
Intelligent Information Management, 2017, 9, 245-254
http://www.scirp.org/journal/iim

ISSN Online: 2160-5920
ISSN Print: 2160-5912

DOI: 10.4236/iim.2017.96014 Nov. 15, 2017 245 Intelligent Information Management

Ordinal Semi On-Line Scheduling for Jobs with
Arbitrary Release Times on Identical Parallel
Machines

Sai Ji1, Rongheng Li1*, Yunxia Zhou2

1Key Laboratory of High Performance Computing and Stochastic Information Processing, Department of Mathematics,
Hunan Normal University, Changsha, China
2Department of Computer, Hunan Normal University, Changsha, China

Abstract
In this paper, we investigate the problem of semi-on-line scheduling n jobs on
m identical parallel machines under the assumption that the ordering of the
jobs by processing time is known and the jobs have arbitrary release times.
Our aim is to minimize the maximum completion time. An ordinal algorithm
is investigated and its worst case ratio is analyzed.

Keywords
Schedule, Algorithm, Worst Case Ratio, Parallel Machines

1. Introduction

The problem of minimizing the maximum completion time for scheduling n
jobs on m identical parallel machines (which is denoted by max/ /mP C⋅) have
attracted the interests of many researchers since it was proposed by Graham in
1969 [1]. The problem is defined as follows: Given a job set { }1 2, , , nL J J J= 
of n jobs and an identical parallel machine set { }1 2, , , mM M M , where job jJ
has non-negative processing time jp , assign the jobs onto the machines so as to
minimize the maximum completion of the m machines.

A scheduling problem is called off-line if we have complete information about
the job data before constructing a schedule. In contrast, the scheduling problem
is called online if the jobs appear one by one and it requires scheduling the ar-
riving job irrevocably on a machine without knowledge of the future jobs. The
processing time of next job becomes available only after the current job is sche-
duled. Graham [1] proposed the List Scheduling (LS) algorithm to minimize the

How to cite this paper: Ji, S., Li, R.H. and
Zhou, Y.X. (2017) Ordinal Semi On-Line
Scheduling for Jobs with Arbitrary Release
Times on Identical Parallel Machines. Intel-
ligent Information Management, 9, 245-254.
https://doi.org/10.4236/iim.2017.96014

Received: October 4, 2017
Accepted: November 12, 2017
Published: November 15, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/iim
https://doi.org/10.4236/iim.2017.96014
http://www.scirp.org
https://doi.org/10.4236/iim.2017.96014
http://creativecommons.org/licenses/by/4.0/

S. Ji et al.

DOI: 10.4236/iim.2017.96014 246 Intelligent Information Management

maximum completion time for online scheduling n jobs on m identical parallel
machines.

Li and Huang [2] generalized Graham’s classical on-line scheduling problem
to m identical machines. They describe the requests of all jobs in terms of order.
For an order of the job jJ , the scheduler is informed of a 2-tuple (),j jr p ,
where jr and jp represent the release time and the processing time of the job

jJ , respectively. The orders of request have no release time but appear online
one by one at the very beginning time of the system. In this online situation, the
jobs’ release times are assumed to be arbitrary. If all jobs’ release times are zero,
then the problem in Li and Huang [2] becomes the same as the Graham’s clas-
sical on-line scheduling problem.

For the classical online problem on the identical parallel machine system, we
know that no algorithm can be better than algorithm LS when the number of
machines is less than 4. In many applications, partial information about jobs can
be made available in advance. This motivates us to study semi-online scheduling
problems when different types of partial information become available [3]. He
and Zhang [4], and He and Dosa [5] consider the system when the lengths of all
jobs are known in []1, r with 1r ≥ . See Cheng et al. [6]; Li and Huang [7];
Seiden et al. [8]; Li et al. [9] for more recent results on semi-online scheduling.

