
Communications and Network, 2017, 9, 219-234
http://www.scirp.org/journal/cn

ISSN Online: 1947-3826
ISSN Print: 1949-2421

DOI: 10.4236/cn.2017.94016 Nov. 10, 2017 219 Communications and Network

Risks behind Device Information Permissions
in Android OS

Ali Alshehri1,2, Anthony Hewins1, Maria McCulley3, Hani Alshahrani1, Huirong Fu1, Ye Zhu4

1Oakland University, Rochester, Michigan, USA
2University of Tabuk, Tabuk, KSA
3University of Maryland College Park, College Park, Maryland, USA
4Cleveland State University, Cleveland, Ohio, USA

Abstract
In the age of smartphones, people do most of their daily work using their
smartphones due to significant improvement in smartphone technology.
When comparing different platforms such as Windows, iOS, Android, and
Blackberry, Android has captured the highest percentage of total market share
[1]. Due to this tremendous growth, cybercriminals are encouraged to pene-
trate various mobile marketplaces with malicious applications. Most of these
applications require device information permissions aiming to collect sensi-
tive data without user’s consent. This paper investigates each element of sys-
tem information permissions and illustrates how cybercriminals can harm
users’ privacy. It presents some attack scenarios using
READ_PHONE_STATE permission and the risks behind it. In addition, this
paper refers to possible attacks that can be performed when additional per-
missions are combined with READ_PHONE_STATE permission. It also dis-
cusses a proposed solution to defeat these types of attacks.

Keywords
Android, Security, Privacy, Device Identifiers, Permissions

1. Introduction

Android has been increasing in popularity throughout the recent years, gaining a
large majority of the smartphone market. Some of the factors that made it popu-
lar include its availability, lower cost, and open source platform. In addition,
Google’s hands-off approach with developers has facilitated a great deal of free-

How to cite this paper: Alshehri, A., He-
wins, A., McCulley, M., Alshahrani, H., Fu,
H.R. and Zhu, Y. (2017) Risks behind De-
vice Information Permissions in Android
OS. Communications and Network, 9,
219-234.
https://doi.org/10.4236/cn.2017.94016

Received: September 14, 2017
Accepted: November 7, 2017
Published: November 10, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/cn
https://doi.org/10.4236/cn.2017.94016
http://www.scirp.org
https://doi.org/10.4236/cn.2017.94016
http://creativecommons.org/licenses/by/4.0/

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 220 Communications and Network

dom in what applications can potentially do, allowing numerous categories of
apps to grow within Google’s main app market, Google Play.

The cost of this freedom is that malicious developers have more vulnerabilities
to exploit. To mitigate attacks, Android screens all apps in the app store and uses
a permission-based protection to limit and allow access to device features [2].
While this method of protection has been effective against viruses that directly
break the rules of the Android system, it is unable to prevent Android malware
that takes advantage of permissions.

Permissions restrict application access to user information (e.g. location) or
sensitive system methods (e.g. run at startup). Applications that wish to bypass
these restrictions need to declare what they wish to bypass in an XML file called
the AndroidManifest.xml. Permissions in Android can be classified as either
dangerous or normal. Dangerous permissions are considered to be those that
could pose a security threat to the user, while normal permissions are generally
benign on their own. Of the long list of permissions Android allows, 24 are ca-
tegorized as dangerous [3]. Before Android’s API 23, all required permissions
for the app had to be accepted at install time or the app would not be down-
loaded. With Marshmallow, this is no longer true, as this version allows users to
block permissions at runtime.

Many applications use permissions to take advantage of device identifiers.
Device identifiers are strings that can directly identify the phone subscriber or
identify their device. Three of the main device identifiers are the International
Mobile Equipment Identity (IMEI), International Mobile Subscriber Identity
(IMSI) and phone number. IMEI identifies the hardware of the device, i.e. the
phone itself, so when a subscriber obtains a new phone, they also obtain a new
IMEI number corresponding to that phone. MEID (Mobile Equipment Identifi-
er) and ESN (Electronic Serial Number) numbers serve the same purpose as
IMEI. IMSI, on the other hand, identifies the subscriber directly and is found in
the removable SIM card. When a user obtains a new phone, the SIM card is re-
moved from their old phone and placed in their new one, transferring their sub-
scription to their carrier and their IMSI number.

Related works have shown that there is danger involved with device identifiers
[4] [5] [6] [7], but little work has fully discussed specifically how this informa-
tion can be used maliciously. Therefore, in this paper we discuss the significance
of the READ_PHONE-STATE permission in Android devices. We analyze some
of the known malware that leak device identifiers. We provide some examples of
attack vectors using IMEI, IMSI, and phone number and describe them in de-
tails. Then, we propose a solution that can be used to evade these types of at-
tacks.

