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Abstract 
In this paper, we investigate the problem of semi-on-line scheduling n jobs on 
m identical parallel machines under the assumption that the ordering of the 
jobs by processing time is known and the jobs have arbitrary release times. 
Our aim is to minimize the maximum completion time. An ordinal algorithm 
is investigated and its worst case ratio is analyzed. 
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1. Introduction 

The problem of minimizing the maximum completion time for scheduling n 
jobs on m identical parallel machines (which is denoted by max/ /mP C⋅ ) have 
attracted the interests of many researchers since it was proposed by Graham in 
1969 [1]. The problem is defined as follows: Given a job set { }1 2, , , nL J J J=   
of n jobs and an identical parallel machine set { }1 2, , , mM M M , where job jJ  
has non-negative processing time jp , assign the jobs onto the machines so as to 
minimize the maximum completion of the m machines. 

A scheduling problem is called off-line if we have complete information about 
the job data before constructing a schedule. In contrast, the scheduling problem 
is called online if the jobs appear one by one and it requires scheduling the ar-
riving job irrevocably on a machine without knowledge of the future jobs. The 
processing time of next job becomes available only after the current job is sche-
duled. Graham [1] proposed the List Scheduling (LS) algorithm to minimize the 
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maximum completion time for online scheduling n jobs on m identical parallel 
machines. 

Li and Huang [2] generalized Graham’s classical on-line scheduling problem 
to m identical machines. They describe the requests of all jobs in terms of order. 
For an order of the job jJ , the scheduler is informed of a 2-tuple ( ),j jr p , 
where jr  and jp  represent the release time and the processing time of the job 

jJ , respectively. The orders of request have no release time but appear online 
one by one at the very beginning time of the system. In this online situation, the 
jobs’ release times are assumed to be arbitrary. If all jobs’ release times are zero, 
then the problem in Li and Huang [2] becomes the same as the Graham’s clas-
sical on-line scheduling problem. 

For the classical online problem on the identical parallel machine system, we 
know that no algorithm can be better than algorithm LS when the number of 
machines is less than 4. In many applications, partial information about jobs can 
be made available in advance. This motivates us to study semi-online scheduling 
problems when different types of partial information become available [3]. He 
and Zhang [4], and He and Dosa [5] consider the system when the lengths of all 
jobs are known in [ ]1, r  with 1r ≥ . See Cheng et al. [6]; Li and Huang [7]; 
Seiden et al. [8]; Li et al. [9] for more recent results on semi-online scheduling. 

Liu et al. [10] firstly considered ordinal semi-online problem in which it is 
assumed that the values of the processing times jp  are unknown, but that the 
order of the jobs by non-increasing processing time is known, i.e., 

1 2 np p p≥ ≥ ≥ . The problem can be denoted as max/ ordinal /mP C . They 
proposed an algorithm with worst case performance ratio not greater than  

11

2

m
mm

−
+

 +   

. Later 2 max/ ordinal /Q C  is considered by Tan and He [11] and  

3 max/ ordinal /P C  is considered by He and Tan [12]. 
In this paper, we assume that we are given m identical parallel machines 

{ }1 2, , , mM M M  and an ordinal job list { }1 2, , , nL J J J=   with arbitrary re-
lease times, i.e., each jJ  has a release time jr  and a processing size of jp  sa-
tisfying 1 2 np p p≥ ≥ ≥ . Our aim is to minimize the maximum completion 
time. We denote this problem as ( ) max/ ordinal, /m jP r C . 

The rest of the paper is organized as follows. In Section 2, some definitions 
and the algorithm P are given. In Section 3, we analyze the algorithm P and 
show its the upper bound of the worst case ratio. In Section 4, we give some con-
cluding remarks. 

2. Some Definitions and the Algorithm P 

In this section we will give some definitions and an algorithm P. 
Definition 1. Let algorithm A  be a heuristic algorithm of scheduling job list 

L . ( )max
AC L  and ( )max

OPTC L  denote the makespan of algorithm A  and an op-
timal off-line algorithm, respectively. We define 
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( ) ( )
( )

max

max

, sup
A

OPT
L

C L
R m A

C L
=

 
as the worst case performance ratio of algorithm A . 

Definition 2. Suppose that jJ
 

is the current job with information ( ),j jr p , 
i.e., release time jr  and size of jp , to be scheduled on machine iM . We say 
that machine iM  has an idle time interval for job jJ , if there exists a time in-
terval [ ]1 2,T T  satisfying the following two conditions: 

1) Machine iM  is idle in interval [ ]1 2,T T  and a job with release time 2T  
has been assigned to machine iM  to start at time 2T . 

2) 2 1max , j jT T r p − ≥  . 