Liu et al. [10] firstly considered ordinal semi-online problem in which it is
assumed that the values of the processing times jp are unknown, but that the
order of the jobs by non-increasing processing time is known, i.e.,

1 2 np p p≥ ≥ ≥ . The problem can be denoted as max/ ordinal /mP C . They
proposed an algorithm with worst case performance ratio not greater than

11

2

m
mm

−
+

 +   

. Later 2 max/ ordinal /Q C is considered by Tan and He [11] and

3 max/ ordinal /P C is considered by He and Tan [12].
In this paper, we assume that we are given m identical parallel machines

{ }1 2, , , mM M M and an ordinal job list { }1 2, , , nL J J J=  with arbitrary re-
lease times, i.e., each jJ has a release time jr and a processing size of jp sa-
tisfying 1 2 np p p≥ ≥ ≥ . Our aim is to minimize the maximum completion
time. We denote this problem as () max/ ordinal, /m jP r C .

The rest of the paper is organized as follows. In Section 2, some definitions
and the algorithm P are given. In Section 3, we analyze the algorithm P and
show its the upper bound of the worst case ratio. In Section 4, we give some con-
cluding remarks.

2. Some Definitions and the Algorithm P

In this section we will give some definitions and an algorithm P.
Definition 1. Let algorithm A be a heuristic algorithm of scheduling job list

L . ()max
AC L and ()max

OPTC L denote the makespan of algorithm A and an op-
timal off-line algorithm, respectively. We define

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 247 Intelligent Information Management

() ()
()

max

max

, sup
A

OPT
L

C L
R m A

C L
=

as the worst case performance ratio of algorithm A .

Definition 2. Suppose that jJ

is the current job with information (),j jr p ,
i.e., release time jr and size of jp , to be scheduled on machine iM . We say
that machine iM has an idle time interval for job jJ , if there exists a time in-
terval []1 2,T T satisfying the following two conditions:

1) Machine iM is idle in interval []1 2,T T and a job with release time 2T
has been assigned to machine iM to start at time 2T .

2) 2 1max , j jT T r p − ≥  .

It is obvious that if machine iM has an idle time interval for job jJ then
we can assign jJ to machine iM in the idle interval.

The algorithm P:
Let { }1 2, , , nL J J J=  be a job list of problem () max/ ordinal, /m iP r C . We

assign jobs of L one by one on machine ()1,2, ,iM i m=  according to the
following rules:

If 1
2
mi  ≤ ≤   

 holds, we assign the following jobs on machine iM :

{ }
2 1

2

| 0i mm i k m
J J k  + − + +    

  ≥ 
  



.

If 1
2
m i m + ≤ ≤  

 holds, we assign the following jobs on machine iM :

{ }
2 1 3 1

2 2

| 0 | 0 .i m mm i k m m i k m
J J k J k      + − + + + − + +            

      ≥ ≥   
      

 

Assignment example for 5m = :

1 1 10 18

2 2 9 17

3 3 8 13 16 21

4 4 7 12 15 20

5 5 6 11 14 19

:
:
:
:
:

M J J J
M J J J
M J J J J J
M J J J J J
M J J J J J











Note: The above assignment just means the order of the job’s assigning, not
mean the order of job’s processing because of the release times of the jobs. For
example on machine 1M , if 1 1 10 106, 8, 6, 6r p r p= = = = , then 10J begin to be
processed at time zero and 1J begin to be processed at 6 even though 1J is
assigned before 10J because 1J appears before 10J .

The following symbols will be used in the analysis of this paper later on:
1) 1 1 , .n nn n

j k jj j kP p P p
= =

= =∑ ∑

2) iU : the total sum of the idle time on machine iM in the schedule P.
3) iC : The completion time of machine iM in the schedule P. It is equal to

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 248 Intelligent Information Management

the total sum of the processing time of the jobs assigned on machine iM and
the idle time of machine iM in the schedule P. It is easy to see that

() { }max 1 2max , , ,P
mC L C C C=  holds.

