. He further as-
sumed that various paths of the network are independent, and that the network 
can be transformed into the type where only maximum of two activities termi-
nate on the same event, such that the problem of finding the distribution of 

( )1 2 3max ,T N N N= + . , 1, 2,3i iN =  are independent normal random variable 
with mean iµ  and common variance 2σ . He demonstrated that his method 
which adopts path independence produced better results than the classical PERT 
method which assumes complete dependence of paths. Drezner and Anklesaria 
[35] also developed a method for solving PERT networks as a multivariate prob-
lem taking into consideration path correlation. They assumed that each path 
duration is the sum of activities on the path, and then defined ; 1, 2, ,kT k m= �  
to be the duration of path. They assumed that the set of all ; 1, 2, ,kT k m= �  
follow a multivariate normal distribution, and gave the probability of completing 
the project in time T as ( ); 1, 2, ,kP T T k m≤ = �  resulting to an m-dimensional 
integral problem. Their method was not popular because of much computation 
time required for an approximate solution to be obtained even for small project 
networks. Cottrell [36] developed a simplified version of PERT using normally 
distributed activity times. The simplification was obtained by reducing the 
number of estimates required for activity durations from three, as in classical 
PERT, to two (the most likely-m, and the pessimistic-b times) which were sub-
jectively chosen. In such case, the most likely time (m) coincided with the mean,  

and the variance was obtained using ( )
2

2
90 1.645

b mTσ
− =  

 
. Although his method  

seemed to reduce the effort needed to apply PERT, it was subject to errors great-
er than 10% when the skewness of the actual distribution is greater than 0.28 or 
less than −0.48. Kotiah and Wallace [37] also considered a doubly truncated 
normal distribution for the activity time distribution in PERT via a maximum 
entropy approach. 

3) The Exponential Distribution 
The exponential distribution has been used to describe activity times. Magott 

and Skudlarski [38], Abdelkader and Mouhamed [39] used the exponential dis-
tribution as a representation of activity duration in Stochastic activity Networks 
(SANs). A random variable X with scale parameter λ  is said to be exponential 
if the probability density function is given as ( ) e ; 0, 0xf x xλλ λ−= > > . Its  

mean variance, and skewness are 2
2

1 1,x xµ σ
λ λ

= = , and 1 2γ =  respectively.  

Abdelkader [40] later presented an adjustment to the recursive method of de-
termining the moments of the project completion times in SANs when activity 
times are exponentially distributed. But one of the criticisms of using the expo-
nential distribution is that it assumes a constant probability of completion in the 
next time period, irrespective of the elapsed activity duration. Hence, Abd-el-Kader 
[41] used the truncated exponential distribution as the activity time distribution. 
He equally adopted Stochastic Activity Networks (SANs) approach to obtain the 
moments of the project completion time. His effort yielded an improvement on 
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the estimates obtained using the untruncated exponential distribution. Cini-
cioglu & Shenoy [42] described how a stochastic PERT network can be trans-
formed into a mixture of truncated exponentials Bayesian network. They 
adopted the Lauretsen-Jensen algorithm for solving mixtures of Guassian (MoG) 
hybrid bayesian networks and further approximated a PERT Bayesian network 
by MoG Bayes net. Their method suffered a setback during arc reversal in com-
plex activity networks. Azaron and Modarres [43] transformed a dynamic PERT 
network with exponential activity duration in into stochastic network and then 
obtained the project completion time by constructing Continuous Time Markov 
Chain (CTMC). Other works on exponentially distributed activity times could 
be found in Kamburowski [44], Kulkarni and Adlakha [45] and Kwon, et al. 
[46].  