The rest of this paper is organized as follows: Section 2 provides a brief intro-
duction to Android. In Section 3, we introduce two permissions that are vital to
misuse of device identifiers. After that, attack models are presented in Section 4.
We present our solutions to protect device identifiers in Section 5. Lastly, we

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 221 Communications and Network

compare our work with related works in Section 6 and then the conclusion of
the paper and the future work is included in Section 7.

2. Android Overview

In order to fully explain how device identifiers are at risk. We will illustrate An-
droid’s security features. We will then explain some of the flaws and vulnerabili-
ties in the way Android approaches applications, developers, and advertisers.
These vulnerabilities will be important to keep in mind when we present out at-
tacker vectors.

2.1. Android Security Features
2.1.1. Sandbox
Android applications are run in a sandboxed environment by assigning each ap-
plication a Linux User Identification number (UID) and a group ID (GID). For
the operating system, this creates the appearance that applications are actually
separate people using the device [8]. The UID number is specific to the develop-
er of the app to prevent impersonation of another developer in the Google Play
store. Applications from the same developer have the option to combine permis-
sions into a single user if they request to do so [9] [10].

2.1.2. IPC
Although apps are sandboxed, applications can still communicate with other
apps and the Android system if the correct permissions are in place. Both apps
need to consent otherwise the requesting app cannot communicate with other
apps. This is called Inter-Process Communication (IPC) [10]. Having apps
communicate with the same UID can be a security risk that allows privilege es-
calation, as will be discussed later.

2.1.3. Broadcasts
Besides IPC, apps can be allowed to both send and receive messages to all appli-
cations on the device. This is called broadcasting and broadcast receiving, re-
spectively [11]. Broadcasts can be messages such as “5% Battery”, which displays
for a brief moment. Broadcast receiving is the process of receiving these broad-
casts in order to perform some action. For example, an app may want to know
when the “5% battery” broadcast is received in order to optimize battery life.

2.1.4. Intents
In Android, events are driven by Intents. Intents are objects that communicate
the desire to perform an action [9], such as open up the user’s contacts. Intents
can be packaged with extra data, such as opening up a specific contact inside the
user’s contacts. Intents can be Explicit or Implicit. Explicit Intents signal exactly
what app will execute the Intent, while Implicit Intents will ask all able applica-
tions on the device to perform the desired action. Only apps that can handle the
request will be notified [10]. For example, when a user has two Internet browsers

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 222 Communications and Network

and wants to open a link, both browsers could be used, so the system will ask the
user to choose which one he/she prefers.

2.1.5. Permissions
Permissions, as explained in the introduction, allow and deny developers access
to sensitive user data or phone functions. If an application requests to use dan-
gerous permissions, the user must accept the request before the app can gain
access. This security measure allows users to make the important security deci-
sions.

2.2. Android Vulnerabilities
2.2.1. Unprotected Broadcasts
Implicit Intent broadcasts can lead to data leakage. Implicit Intent broadcasts are
for all eligible applications to hear, and in the broadcast can be sensitive data
that is not protected. Malicious programs that have the permission required to
listen will eavesdrop and receive information bundled with the Intent object. In
addition to eavesdropping, malicious programs have been known to intervene
into Intent conversation by injecting Intent objects that siphon information
from broadcast receivers that are not well protected [5].

2.2.2. Collusion
Collusion enables a developer to add permissions together [11]. Apps signed
with the same UID can combine permissions, allowing any one of the apps un-
der the UID to access all the permissions signed with the UID [12]. For example,
one app using device identifiers and another using internet under the same UID
can combine their permissions, making it so that app can use both internet and
device identifiers. A developer could then send these personal identifiers over
the internet to do harm to a user.

2.2.3. AD Libraries
Advertisement libraries get packaged with an app and receive the same permis-
sions as that app. Malicious libraries can then abuse the permissions they are
given on behalf of the application and use any number of the malicious attack
strategies discussed further on [13].

3. User Privacy and Android Permissions

Permissions in Android give developers access to user information such as de-
vice identifiers. In the following sections, we will introduce the
READ_PHONE_STATE permission, which allows access to device identifiers,
and READ/RECEIVE SMS, which we will use in our explanation of our attack
vectors.

3.1. Device ID Information

READ_PHONE_STATE is one of the Android permissions categorized as dan-
gerous. This is because it “allows read only access to phone state, including the

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 223 Communications and Network

phone number of the device, current cellular network information, the status of
any ongoing calls, and a list of any Phone Accounts registered on the device” [2].
This is an important permission for messaging, calling, and other applications
that replace the built-in phone application; however, it is often requested and
misused by other types of applications that do not have any reason for needing
it, including malware. In fact, Figure 1 shows READ_PHONE_STATE is one of
the most common permissions requested by malicious apps, with 1179 out of
1260 malicious apps requesting it and only 34 percent of benign apps requesting
it [6].