1) []ih : the index of the h-th job assigned on machine iM in the schedule P.
2) x   : It represents the smallest integer not less than x.
3) x   : It represents the largest integer not bigger than x.

3. Main Results

The following simple inequality will be referred to later on:

() 1
max max , , 1, 2, , , , 1, 2, ,

n
jjOPT

j j i i

p
C L r p j n U p i m

m
=

  ≥ + = + = 
  

∑
 

Furthermore it is easy to get

()max , 1, 2, ,OPT
iC L U i m≥ = 

Lemma 1: For any job list { }1 2, , , nL J J J=  from problem
() max/ ordinal, /m iP r C , suppose that h jobs are assigned on machine iM by

algorithm P. If 2h ≥ and [] [] [] 11i i i

hh h i
x
−

− = − ≥ hold, then we have

1 .n
i i i iC xP U p+≤ + +

Proof: It is easy to see that
[]

12,
i

hh x
h i
−

∀ ≥ ≥
−

 holds. Firstly we prove the

following statement by induction for h :
[]

[] [] [] []() () []1 2 1 1i

i i i

h
i h hi ixP p p x h h p+

 ≥ + + + − − −  (1)

For 2h = we have
[]

[] []() [] []() []

[] [] []() () []

2
1 1 1 2 2

2 2

2 1

2 1 2 1

i

i i i

i i

i i i

i i

xP x p p x p

p x p

+ +
 = + + ≥ − 

 = + − − − 



That means the statement is true for h = 2. Now suppose (1) holds for h = k,
i.e.,

[]
[] [] [] [] []() () []1 2 3 1 1 .i

i i i i

k
i k ki ixP p p p x k k p+

 ≥ + + + + − − − 

Then for 1h k= + we have
[]

[] [] [] [] []() () []

[] [] []()
[] [] [] [] []() () []

[] []() []

[] [] [] [] []() () []

1
1 2 3

1 2 1

2 3

1

2 3 1

1 1

1 1

1

1 1

i

i i i i

i i i

i i i i

i

i i i i

k
i k ki i

k k k

k ki i

ki i

k ki i

xP p p p x k k p

x p p p

p p p x k k p

x k k p

p p p x k k p

+
+

+ + +

+

+

 ≥ + + + + − − − 

+ + + +

 ≥ + + + + − − − 
 + + − 

 ≥ + + + + − − − 









https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 249 Intelligent Information Management

[] []() []

[] [] [] [] []() () []

1

2 3 1 1

1

1 1 1 1
i

i i i i

ki i

k ki i

x k k p

p p p x k k p

+

+ +

 + + − 
 = + + + + + − − + − 

By (1) we have
[]

[] [] []

[] []() () []

[] [] []

1 1 2 3

2 3

1 1

i

i i i

i

i i i

hn
i i i i h

iki i

i i ih

xP U xP U p p p

x h h p U

p p p U C p

+ ++ ≥ + ≥ + + +

 + − − − + 
≥ + + + + = −





where the last equality results from []1 i i= by the rules of algorithm P. The
claim is proved.

Lemma 2: For any job list { }1 2, , , nL J J J=  from problem
() max/ ordinal, /m iP r C , we have

()

()

1

1

1

2
1 ; is even

3 1

2 11 ; is odd
3 1 1 2

4 1 ; is odd
3 1 2

n
i

i i

n
i

i i i

n
i

i i

p U p i m m
m i

p mC U p i m
m i

p mU p i m m
m

+

+

+


+ + ≤ ≤ − +

 −≤ + + ≤ ≤
− + +

 + + + ≤ ≤
 +

Proof: Case 1: m is even and 1 i m≤ ≤ .

Case 1.1: 1
2
mi≤ ≤ and 2h k= + .

By the rules of P we have

[]

()
()() ()

()
()() ()

1 2 1 2 2
3 4 4 2 32 1 2

2
2 1

3 1 1 3 1 1

2 1 2
3 1 1 3 1

i

h k k
kmh i m i kmm i

k
k m i k i m i

k
k m i m i

− + − +
= =

− − + ++ − +

+
=

+ − + + − + − −

+
≤ =

+ − + − +

Case 1.2:
2
m i m< ≤ and 2 1h k= + .