4) The Weibull Distribution 
The Weibull distributed activity time was considered by Abd-El-Kader [47], 

with density ( ) 1e ; 0; , 0xf x x x
βα ββα α β− −= ≥ > .The moment method was de-

veloped for the estimation of the parameters of the stochastic activity networks 
(SANs). A desirable property of the Weibull distribution over the exponential 
distribution is that of a broad variety of monotone increasing hazard rate when 
the shape parameter is greater than one. McCombs et al. [48] also used the 
Weibull distribution to describe activity times. Their method was based on three 
judgmental estimates: ,a bx x  being the lower and upper expert percentile esti-
mates, and m the most likely estimate. They made effort to obtain what they 
called exact estimates of the mean and variance of the activity distribution. A 
Weibull distributed random variable X with density ( ) ( )( ) ( )1 e xx x

ββ θβ θ θ − −= ; 
0; , 0x θ β≥ > , where θ  is the scale parameter and β  is the shape parameter,  

has mean, variance and skewness given as 1Γ 1xµ θ
β

 
= + 

 
,  

2
2 2 2 1Γ 1 Γ 1xσ θ

β β
    

= + − +    


 
 
     

 and 3 2 3
1

3Γ 1 3 x x xγ θ µ σ µ
β

 
= + − − 

 
 respec-

tively. 
5) The Lognormal Distribution 
A random variable X is lognormal if the probability density function is given 

as 

( )
( )2

221 e ; 0
2π

Inx

f x x
x

µ

σ

σ

−
−

= >  

Its mean, variance, skewness are 
2

2ex

σµ
µ

+
= , ( )2 22 2e 1 ex

σ µ σσ += − , and 

( )2 2

1 e 2 e 1σ σγ = − −  respectively. Mohan et al. [12] suggested a lognormal  

approximation of activity duration in PERT using two time estimates. His me-
thod handled the heavy tailed property of the activity time distribution which is 
deficient when normal activity time is assumed and also reduced the parameters 
from three (a-Optimistic, m-Most likely, and b Pessimistic) to two (a-Optimis- 
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tic, and m-Most likely) or (m-Most likely, and b-Pessimistic). It was demon-
strated with examples that their methods are better than the normal approxima-
tion when the underlying activity distribution is skewed to the right and better 
than the classical PERT method only when the activity distribution is heavily 
right skewed. Trietsch, et al. [49] suggested the use of lognormal distribution for 
modeling activity times but by the Parkinson effect distribution. They further 
considered that project activities exhibit stochastic dependence that can be mod-
eled by linear association. Some theoretical and empirical justifications were 
presented as a justification for the use of the model. For more on lognormal ac-
tivity time see Perry and Greig [30]. 

6) The Triangular Distribution 
The triangular distribution has also been suggested as a priori distribution for 

activity times. Mac Crimmon and Ryavec [3] and Elmaghraby [5] earlier sug-
gested that the triangular distribution could be considered as activity time dis-
tribution. The triangular distribution can be symmetric, positive or negative 
skewed. A random variable X with triangular distribution has the probability 
density function, 

( )

2 ;

2 ;

x a a x m
b a m ag x

b x m x b
b a b m

− ≤ ≤ − −=  − ≤ ≤
 − −

 

where m stands for the mode and the interval [ ],a b  determines the range of 
the random variable X. The mean, variance and skewness are given as  

3x
a m b

µ
+ +

= , 
2 2 2

2

18x
a b m ab am bm

σ
+ + − − −

=   

and  

( )( )( )
( )1 2 2 2

2 2 2 2
5
a b m a b m a b m

a b m ab am bm
γ

+ − − − − +
=

+ + − − −
 

The a, m and b could be obtained intuitively as in the case of the classical 
PERT. Johnson [50] was interested in how a triangular distribution could be 
used in place of the beta distribution. His results showed that for a symmetric 
beta distribution, the triangular distribution can be used as a proxy with maxi-
mum deviation, ( ) ( )Max i iD F x G x= − , less than 0.03, and greater than 0.02 
when compared with extremely skewed beta distributions. Where ( )iF x  and 
( )iG x  are beta and triangular distribution functions respectively. Williams [9] 

carried out an empirical assessment on the extent of bias of PERT beta (classical 
PERT and its modifications) models and PERT triangular model using simula-
tion approach. His study revealed that the various modifications on classical 
PERT have not solved the problem of the intuitive adoption of beta distribution. 
See Hajdu and Bokor [8] and Okagbue, et al. [51] for more on triangular distri-
bution. 