This permission is desirable to malware because it allows access to device and
user identifiers that can be utilized to harm the user.

READ_PHONE_STATE (Device ID information) enables the developer to get
access to the Telephony Manager class, a class built into Android that has several
methods that reveal device information. Some of the important information it
can reveal includes the user’s phone number and Device ID. Table 1 lists the
important methods [14] discussed in this paper.

To further prove malicious applications collect and leak device identifiers, we
analyze a set of malicious applications [15]. Through our analysis, we found a
malware application looks as normal kitchen timer application, however, it
transmits a user’s sensitive data such as device ID and phone number to an out-
side URL without the user consent as illustrated in Figure 2. Out of the many
applications we observed, this example showed the clearest misuse of device
identifiers. The example clearly shows the device identifiers, IMEI (Device ID)
and phone number (Line 1 Number), collected and then transmitted to the URL
of the malicious site. This example clearly shows that it is easy for an application
to transmit the user’s sensitive data without the user awareness. The user thinks

Figure 1. Comparison of READ_PHONE_STATE requests of Benign and
Malicious Applications.

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 224 Communications and Network

Table 1. Relevant telephony manager methods.

Method Function

Get device ID
Returns the unique device ID, for example, the IMEI for

GSM and the MEID or ESN for CDMA phones.
Return null if device ID is not available.

Get line 1 number
Returns the phone number string for line 1, for example,

the MSISDN for a GSM phone. Return null if it is unavailable.

Get SIM serial number Returns the serial number of the SIM, if applicable.

Get network operator name Returns the alphabetic name of current registered operator.

it is a kitchen timer application, however, the application is actually stealing the
user personal information.

3.2. SMS Privileges

In general, SMS privileges can include READ, RECEIVE, WRITE or SEND SMS.
In this paper, we examine READ and RECEIVE SMS. READ SMS allows read
access to the SMS inbox through “Uri. parse (“content://sms/inbox”)”. RECEIVE
SMS allows an application to be notified when the SMS RECEIVED ACTION
broadcast is sent, and it allows the app to read the incoming SMS as well. This is
done by using the SMS Message class and calling create from PDU, which builds
the message so it can be used. After the message is built, get Message Display
Body can be used to determine the contents of the message and get Originating
Address can be used see the sender. These methods [16] are listed in Table 2.

4. Attack Models for Device ID

In this section, we will explain how device identifiers can be used maliciously by
presenting attack scenarios. We will discuss attacks that use only
READ_PHONE_STATE and attacks that use both READ_PHONE_STATE and
READ, RECEIVE SMS. We will also focus on how individual device identifiers
can be used maliciously.

4.1. Device ID Information (READ_PHONE_STATE)

With this permission enabled, an app from the Google Play store “can access
your device ID(s), phone number, whether you’re on the phone and the number
connected by a call. Device ID & call information may include the ability to read
phone status and identity” [17]. The information contained in this permission,
including the device’s IMEI/MEID and phone number, is extremely compro-
mising, although it is rarely treated as such. Identifiers are often streamed, even
by benign apps, in plaintext requests that leak the information to malicious apps
listening in [5]. In the following sections, we will explain why these device iden-
tifiers are compromising and what malicious persons can do with this informa-
tion.

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 225 Communications and Network

Table 2. Relevant SMS message methods.

Method Function

Get originating address
Returns the originating address (sender) of this SMS message in String

form or null if unavailable

Create from PDU

Create a SMS Message from a raw PDU with the specified message
format. The message format is passed in the

SMS_RECEIVED_ACTION as the format String extra, and will be
either “3gpp” for GSM/UMTS/LTE messages in 3GPP format or

“3gpp2” for CDMA/LTE messages in 3GPP2 format.

Get display message body
Returns the message body, or email message body if this message was

from an email gateway. Returns null if message body unavailable.

4.1.1. IMEI/MEID/ESN Attacks
1) Gather Information
If an attacker gains the IMEI/MEID/ESN number of a user, the attacker can

find sensitive information about the device. The IMEI number is formulated
with three fields: the Type Allocation Code (TAC), Serial Number (SNR), and a
check digit (CD) that can be reversed to find system information. For example,
the TAC gives the attacker information about the phone’s make and model,
which can provide even more information on the OS, CPU, and other features of
the phone that may assist the attacker in preparing targeted exploits for a partic-
ular cellular device [18]. Similar constructions can be done with MEID and ESN.
One application, packaged as com.avantar.wny, was discovered to have bundled
IMEI, device model, platform, and application name into a URL parameter
string [5]. While no clear purpose was found for this method, its existence sug-
gests that the developer had a plan in mind for this information.