[]

() ()

()

1 2
31 2 1 2

2
2

3 1 3 1 2 1
2

2
3 1

i

h k
kmh m i

k
mk m i k i m i

m i

−
=

− + − +

=
 − + + − − + − + 
 

≤
− +

Case 1.3:
2
m i m< ≤ and 2 2h k= +

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 250 Intelligent Information Management

[]

()

()

1 2 1
31 3 1 2

2
12
2

1 3 13 1 3 1
2 2 2

2
3 1

i

h k
kmh m i

k

m m ik m i k i

m i

− +
=

− + − +

 + 
 =

− −   + − + + − − +   
   

≤
− +

Let
()

2
3 1

x
m i

=
− +

, by Lemma 1 when m is even and 1 i m≤ ≤ we have

()
12

3 1

n
i

i i i
PC U p

m i
+≤ + +

− +

Case 2: m is odd. 11
2

mi −
≤ ≤ and 2h k= + hold.

[] ()

()
()() () ()

()
()() () ()

()
()() ()

()

1 2 1
3 11

2 1 2
2

2 1
3 1 1 1 3 1 2

2 1
3 1 1 1 3 1 1 2

2 1
3 1 1 1

2
3 1 1

i

h k
k mh

m i

k
k m i k k i m i

k
k m i k k i i

k
k m i k

m i

− + −
=

+−
+ − +

+
=

+ − + + + + − + − −

+
≤

+ − + + + + − + + −

+
≤

+ − + + +

≤
− + +

Let
()

2
3 1 1

x
m i

=
− + +

, by Lemma 1, when m is odd and 11
2

mi −
≤ ≤ we

have

()
i 12

3 1 1

n

i i i
PC U p

m i
+≤ + +

− + +

Case 3: m is odd and 1
2

m i m+
≤ ≤

Case 3.1: 2 1h k= +

[] ()
1 2 4

3 1 3 12 1 2
2

i

h k
k mh i mm i

−
= ≤

+− +
+ − +

Case 3.2: 2 2h k= +

()
1 2 1

3 2
3 1 2

2
i

h k
k mh i

m i

− +
=

+−   + − +

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 251 Intelligent Information Management

()

14
2

1 3 93 1 4
2 2 2

4
3 1

k

mk m i

m

 + 
 =

 + + + + − 
 

≤
+

Let
4

3 1
x

m
=

+
, when m is odd and 1

2
m i m+

≤ ≤ we have

14
3 1

n
i

i i i
PC U p

m
+≤ + +
+

Hence the Lemma is proved.
Theorem 3 For any job list { }1 2, , , nL J J J=  from problem

() max/ ordinal, /m iP r C we have:

() 1, 2

2

mR m P
mm

−
≤ +

 +   

Proof: Case 1: If m is even and 1 i m≤ ≤ holds, by Lemma 2 we have

()

() ()

()
()

()

1

1 1

1
1

2
3 1

2 2
3 1 3 1

3 1 22
3 1 2 3 1

n
i

i i i

i n

i i

n
i

i i

PC p U
m i

P Pp U
m i m i

m i Pp P U
m i m i

+≤ + +
− +

= − + +
− + − +

− + 
= − + + 

− + − + 

() ()

()

() ()

()

1

1

max

max

3 5 3 2
3 1 3 1

8 8 6 max , ,
3 1
8 8 6
3 1
8 2

3

n

i i

n

i i

OPT

OPT

Pm i mp U
m i m i m

Pm i p U
m i m

m i C L
m i

m C L
m

− +
≤ + × +

− + − +

 − +
≤  

− +  
− +

≤
− +

−
≤

where the last inequality results from the fact that
()