It is obvious that if machine iM  has an idle time interval for job jJ  then 
we can assign jJ  to machine iM  in the idle interval. 

The algorithm P: 
Let { }1 2, , , nL J J J=   be a job list of problem ( ) max/ ordinal, /m iP r C . We 

assign jobs of L  one by one on machine ( )1,2, ,iM i m=   according to the 
following rules: 

If 1
2
mi  ≤ ≤   

 holds, we assign the following jobs on machine iM : 

{ }
2 1

2

| 0i mm i k m
J J k  + − + +    

  ≥ 
  



.

 

If 1
2
m i m + ≤ ≤  

 holds, we assign the following jobs on machine iM : 

{ }
2 1 3 1

2 2

| 0 | 0 .i m mm i k m m i k m
J J k J k      + − + + + − + +            

      ≥ ≥   
      

 

 
Assignment example for 5m = : 

1 1 10 18

2 2 9 17

3 3 8 13 16 21

4 4 7 12 15 20

5 5 6 11 14 19

:
:
:
:
:

M J J J
M J J J
M J J J J J
M J J J J J
M J J J J J











 

Note: The above assignment just means the order of the job’s assigning, not 
mean the order of job’s processing because of the release times of the jobs. For 
example on machine 1M , if 1 1 10 106, 8, 6, 6r p r p= = = = , then 10J  begin to be 
processed at time zero and 1J  begin to be processed at 6 even though 1J  is 
assigned before 10J  because 1J  appears before 10J . 

The following symbols will be used in the analysis of this paper later on: 
1) 1 1 , .n nn n

j k jj j kP p P p
= =

= =∑ ∑  

2) iU : the total sum of the idle time on machine iM  in the schedule P. 
3) iC : The completion time of machine iM  in the schedule P. It is equal to 
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the total sum of the processing time of the jobs assigned on machine iM  and 
the idle time of machine iM  in the schedule P. It is easy to see that  

( ) { }max 1 2max , , ,P
mC L C C C=   holds. 

1) [ ]ih : the index of the h-th job assigned on machine iM  in the schedule P. 
2) x   : It represents the smallest integer not less than x. 
3) x   : It represents the largest integer not bigger than x. 

3. Main Results 

The following simple inequality will be referred to later on: 

( ) 1
max max , , 1, 2, , , , 1, 2, ,

n
jjOPT

j j i i

p
C L r p j n U p i m

m
=

  ≥ + = + = 
  

∑
   

Furthermore it is easy to get 

( )max , 1, 2, ,OPT
iC L U i m≥ =   

Lemma 1: For any job list { }1 2, , , nL J J J=   from problem  
( ) max/ ordinal, /m iP r C , suppose that h  jobs are assigned on machine iM  by  

algorithm P. If 2h ≥  and [ ] [ ] [ ] 11i i i

hh h i
x
−

− = − ≥  hold, then we have 

1 .n
i i i iC xP U p+≤ + +  

Proof: It is easy to see that 
[ ]

12,
i

hh x
h i
−

∀ ≥ ≥
−

 holds. Firstly we prove the  

following statement by induction for h : 
[ ]

[ ] [ ] [ ] [ ]( ) ( ) [ ]1 2 1 1i

i i i

h
i h hi ixP p p x h h p+

 ≥ + + + − − −           (1) 

For 2h =  we have 
[ ]

[ ] [ ]( ) [ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) ( ) [ ]

2
1 1 1 2 2

2 2

2 1

2 1 2 1

i

i i i

i i

i i i

i i

xP x p p x p

p x p

+ +
 = + + ≥ − 

 = + − − − 



 

That means the statement is true for h = 2. Now suppose (1) holds for h = k, 
i.e., 

[ ]
[ ] [ ] [ ] [ ] [ ]( ) ( ) [ ]1 2 3 1 1 .i

i i i i

k
i k ki ixP p p p x k k p+

 ≥ + + + + − − −   

Then for 1h k= +  we have 
[ ]

[ ] [ ] [ ] [ ] [ ]( ) ( ) [ ]

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ]( ) ( ) [ ]

[ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ] [ ]( ) ( ) [ ]

1
1 2 3

1 2 1

2 3

1

2 3 1

1 1

1 1

1

1 1

i

i i i i

i i i

i i i i

i

i i i i

k
i k ki i

k k k

k ki i

ki i

k ki i

xP p p p x k k p

x p p p

p p p x k k p

x k k p

p p p x k k p

+
+

+ + +

+

+

 ≥ + + + + − − − 

+ + + +

 ≥ + + + + − − − 
 + + − 

 ≥ + + + + − − − 








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[ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ] [ ]( ) ( ) [ ]

1

2 3 1 1

1

1 1 1 1
i

i i i i

ki i

k ki i

x k k p

p p p x k k p

+

+ +

 + + − 
 = + + + + + − − + − 

 

By (1) we have 
[ ]

[ ] [ ] [ ]

[ ] [ ]( ) ( ) [ ]

[ ] [ ] [ ]

1 1 2 3

2 3

1 1

i

i i i

i

i i i

hn
i i i i h

iki i

i i ih

xP U xP U p p p

x h h p U

p p p U C p

+ ++ ≥ + ≥ + + +

 + − − − + 
≥ + + + + = −





 

where the last equality results from [ ]1 i i=  by the rules of algorithm P. The 
claim is proved. 