Targeted attacks have been on the rise, increasing from 9.5 percent of all cy-
ber-attacks in 2014 to 10.5 percent in 2015 to 12 percent for the month of April
in 2016 [19] [20]. A specific example is the Heartbleed attack, which functions
by exploiting a vulnerability in the OpenSSL cryptographic software library that
is used on many devices and servers. Attackers could use this to read the memo-
ry of systems running the affected OpenSSL and to obtain access to names,
passwords, and other data [21]. With knowledge of the IMEI, an attacker can
discover if a phone is vulnerable to the Heartbleed exploit or another exploit and
base their attack of this information.

2) Trade User Information for Money
Data brokers, who collect and analyze data, have created a multi-billion-dollar

industry from the data generated from apps and other online activities [22].
These companies make their fortune by famining demographic, behavioral and
transactional data, to create the fullest possible picture of the people most likely
to buy from their clients [23]. For example, many people use health-related apps
to record menstrual cycle patterns, glucose levels, and other information about
their personal health. These applications sell this information to data broker
companies such as Epsilon, Acxiom, and Experian, who then compile this

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 226 Communications and Network

Figure 2. Malicious kitchen timer application.

information and sell it to interested companies. Insurance companies are espe-
cially interested in this data because it helps them to identify clients who would
be bad investments due to their health conditions [24].

One of the ways these data brokers obtain this information is by purchasing it
from applications and the READ_PHONE_STATE permission allows these
brokers to easily connect this information with a person. With applications like a
glucose tracker, users put in a lot of private information but they may not put in
their name or any other data that would personally identify them so that this
data cannot be tracked back to them. However, READ_PHONE_STATE allows
access to the IMEI which can be used as a universal identifier for any data bro-
ker. Some of this data may include your name or email address which data bro-
kers obtained through social media applications or other sources. Users may be-
lieve that the information they are providing is inconsequential because it can-
not be connected back to them, however, with the READ_PHONE_STATE
permission it easily can. Enck et al. found several examples of applications that
purposely linked IMEI to personally identifiable information (PII), including a
game that linked IMEI to the user’s high scores [5]. Any person identifier can be
used to connect information to the user; however, IMEI appears to be the most
popular.

4.1.2. Phone Number
1) Obtain User’s Name and Profile Picture
Using a user’s phone number, an attacker can retrieve the user’s name and

profile picture through Facebook as an example. This approach assumes the user
has a Facebook and the user’s Facebook is tied with their phone number. To ac-
complish this, the attacker goes to password recovery, enters the phone number,
and Facebook will display the name and profile picture the user has on their ac-
count. This is compromising enough to create a domino effect of more attacks.

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 227 Communications and Network

2) Phishing
Attackers can also use a phone number to perform social engineering attacks

such as phishing by directly calling or texting the user. When coupled with the
attack above, this attack has the potential to be far more effective, allowing the
attacker to possibly pose as someone the user knows. Phishing alone results in
the loss of millions of dollars annually [25] and is an extremely easy way to steal
money from a user. Mobile devices are especially vulnerable to phishing through
websites because web designers should simplify their sites to work with limited
resources, making it easier to replicate. Additionally, URLs are often harder to
read on mobile devices making it easier for users to make a mistake on a mali-
cious site. Studies have shown mobile users are three times more likely to submit
their credentials to these phishing sites than desktop users [26].

3) Determine a General Location
The typical attacker can get a general location of where the user may live

through the area code in combination with the Central Office. Factors such as
availability of a Central Office, which corresponds with the user’s desired carrier,
and the stability of the user’s home location will impact accuracy. In North
America, phone numbers are broken down into three parts: the area code, the
central office code, and a unique four-digit code to identify the specific number.
The span of area codes ranges widely from state to state. For example, New York
is home to fifteen different area codes while Wyoming only has one [27]. The
Central Office code links a phone number to a specific office and carrier and
when combined with the area code can be used to determine a possible town or
zip code that the user may live in.

4.1.3. IMSI
Another tool that can be used in conjunction with the READ_PHONE_STATE
permission to carry out an attack is an IMSI catcher. IMSI catchers are devices
used mainly by government agencies for phone tapping, intercepting data, and
tracking of mobile devices. Basic IMSI catchers can listen in on calls and pre-
cisely determine location. Dirtbox, a common IMSI catcher used on planes, can
locate the desired cell phone to a ten-foot radius [28]. Another commonly used
tool by government agencies, VME, allows for “voice manipulation, up or down
channel blocking, text interception and modification, calling and sending text on
behalf of the user, and directional finding” [29]. Other catchers are also known
to be able to shut down devices remotely and track devices even when owners
believe that they have been turned off [28] [30].