7) The Uniform Distribution 
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MacCrimmon and Rayvec [3] and (Elmaghraby [5] earlier suggested the use 
of uniform distribution as an activity time distribution based on two points es-
timates, the pessimistic and optimistic times and then the critical path me-
thod(CPM). A random variable X defines activity duration on interval [ ],a b   

with probability density function given as ( ) 1 ;f x a x b
b a

= < <
−

 with mean, 

variance, and skewness ( )2
2,

2 12x x
b aa b

µ σ
−+

= =  and 1 0γ =  respectively. Re- 

cently, Abdelkader and Al-Ohali [52] considered the problem of determining the 
project completion time when activity duration are uniform distributed using a 
recursive method, using two extreme points, a and b to be supplied by the ex-
pert. Their method followed after SANs technique. They opined that this me-
thod has an advantage over some activity task distributions with point estimates. 
For more work on uniform activity time distribution see Kleindorfer [53] and 
Hajdu and Bokor [8]. 

8) The Erlang Distribution 
Bendell, et al. [54] developed the moments method based on Erlang activity 

time distribution. An Erlang distributed random variable X has the probability  

density ( ) ( )
1e ; 0; , 0

Γ

k
x kf x x x k

k
λλ

λ− −= ≥ > .  

Its mean, variance, and skewness are x
k

µ
λ

= , 2
2x

k
σ

λ
= , and 1

2
k

γ =  re- 

spectively. They obtained the first four central moments of the ( )1 2Max ,X X , 
where 1X  and 2X  are independent random variables, and further demon-
strated the accuracy of their method in many practical scenario. Their method 
formed the basis upon which multi-modal activity time distributions could be 
used. Abdelkader [55] extended Bendell’s work by obtaining the Kth moments of 
the ( )1 2Max , , , nX X X�  and the cumulative distribution function of the sum 
of n independent random variables. 

9) The Gamma Distribution 
Lootsma [56] examined PERT and proposed a model for a project which every 

activity time follows a gamma distribution with density 

( ) ( ) ( ) ( ){ }1 exp ;
Γ
0;

x a x a x a
f x

x a

α
αλ

λ
α

−
− − − ≥= 

 <

 

where α  is the shape parameter and λ  is the scale parameter of the gamma  

distribution. Its mean, variance and skewness are x aα
µ

λ
= +  and 2

2x
α

σ
λ

=  

and 1
2

γ
α

=  respectively. The estimates of the mean and variance were given 

as 5ˆ
6x

b m
µ

−
=  and ( )( )2ˆ ˆ ˆx x xm aσ µ µ= − − , based on intuitive time estimates  

(the optimistic (a), most likely (m) and pessimistic (b) times) from the practi-
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tioner. Abdelkader [57] also used the gamma distribution as an activity time dis-
tribution. His method followed after SANs. See Perry and Greig [30] for more on 
gamma activity time distribution. 

10) The Compound Poisson distribution 
Parks and Ramsing [58] considered the compound Poisson distribution for 

the activity times with the assumption that the minimum (pessimistic) time 
equals the most likely time. They were able to locate the joint probability of ex-
actly n arrivals from series of Poisson streams with different values and also 
capture the right skewed property in the data.  

11) The Beta Rectangular Distribution 
A mixture density, beta-rectangular distribution was introduced by Hahn [59] 

to approximate activity times in PERT. His intention was to introduce a distri-
bution which permits varying amount of dispersion, instead of the constant va-
riance provided by the classical PERT method. The beta rectangular mixture 
distribution was given as  

( ) ( )( ) ( )
( ) ( )( )

1 1

1

Γ 1, , , , ,
Γ Γ

y a b y
p y a b

b ab a

α β

α β

θ α β θ
α β θ

α β

− −

+ −

+ − − −
= +

−−
 

where θ  is the mixing parameter on interval 0 1θ≤ ≤ . The mean and va-
riance of the mixture density are  