Lemma 2: For any job list { }1 2, , , nL J J J=   from problem  
( ) max/ ordinal, /m iP r C , we have 

( )

( )

1

1

1

2
1 ; is even

3 1

2 11 ; is odd
3 1 1 2

4 1 ; is odd
3 1 2

n
i

i i

n
i

i i i

n
i

i i

p U p i m m
m i

p mC U p i m
m i

p mU p i m m
m

+

+

+


+ + ≤ ≤ − +

 −≤ + + ≤ ≤
− + +

 + + + ≤ ≤
 +

 

Proof: Case 1: m  is even and 1 i m≤ ≤ . 

Case 1.1: 1
2
mi≤ ≤  and 2h k= + . 

By the rules of P we have 

[ ]

( )
( )( ) ( )

( )
( )( ) ( )

1 2 1 2 2
3 4 4 2 32 1 2

2
2 1

3 1 1 3 1 1

2 1 2
3 1 1 3 1

i

h k k
kmh i m i kmm i

k
k m i k i m i

k
k m i m i

− + − +
= =

− − + ++ − +

+
=

+ − + + − + − −

+
≤ =

+ − + − +

 

Case 1.2: 
2
m i m< ≤  and 2 1h k= + . 

[ ]

( ) ( )

( )

1 2
31 2 1 2

2
2

3 1 3 1 2 1
2

2
3 1

i

h k
kmh m i

k
mk m i k i m i

m i

−
=

− + − +

=
 − + + − − + − + 
 

≤
− +

 

Case 1.3: 
2
m i m< ≤  and 2 2h k= +  
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[ ]

( )

( )

1 2 1
31 3 1 2

2
12
2

1 3 13 1 3 1
2 2 2

2
3 1

i

h k
kmh m i

k

m m ik m i k i

m i

− +
=

− + − +

 + 
 =

− −   + − + + − − +   
   

≤
− +

 

Let 
( )

2
3 1

x
m i

=
− +

, by Lemma 1 when m  is even and 1 i m≤ ≤  we have 

( )
12

3 1

n
i

i i i
PC U p

m i
+≤ + +

− +
 

Case 2: m  is odd. 11
2

mi −
≤ ≤  and 2h k= +  hold. 

[ ] ( )

( )
( )( ) ( ) ( )

( )
( )( ) ( ) ( )

( )
( )( ) ( )

( )

1 2 1
3 11

2 1 2
2

2 1
3 1 1 1 3 1 2

2 1
3 1 1 1 3 1 1 2

2 1
3 1 1 1

2
3 1 1

i

h k
k mh

m i

k
k m i k k i m i

k
k m i k k i i

k
k m i k

m i

− + −
=

+−
+ − +

+
=

+ − + + + + − + − −

+
≤

+ − + + + + − + + −

+
≤

+ − + + +

≤
− + +

 

Let 
( )

2
3 1 1

x
m i

=
− + +

, by Lemma 1, when m is odd and 11
2

mi −
≤ ≤  we 

have 

( )
i 12

3 1 1

n

i i i
PC U p

m i
+≤ + +

− + +
 

Case 3: m  is odd and 1
2

m i m+
≤ ≤  

Case 3.1: 2 1h k= +  

[ ] ( )
1 2 4

3 1 3 12 1 2
2

i

h k
k mh i mm i

−
= ≤

+− +
+ − +

 

Case 3.2: 2 2h k= +  

( )
1 2 1

3 2
3 1 2

2
i

h k
k mh i

m i

− +
=

+−   + − +
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( )

14
2

1 3 93 1 4
2 2 2

4
3 1

k

mk m i

m

 + 
 =

 + + + + − 
 

≤
+

 

Let 
4

3 1
x

m
=

+
, when m  is odd and 1

2
m i m+

≤ ≤  we have 

14
3 1

n
i

i i i
PC U p

m
+≤ + +
+

 

Hence the Lemma is proved. 
Theorem 3 For any job list { }1 2, , , nL J J J=   from problem  

( ) max/ ordinal, /m iP r C  we have: 

( ) 1, 2

2

mR m P
mm

−
≤ +

 +   

 