In the context of android applications, information obtained through the
READ_PHONE_STATE permission can drastically increase the success of these
attacks by providing an IMSI that is connected to a user. Knowing a particular
person’s IMSI and a general location, an attacker can set up an IMSI catcher in
the region and pinpoint a more exact location as well as collect data coming out
of the desired phone if the catcher is advanced enough. For example, if their app
has become popular enough to obtain a celebrity following, attackers can utilize

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 228 Communications and Network

basic versions of this tool to find celebrities’ exact location and sell this informa-
tion to paparazzi. Generally, this tool can be used to blackmail, stalk, or perform
other targeted attacks on a specific person based on IMSI.

4.2. SMS Privileges ({READ, RECEIVE} SMS)
4.2.1. Account Hijacking
READ_PHONE_STATE and READ, RECEIVE SMS can be used together to hi-
jack accounts. Many services allow users to reset their password by sending an
SMS recovery message with a randomly generated key to the user’s phone. If the
attacker has the phone number of the user and can read incoming text messages,
they can reset the password for the account without knowing any of the creden-
tials and gain access. Once the attacker has access, they can also change recovery
information, such as backup emails, so the original user cannot get back in. At-
tacks on these accounts, barring any outside intervention from the provider of
the service, are often impossible to recover.

In the following subsections, we list some popular services that are vulnerable
and explain any measures or countermeasures that make this service more dan-
gerous or safe than others. We present only a few examples, however, any ac-
count that can have its password reset via text is vulnerable to this type of ac-
count hijacking.

a) Facebook: Upon login, the attacker has the option to log out every other
device that’s currently logged in to Facebook, booting the real user out of the
account and eliminating any chance for the user to recover the password. Face-
book does offer the option to supply state identification [31] to prove a user is
the real owner of the account, however, this can be a lengthy process and in
which time the attack has most likely carried out whatever attack that they had
planned, whether that be phishing, reputation destruction, etc.

b) Yahoo! Mail: Once the attacker logs in, the attacker can replace the phone
number and backup email associated with the account, eliminating the possibil-
ity of resetting the password.

c) Twitter: With Twitter, a user can retrieve the account, but the user needs to
respond quickly. Twitter’s security has a backup code that allows the user to log
in regardless of password changes that the user can decide to generate at any
time during the account’s lifetime. If the user decides to use this feature, the user
can regain control of the Twitter account.

d) T-Mobile: T-Mobile requires the billing zip code in addition to a verifica-
tion key. However, using the methods above, this attack can be accomplished
using brute force by guessing the zip code based on general location.

These types of account hijacking attacks have been on the rise over the last
year. Account hijacking rose from on average 8.8 percent in 2015 to 14.5 percent
in April 2016 [19] [20]. Additionally, out of all attacks that were categorized as
Cybercrime, 19 percent of those were account hijacking attacks in 2015. Other
categories included hacktivism, cyber espionage, and cyber warfare [7]. Once an
attacker controls a user’s account, there are several ways to profit of it. The most

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 229 Communications and Network

common method is using the compromised account for spam or a product the
attacker is trying to sell. In an online survey done by Shay et al., out of 294 sub-
jects 89 experienced a compromise of their account. Out of these 89, 37.1 per-
cent experienced accounts selling spam to contacts. This was the most promi-
nent way subjects experienced harm from the compromise [25].

4.2.2. Proof-of-Concept (SMS Account Hijack Attack)
Using READ_PHONE_STATE, RECEIVE SMS and INTERNET permissions,
we constructed a proof-of-concept application for Android that mimics the at-
tack above. This can still be possible with READ SMS, but the effectiveness of
the attacker is greatly reduced. Upon opening the application, the user’s phone
number is extracted and stored as a string variable named “phone” as shown in
Figure 3. The application also extracts whether or not the user’s SIM operator
number corresponds to T-Mobile and stores it as a Boolean called “is TMobile”.
An attacker will want to know if the user has T-Mobile since T-Mobile accounts
are vulnerable to the attack. Next, the app connects to a server with the is TMo-
bile and phone variables attached as $ GET parameters to the URL. A PHP script
then takes the information and stores it into a .txt file called log.txt, shown in
Listing 1.

The attacker can then use the phone number to reset the password of a target
account, forcing the account service to send a verification text. After the text is
sent, Broadcast Receiver listens to the incoming message and saves the text mes-
sage body, shown in Figure 3. Using the same process as above, the message
body is put as a $ GET parameter in the URL and saved to the same text file. The
attacker reads the text message and resets the password permanently. The at-
tacker then will delete all recovery emails or phone numbers, gaining full access
to the account. From there, they can perform any of the methods listed above to

Figure 3. SMS account hijack.

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 230 Communications and Network

profit off the account. The idea of the constructed application is illustrated in
Figure 4.