( ) 1
2y a b a

k
θα θ

µ
− = + − + 

 
  

and  

( ) ( )
( )

( )( )2
22

2

1 1
1 3 4y

k
a b

k k k
θ α βθα α θ

σ
 + −+ − = + + −
 +
 

 

The mean and variance were approximated as  

( ) ( )( )4 3 1
ˆ

6x
a m b a bθ θ

µ
+ + + − +

=  

( ) ( )( ) ( )( )
( ) ( )( )( )

2 22 2 2

2

1ˆ 4 12 1
36

4 3 1

x a m b b a a ab b

a m b a b

σ θ θ

θ θ

= + + + − + − + +

− + + + − + 

  

respectively. His method, in comparison with the classical PERT method, ac-
commodated greater likelihood of more extreme tail- area events that seemed 
straight forward to implement with experts judgment. However, in addition to 
the three intuitive parameters ( ), ,a m b  of classical PERT, his method intro-
duced the fourth parameter θ  which should also be subjectively chosen by 
project managers. Yakhchali [60] proposed a method that could be used when 
project network consist of activities with different probability distributions. His 
approach consist of determining the exact cumulative distribution function of 
the earliest and latest starting and finishing and floats of activities based on the 
method of confidence interval. He demonstrated his method using both discrete 
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and continuous probability distributions. Abou Rizkand Halpin [11] in an em-
pirical study of construction duration data suggested the use of other flexible 
distributions like the Pearson and Johnson systems. The Pearson system and 
Johnson system cover almost the entire area of skewness and kurtosis plane.  

12) Tilted Beta Distribution 
Hahn and Martín [10] introduced the tilted beta distribution with probability 

density function 

( )

( ) ( ) ( )
( ) ( ) ( ) 11

/ , , ,

1 2 2 2 1 1 ; 0 1

0; otherwise

p x v

v v x x x xβα

α β θ

α β
θ θ

α β
−−

  Γ +
− − − + − ≤ ≤    = Γ Γ   




 

where [ ]0,1θ ∈  and [ ]0,1θ ∈ . The mean and variance of the tilted beta dis-
tribution are  

( ) 21
3

v α
θ θ

α β
−

− +
+

 

and  

( ) ( )
( )( ) ( )

213 2 21 1
6 1 3

v vα α αθ θ θ θ
α β α β α β

 −  − −
− − − − +    + + + +  

 

( ) ( )
( )( ) ( )

213 2 21 1
6 1 3
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θ θ θ θ

α β α β α β
 −  − −

− − − − +    + + + +  
 

respectively. The distribution is a mixture of the tilting distribution [61] and the 
beta distribution, with θ  as the mixing parameter. The tilted beta distribution 
retains some known distributions as special cases. For instance, given the proba-
bility density of the tilted beta, if 1θ =  we have the beta distribution, if 0θ =   

we obtain the tilted distribution, if 
1
2

θ =  either the beta distribution, uniform  

distribution, or beta rectangular distribution is obtained depending on the value 
of v. The parameters of the distribution where elicited as follows: Given the beta 
distribution with 6k α β= + = ; α β≠  and noting that in this case the mean  

and mode are 
k
α  and 1

2k
α −
−

 respectively. Solving some simultaneous equa- 

tions α  and β  where recomputed as 4 1m +  and 5 4m+  for the standar-
dized beta. To elicit v, it was assumed that there exists a linear increase or de-
crease in the probability density across time in accordance with the shape of the 
tilting distribution. Hence, the expert is requested to estimate the probability of 
the event of activity completion in day j (say) denoted by ( )jP A  as well as the 
probability of the event of completion in day 1j + , denoted by ( )1jP A + . Equat-  

ing the rate of change denoted by 
( ) ( )

( )
1

1
j jP A P A

r
b a

+−
=

−
 (a = optimistic time, b 

= pessimistic time) to the slope of the tilted density function, ( )2 2 1v− −  and 
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solving yields 
2