8 8 6
3 1

m x
m x
− +
− +

 is a decreasing

function of x in interval []1,x m∈

Case 2: m is odd and 11
2

mi −
≤ ≤

By Lemma 2 we have

()

() ()

1

1 1

2
3 1 1

2 2
3 1 1 3 1 1

n
i

i i i

i n

i i

P
C p U

m i

P Pp U
m i m i

+≤ + +
− + +

= − + +
− + + − + +

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 252 Intelligent Information Management

()
()

()

()

()

() ()

()

1
1

1

1

max

max

3 1 1 22
3 1 1 2 3 1 1

3 5 4 2
3 1 1 3(1) 1

8 8 8 max , ,
3 1 1

8 8 8
3 1 1

8
3 1

n
i

i i

n

i i

n

i i

OPT

OPT

m i Pp P U
m i m i

Pm i mp U
m i m i m

Pm i p U
m i m
m i C L

m i
m C L

m

− + + 
= − + + 

− + + − + + 
− +

≤ + × +
− + + − + +

 − +
≤  

− + +  
− +

≤
− + +

≤
+

where the last inequality results from the fact that
()
8 8 6

3 1 1
m x
m x

− +
− + +

 is a de-

creasing function of x in interval []1,x m∈ .

Case 3: m is odd and 1
2

m i m+
≤ ≤

By Lemma 2 we have

()
() ()

()

1

1 1

1 2 1

1

4
3 1

4
3 1

3 14 4
3 1 4 3 1

3 14 4
3 1 4 3 1

n
i i i i

n i
i i

i n
i i

i n
i i

C p P U
m

p P P U
m

m p
p p p P U

m m

m p
ip P U

m m

+≤ + +
+

= + − +
+

+ 
= − + + + + + + + 

+ 
≤ − + + + + 



()

()

1

1

max

max

3 4 1 4
3 1 3 1

10 4 2 max , ,
3 1

10 4 2
3 1

8
3 1

n
i i

n

i i

OPT

OPT

m i p P U
m m

Pm i p U
m m

m i C L
m

m C L
m

− +
= + +

+ +

 − +
≤  

+  

− +
≤

+

≤
+

By the above conclusions, when m is even we have ()max
8 2

3
OPT

i
mC C L

m
−

≤

hold for 1,2, ,i m=  . Hence we get

()
()

()
()
max

max

max max

8 2
8 2 13 2

3
2

OPT
P

OPT OPT

m C LC L m mm
mmC L C L m

−
− −

≤ = = +
 +   

When m is odd then ()max
8

3 1
OPT

i
mC C L

m
≤

+
 hold for 1,2, ,i m=  . Hence

we get

https://doi.org/10.4236/iim.2017.96014

S. Ji et al.

DOI: 10.4236/iim.2017.96014 253 Intelligent Information Management

()
()

()
()
max

max

max max

8
8 13 1 2

3 1
2

OPT
P

OPT OPT

m C LC L m mm
mmC L C L m

−+≤ = = +
+  +   

Thus we get

() ()
()

max

max

1, sup 2

2

P

OPT
L

C L mR m P
mC L m

−
= ≤ +

 +   

Hence the theorem is proved.

4. Concluding Remarks

In this paper, we consider the semi-online scheduling problem
() max/ ordinal, /m iP r C in which the job list has non-increasing processing times

and arbitrary release times. An algorithm is investigated and it is shown that its

worse case performance ratio is bounded by ()2 1
2
mm m  + − +    

 for all

values of m. For this problem, to investigate better algorithms or give lower
bound and upper bound would be worth doing. There are many other schedul-
ing problems where ordinal algorithms could be developed. The investigations
to find good algorithms for these problems would be also of interest to the
scheduling community.

Acknowledgements

This work was partly supported by the Chinese National Natural Science Foun-
dation Grant (No.11471110) and the Foundation Grant of Education Depart-
ment of Hunan (No. 16A126).