5. Proposed Solutions

READ_PHONE_STATE is much too broad of a permission. It provides applica-
tions the status of ongoing calls, which is helpful for many applications, while
also providing access to phone number, IMEI, and IMSI. The only functional
reason to use any of this information is to replace default messaging and calling
apps. Since a phone can have only one default messaging app while the status of
ongoing calls can be used by many applications, we propose that
READ_PHONE_STATE be partitioned into two new permissions: PHONE
STATUS and PHONE IDENTITY. PHONE STATUS would include basic func-
tions like hasCarrierPrivileges() or getCallState() so applications know if the de-
vice is a phone and if there’s an incoming call. PHONE IDENTITY would in-
clude getDeviceId(), getLine1Number, getSimSerialNumber(), and other me-
thods that could potentially compromise the user’s privacy. Phone status could
then be considered a normal permission, while phone identity would be classi-
fied as dangerous, allowing malware to be profiled much easier.

With the recent Android update to Marshmallow, users now have the option
to revoke specific permissions from an application during installation. This up-
date, while extremely helpful in other cases, does not solve the problem with
READ_PHONE_STATE. Many developers still need access to getCallState() and
therefore need to request this permission. Users now have the choice to revoke

Listing 1. PHP script for extracting the data.

Figure 4. SMS account hijacker.

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 231 Communications and Network

this permission, but they run the risk of missing a call when using the applica-
tion. One solution, Identi Droid [32] gives users the option of shadowing their
data or, in other words, returning to the requesting application randomized data
in place of the IMEI, phone number, or other sensitive data. The problem with
Identi Droid is that it requires reconfiguration of the Android source code and
for the user to root their device. This is very impractical for the everyday user.

Since both the recent update to Marshmallow and privacy tools such as Identi
Droid fail to protect the everyday user’s privacy, the most practical solution
would be for Android to break down the READ_PHONE_STATE permission
into phone status and phone identity. This way developers can get access to only
what they need and users do not have to choose between functionality and pri-
vacy. This simple solution will reduce the access to these device identifiers dras-
tically and stop developers from performing most of the attacks we have pre-
sented in this paper.

6. Related Works

Studying and analyzing Android’s permissions has been an interested area of re-
search in the last few years. Numerous researches have been showing that there
are dangers inherent in device information permissions and the leakage of de-
vice identifiers [4] [5] [6] [7]. Jiang and Zhou [6] demonstrate that malicious
applications ask for device information permissions, READ_PHONE_STATE,
significantly more than benign applications suggesting that the information ob-
tained through this permission aids these apps in performing malicious activi-
ties. Batyuk et al. [4] demonstrates through their study that almost 70% of all
analyzed applications that had access to device identifiers streamed this private
data immediately upon reading it.

Enck et al. [5] looked at information misuse of phone identifiers and they
found out that 246 out of 1100 applications they analyzed using static analysis
had code to obtain a device identifier, with IMEI being the most frequently re-
quested identifier contributing to 61% of all calls. In another work done by Enck
et al. [33], they found out when they tested Taint Droid, which is a dynamic taint
tracking tool, 21 out of 30 applications require permissions to
READ_PHONE_STATE and the Internet and 9 of them transmitted the IMEI.
Gibler et al. [34] introduced Android Leaks as a static analysis tool used to find
possible data leaks. They found potential privacy leaks in 7,414 out of 24,350 ap-
plications. However, the leakage of IMEI or IMSI compromised over ninety
percent of all leaks found by Android Leaks and occurred in 28.39 percent of
analyzed applications. Out of all of the user’s data, device identifiers are the most
frequently leaked.

While these works are able to provide proof that malicious activity is occur-
ring, they fail to offer an explanation of what this activity might be. With the ex-
ception of Enck et al., no other work illustrates the potential harm that comes
from READ_PHONE_STATE and device identifiers. We build on Enck et al. to

https://doi.org/10.4236/cn.2017.94016

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 232 Communications and Network

provide more malicious scenarios and a complete picture of what attackers can
really do with information.

7. Conclusions

Permissions provide malicious applications a way to access sensitive data on
mobile devices without breaking the rules of Android. READ_PHONE_STATE,
which allows access to device identifiers, is the most commonly misused permis-
sion by benign apps and the most requested dangerous permission by malicious
apps. As we have illustrated, device identifiers can be used to harm the user
through many different attack scenarios. Malicious applications can sell user in-
formation. Malicious applications can also gather general information about the
user and phone or resort to mobile phishing.

When combined with READ SMS, a phone number can be used to hijack a
person’s account. It is clear from related works that READ_PHONE_STATE is
requested significantly more often by malicious applications than benign ones,
device identifiers are the most frequently leaked piece of data, and there is no
clear way to know what applications are doing with user’s data. We suggest a
simple solution: split up READ_PHONE_STATE into phone status and phone
identity, where phone status could be downgraded to a normal permission.

Acknowledgements

This work was supported in part by NSF under grants CNS-1460897, DGE-1623713.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
NSF.