4
rv −

= . The mixing parameter θ  was elicited as a judgmental  

estimate as in Hahn [59]. The tilted-beta distribution accommodates outlying events. 
13) Burr XII Distribution 
The Burr type 12 distribution [62] was found suitable for approximating ac-

tivity times of water bore hole drilling project [63]. The Monte Carlo Simulation 
approach was adopted in conjunction with the classical PERT technique. This 
technique uses three judgmental estimates; pessimistic, most likely, and optimis-
tic time estimates in the application of critical path algorithm to a long series of 
realization. Each activity time was obtained by assigning a sample value drawn 
from the Burr XII density. Results obtained from empirical studies showed that 
an error of 3% and 64% for mean and variance respectively would have occurred 
if the Beta distribution was used. The Burr XII density is positively skewed with 
much longer tail to accommodate outlying event. The distribution function Burr 
XII is closed, hence it allow for easy simulation. A random variable X is said to 
follow Burr XII distribution with shape parameters, c, k, and a scale α , if the 
probability density function is given as;  

( )
( )11

1 ; 0, 0, 0, 0
kcc

c

x xf x ck x c kα
αα

− +−   = + ≥ > > >     
 

The cumulative distribution function is ( ) 1 1
kcxF x

α

−
  = − +     

. The rth 

moment about the origin is given as 

( ) ( )

Γ Γ 1
;

Γ 1

r

r

r rk k
c cE X ck r

k

α    − +   
   = >

+
 

3. Conclusions 

We have presented an up-to-date review of the activity time distributions used 
in PERT with highlights of various methods adopted for parameter estimation. 
From the review, three estimation approaches are outstanding, namely, Ana-
lytical Approximation, Monte Carlo Simulation and SANs, see Table 1 for de-
tails. 

Monte Carlo Simulation has proved to be a versatile technique with regards to 
the choice of distributional forms. Apart from the exact technique, the simula-
tion technique has the capacity to produce more efficient results PMBOK [15]. 
However, the application of Monte Carlo Simulation approach suffers a set back 
because most of the activity time distributions are not listed in the available si-
mulation packages. Another possible reason for the scanty use of the simulation 
technique is because the distributional form of some of the activity time distri-
butions is not closed. The extent of simulation technique usage can be verified in 
column 2 of Table 1.  
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Table 1. Summary of activity time distributions used in project network analysis. 

Probability Distribution Method of Estimation 

Beta 
Analytical approximation. 
Monte Carlo Simulation. 

Normal 
Analytical approximation. 

Analytical bounding. 
Exact analysis. 

Exponential SANs 

Weibull 
Analytical approximation. 

SANs 

Lognormal Analytical approximation 

Triangular 
Analytical approximation. 
Monte Carlo Simulation. 

Uniform 
Analytical approximation. 

SANs. 
Monte Carlo Simulation. 

Erlang SANs. 

Gamma 
Analytical approximation. 

SANs. 

Compound Poisson Analytical approximation 

Beta-Rectangular Analytical approximation. 

Tilted-Beta Analytical approximation. 

Burr XII Monte Carlo Simulation 

 
A basic advantage of the Simulation approach is that it allows the use of any 

activity time distribution. In short, different distributions can be used on differ-
ent activities of the same project. It was observed that the choice of most of the 
activity time distributions was based on flexibility and convenience, with no 
clear empirical evidences, as earlier noted by Trietsch et al. [49]. This review also 
points to the fact that the beta distribution is not the sole activity time distribu-
tion as presented in most basic texts and lecture notes on project managements.  

The importance of appropriate choice of activity time distribution cannot be 
overemphasized, irrespective of the method adopted to estimate the parameters 
of project network. Hence, we suggest that practitioners, apart from using theo-
retical information, should endeavor to make their choices of activity duration 
distributions based on particular empirical evidences and not just on simplicity. 
Developers of project management software should also incorporate many 
probability distributions as much as possible to enable users’ flexibility of choice. 
The information provided in this research can be used to extend the study by 
Hajdu and Bokor [8]. 
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