Proof: Case 1: If m  is even and 1 i m≤ ≤  holds, by Lemma 2 we have 

( )

( ) ( )

( )
( )

( )

1

1 1

1
1

2
3 1

2 2
3 1 3 1

3 1 22
3 1 2 3 1

n
i

i i i

i n

i i

n
i

i i

PC p U
m i

P Pp U
m i m i

m i Pp P U
m i m i

+≤ + +
− +

= − + +
− + − +

− + 
= − + + 

− + − + 

 

( ) ( )

( )

( ) ( )

( )

1

1

max

max

3 5 3 2
3 1 3 1

8 8 6 max , ,
3 1
8 8 6
3 1
8 2

3

n

i i

n

i i

OPT

OPT

Pm i mp U
m i m i m

Pm i p U
m i m

m i C L
m i

m C L
m

− +
≤ + × +

− + − +

 − +
≤  

− +  
− +

≤
− +

−
≤

 

where the last inequality results from the fact that 
( )

8 8 6
3 1

m x
m x
− +
− +

 is a decreasing  

function of x  in interval [ ]1,x m∈  

Case 2: m  is odd and 11
2

mi −
≤ ≤  

By Lemma 2 we have 

( )

( ) ( )

1

1 1

2
3 1 1

2 2
3 1 1 3 1 1

n
i

i i i

i n

i i

P
C p U

m i

P Pp U
m i m i

+≤ + +
− + +

= − + +
− + + − + +
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( )
( )

( )

( )

( )

( ) ( )

( )

1
1

1

1

max

max

3 1 1 22
3 1 1 2 3 1 1

3 5 4 2
3 1 1 3( 1) 1

8 8 8 max , ,
3 1 1

8 8 8
3 1 1

8
3 1

n
i

i i

n

i i

n

i i

OPT

OPT

m i Pp P U
m i m i

Pm i mp U
m i m i m

Pm i p U
m i m
m i C L

m i
m C L

m

− + + 
= − + + 

− + + − + + 
− +

≤ + × +
− + + − + +

 − +
≤  

− + +  
− +

≤
− + +

≤
+

 

where the last inequality results from the fact that 
( )
8 8 6

3 1 1
m x
m x

− +
− + +

 is a de-

creasing function of x  in interval [ ]1,x m∈ . 

Case 3: m  is odd and 1
2

m i m+
≤ ≤  

By Lemma 2 we have 

( )
( ) ( )

( )

1

1 1

1 2 1

1

4
3 1

4
3 1

3 14 4
3 1 4 3 1

3 14 4
3 1 4 3 1

n
i i i i

n i
i i

i n
i i

i n
i i

C p P U
m

p P P U
m

m p
p p p P U

m m

m p
ip P U

m m

+≤ + +
+

= + − +
+

+ 
= − + + + + + + + 

+ 
≤ − + + + + 



 

( )

( )

1

1

max

max

3 4 1 4
3 1 3 1

10 4 2 max , ,
3 1

10 4 2
3 1

8
3 1

n
i i

n

i i

OPT

OPT

m i p P U
m m

Pm i p U
m m

m i C L
m

m C L
m

− +
= + +

+ +

 − +
≤  

+  

− +
≤

+

≤
+

 

By the above conclusions, when m  is even we have ( )max
8 2

3
OPT

i
mC C L

m
−

≤   

hold for 1,2, ,i m=  . Hence we get 

( )
( )

( )
( )
max

max

max max

8 2
8 2 13 2

3
2

OPT
P

OPT OPT

m C LC L m mm
mmC L C L m

−
− −

≤ = = +
 +   

 

When m  is odd then ( )max
8

3 1
OPT

i
mC C L

m
≤

+
 hold for 1,2, ,i m=  . Hence 

we get 
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( )
( )

( )
( )
max

max

max max

8
8 13 1 2

3 1
2

OPT
P

OPT OPT

m C LC L m mm
mmC L C L m

−+≤ = = +
+  +   

 

Thus we get 

( ) ( )
( )

max

max

1, sup 2

2

P

OPT
L

C L mR m P
mC L m

−
= ≤ +

 +   

 

Hence the theorem is proved. 

4. Concluding Remarks 

In this paper, we consider the semi-online scheduling problem  
( ) max/ ordinal, /m iP r C  in which the job list has non-increasing processing times 

and arbitrary release times. An algorithm is investigated and it is shown that its  

worse case performance ratio is bounded by ( )2 1
2
mm m  + − +    

 for all  

values of m. For this problem, to investigate better algorithms or give lower 
bound and upper bound would be worth doing. There are many other schedul-
ing problems where ordinal algorithms could be developed. The investigations 
to find good algorithms for these problems would be also of interest to the 
scheduling community. 
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