References
[1] Gartner (2017) Worldwide Smartphone Sales to End Users by Operating System.

http://www.gartner.com/newsroom/id/3725117

[2] Oberheide, J. and Miller, C. (2012) Dissecting the Android Bouncer.

[3] MegaNet Corporation (2016) VME Undetectable Cell Phone Interceptors.
http://www.meganet.com/meganet-products-cellphoneinterceptors.html

[4] AllAreaCodes.com (2016) About All Area Codes. http://www.allareacodes.com/

[5] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L.P., Jung, J.,
McDaniel, P. and Sheth, A.N. (2014) TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones. ACM Transactions on
Computer Systems (TOCS), 32, 5. https://doi.org/10.1145/2619091

[6] Google Play Help (2016) Review App Permissions Thru Android 5.9.
https://support.google.com/googleplay/answer/6014972?hl=en

[7] Dot, N. (2015) The Importance of Data (Part I).

[8] University of Virginia (2014) UNIX/Linux UID and File Ownership over NFS.
http://its.virginia.edu/unixsys/sec/nfs-uids.html

[9] Android Developers (2016) System Permissions.
https://developer.android.com/guide/topics/permissions/index.html

https://doi.org/10.4236/cn.2017.94016
http://www.gartner.com/newsroom/id/3725117
http://www.meganet.com/meganet-products-cellphoneinterceptors.html
http://www.allareacodes.com/
https://doi.org/10.1145/2619091
https://support.google.com/googleplay/answer/6014972?hl=en
http://its.virginia.edu/unixsys/sec/nfs-uids.html
https://developer.android.com/guide/topics/permissions/index.html

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 233 Communications and Network

[10] Facebook (2016) Confirm Your Identity with an ID.
https://m.facebook.com/help/contact/183000765122339

[11] Rashidi, B. and Fung, C. (2015) A Survey of Android Security Threats and Defenses.
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Ap-
plications 6.

[12] Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A.D. and Albayrak, S.
(2011) Using Static Analysis for Automatic Assessment and Mitigation of Un-
wanted and Malicious Activities within Android Applications. 2011 6th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE), Fajardo,
Puerto Rico, 18-19 October 2011, 66-72.
https://doi.org/10.1109/MALWARE.2011.6112328

[13] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. (2015) Secur-
ing Android: A Survey, Taxonomy, and Challenges. ACM Computing Surveys, 47,
Article No. 58.

[14] Android Developers (2016) TelephonyManager.
https://developer.android.com/reference/android/telephony/TelephonyManager.ht
ml

[15] Deep End Research (2016) Malware Dataset.
https://www.dropbox.com/sh/fwmhcw37o0u7f6p/AADADt2XkojibPzLBBxaQbbqa
?dl=0

[16] Android Developers (2016) SmsManager.
https://developer.android.com/reference/android/telephony/SmsManager.html

[17] Heartbleed (2016) The Heartbleed Bug. http://heartbleed.com

[18] Gibler, C., Crussell, J., Erickson, J. and Chen, H. (2012) Android Leaks: Automati-
cally Detecting Potential Privacy Leaks in Android Applications on a Large Scale.
In: International Conference on Trust and Trustworthy Computing, Springer, Ber-
lin, 291-307. https://doi.org/10.1007/978-3-642-30921-2_17

[19] Paolo, P. (2015) April 2015 Cyber Attacks Statistics.
http://www.hackmageddon.com/2016/01/11/2015-cyber-attacks-statistics

[20] Paolo, P. (2016) April 2016 Cyber Attacks Statistics.
http://www.hackmageddon.com/2016/06/01/april-2016-cyber-attacks-statistics/

[21] Grzonkowski, S., Mosquera, A., Aouad, L. and Morss, D. (2014) Smartphone Secu-
rity: An Overview of Emerging Threats. Electronics Magazine, 3, 40-44.
https://doi.org/10.1109/MCE.2014.2340211
http://www.hackmageddon.com/2015/06/18/the-importance-of-data-part-i

[22] Steve, K. (2016) The Data Brokers: Selling Your Personal Information.
https://www.cbsnews.com/news/data-brokers-selling-personal-information-60-min
utes/

[23] Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S. (2011) A Study of Android
Application Security. 20th USENIX Security Symposium, 10-12 August 2011, San
Francisco, CA.

[24] Boksasp, T. and Utnes, E. (2012) Android Apps and Permissions: Security and Pri-
vacy Risks. Norwegian University of Science and Technology, Trondheim.

[25] Shay, R., Ion, I., Reeder, R.W. and Consolvo, S. (2014) “My Religious Aunt Asked
Why I Was Trying to Sell Her Viagra”: Experiences with Account Hijacking. In:
Proceedings of the 32nd Annual ACM Conference on Human Factors in Compu-
ting Systems, ACM, New York, 2657-2666.