References
[1] Graham, R.L. (1969) Bounds on Multiprocessing Timing Anomalies. SIAM Journal

on Applied Mathematics, 17, 416-429. https://doi.org/10.1137/0117039

[2] Li, R.H. and Huang, H.C. (2004) On-Line Scheduling for Jobs with Arbitrary Re-
lease Times. Computing, 73, 79-97. https://doi.org/10.1007/s00607-004-0067-1

[3] Kellerer, H., Kotov, V., Speranza, M.G. and Tuza, Z. (1997) Semi On-Line Algo-
rithms for the Partition Problem. Operations Research Letters, 21, 235-242.
https://doi.org/10.1016/S0167-6377(98)00005-4

[4] He, Y. and Zhang, G. (1999) Semi On-Line Scheduling on Two Identical Machines.
Computing, 62, 179-187. https://doi.org/10.1007/s006070050020

[5] He, Y. and Dósa, G. (2005) Semi-Online Scheduling Jobs with Tightly-Grouped
Processing Times on Three Identical Machines. Discrete Applied Mathematics, 150,
140-159. https://doi.org/10.1016/j.dam.2004.12.005

[6] Cheng, T.C.E., Kellerer, H. and Kotov, V. (2012) Algorithms Better Than LPT for
Semi-Online Scheduling with Decreasing Processing Times. Operations Research
Letters, 40, 349-352. https://doi.org/10.1016/j.orl.2012.05.009

[7] Li, R.H. and Huang, H.C. (2007) List Scheduling for Jobs with Arbitrary Release

https://doi.org/10.4236/iim.2017.96014
https://doi.org/10.1137/0117039
https://doi.org/10.1007/s00607-004-0067-1
https://doi.org/10.1016/S0167-6377(98)00005-4
https://doi.org/10.1007/s006070050020
https://doi.org/10.1016/j.dam.2004.12.005
https://doi.org/10.1016/j.orl.2012.05.009

S. Ji et al.

DOI: 10.4236/iim.2017.96014 254 Intelligent Information Management

Times and Similar Lengths. Journal of Scheduling, 10, 365-373.
https://doi.org/10.1007/s10951-007-0042-8

[8] Seiden, S., Sgall, J. and Woeginger, G.J. (20000 Semi-Online Scheduling with De-
creasing Job Sizes. Operations Research Letters, 27, 215-227.

[9] Li, R.H., Cheng, X.Y. and Zhou, Y.X. (2014) On-Line Scheduling for Jobs with
Non-Decreasing Release Times and Similar Lengths on Parallel Machines. Optimi-
zation-A Journal of Mathematical Programming and Operations Research, 63,
867-882.

[10] Liu, W.P., Sidney, J.B. and Vliet, A. (1996) Ordinal Algorithm for Parallel Machine
Scheduling. Operations Research Letters, 18, 223-232.
https://doi.org/10.1016/0167-6377(95)00058-5

[11] Tan, Z.Y. and He, Y. (2001) Semi Online Scheduling with Ordinal Data on Two
Uniform Machines. Operations Research Letters, 28, 221-231.
https://doi.org/10.1016/S0167-6377(01)00071-2

[12] He, Y. and Tan, Z.Y. (2002) Ordinal-Online Scheduling for Maximizing the Mini-
mum Machine Completion Time. Journal of Combinatorial Optimization, 6,
199-206. https://doi.org/10.1023/A:1013855712183

https://doi.org/10.4236/iim.2017.96014
https://doi.org/10.1007/s10951-007-0042-8
https://doi.org/10.1016/0167-6377(95)00058-5
https://doi.org/10.1016/S0167-6377(01)00071-2
https://doi.org/10.1023/A:1013855712183

	Ordinal Semi On-Line Scheduling for Jobs with Arbitrary Release Times on Identical Parallel Machines
	Abstract
	Keywords
	1. Introduction
	2. Some Definitions and the Algorithm P
	3. Main Results
	4. Concluding Remarks
	Acknowledgements
	References