[26] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M. and Rajara-

https://doi.org/10.4236/cn.2017.94016
https://m.facebook.com/help/contact/183000765122339
https://doi.org/10.1109/MALWARE.2011.6112328
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://www.dropbox.com/sh/fwmhcw37o0u7f6p/AADADt2XkojibPzLBBxaQbbqa?dl=0
https://www.dropbox.com/sh/fwmhcw37o0u7f6p/AADADt2XkojibPzLBBxaQbbqa?dl=0
https://developer.android.com/reference/android/telephony/SmsManager.html
http://heartbleed.com/
https://doi.org/10.1007/978-3-642-30921-2_17
http://www.hackmageddon.com/2016/01/11/2015-cyber-attacks-statistics
http://www.hackmageddon.com/2016/06/01/april-2016-cyber-attacks-statistics/
https://doi.org/10.1109/MCE.2014.2340211
http://www.hackmageddon.com/2015/06/18/the-importance-of-data-part-i
https://www.cbsnews.com/news/data-brokers-selling-personal-information-60-minutes/
https://www.cbsnews.com/news/data-brokers-selling-personal-information-60-minutes/

A. Alshehri et al.

DOI: 10.4236/cn.2017.94016 234 Communications and Network

jan, M. (2015) Android Security: A Survey of Issues, Malware Penetration, and De-
fenses. IEEE Communications Surveys & Tutorials, 17, 998-1022.

[27] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M. and Rajara-
jan, M. (2015) Android Security: A Survey of Issues, Malware Penetration, and De-
fenses. IEEE Communications Surveys & Tutorials, 17, 998-1022.
https://doi.org/10.1109/COMST.2014.2386139

[28] Joseph, O. (2015) IMSI Catchers and Mobile Security.

[29] Boodman, E. (2016) Health Apps Aren’t Just Collecting Your Info. They May Be
Selling It, Too.
https://www.statnews.com/2016/03/08/health-apps-sell-medical-data/

[30] Augustine, F. (2016) Mobile Phishing Social Media Phishing and Other Attacks.
http://www.slideshare.net/augustinefou/mobile-phishing-social-media-phishing/-a
nd-other-attacks

[31] EPSILON (2016) EPSILON. http://www.epsilon.com/

[32] Shebaro, B., Oluwatimi, O., Midi, D. and Bertino, E. (2014) Identidroid: Android
Can Finally Wear Its Anonymous Suit.

[33] Elenkov, N. (2014) Android Security Internals: An In-Depth Guide to Android’s
Security Architecture. William Pollock, San Francisco, CA.

[34] Ryan, G. (2012) Criminals May Be using Covert Mobile Phone Surveillance Tech
for Extortion.
http://www.slate.com/blogs/future_tense/2012/08/22/imsi_catchers_criminals_law_
enforcement_using_high_tech_portable_devices_to_intercept_communications_.html

https://doi.org/10.4236/cn.2017.94016
https://doi.org/10.1109/COMST.2014.2386139
https://www.statnews.com/2016/03/08/health-apps-sell-medical-data/
http://www.slideshare.net/augustinefou/mobile-phishing-social-media-phishing/-and-other-attacks
http://www.slideshare.net/augustinefou/mobile-phishing-social-media-phishing/-and-other-attacks
http://www.epsilon.com/
http://www.slate.com/blogs/future_tense/2012/08/22/imsi_catchers_criminals_law_enforcement_using_high_tech_portable_devices_to_intercept_communications_.html
http://www.slate.com/blogs/future_tense/2012/08/22/imsi_catchers_criminals_law_enforcement_using_high_tech_portable_devices_to_intercept_communications_.html

	Risks behind Device Information Permissions in Android OS
	Abstract
	Keywords
	1. Introduction
	2. Android Overview
	2.1. Android Security Features
	2.1.1. Sandbox
	2.1.2. IPC
	2.1.3. Broadcasts
	2.1.4. Intents
	2.1.5. Permissions

	2.2. Android Vulnerabilities
	2.2.1. Unprotected Broadcasts
	2.2.2. Collusion
	2.2.3. AD Libraries

	3. User Privacy and Android Permissions
	3.1. Device ID Information
	3.2. SMS Privileges

	4. Attack Models for Device ID
	4.1. Device ID Information (READ_PHONE_STATE)
	4.1.1. IMEI/MEID/ESN Attacks
	4.1.2. Phone Number
	4.1.3. IMSI

	4.2. SMS Privileges ({READ, RECEIVE} SMS)
	4.2.1. Account Hijacking
	4.2.2. Proof-of-Concept (SMS Account Hijack Attack)

	5. Proposed Solutions
	6. Related Works
	7. Conclusions
	Acknowledgements
	References

