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Abstract 
In this study, we explored to combine traffic maps and smartphone trajecto-
ries to model traffic air pollution, exposure and health impact. The approach 
was step-by-step modeling through the causal chain: engine emission, traffic 
density versus traffic velocity, traffic pollution concentration, exposure along 
individual trajectories, and health risk. A generic street with 100 km/h speed 
limit was used as an example to test the model. A single fixed-time trajectory 
had maximum exposure at velocity of 45 km/h at maximum pollution con-
centration. The street population had maximum exposure shifted to a velocity 
of 15 km/h due to the congestion density of vehicles. The shift is a universal ef-
fect of exposure. In this approach, nearly every modeling step of traffic pollution 
depended on traffic velocity. A traffic map is a super-efficient pre-processor for 
calculating real-time traffic pollution exposure at global scale using big data 
analytics. 
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1. Introduction 

Traffic pollution is the dominant source of air pollution in most metropolitan 
areas and has major health effects. 50% of the world’s population lives in urban 
areas covering only 0.4% of the earth’s surface, and 70% are projected to live in 
urban areas by 2050 [1]. In many European cities, industrial air pollution is be-
ing replaced by traffic pollution [2]. For example in Moscow, traffic pollution 
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accounts for 93% of the air pollution [3] [4]. 
In most cities, air pollution levels exceed the guideline maximum levels estab-

lished by the WHO (World Health Organization) to protect human health. 
People most exposed are those who spend a much time in heavy traffic [5] [6] or 
reside near heavy traffic [7] [8]. For example, US EPA (United States Environ-
mental Protection Agency) claims that 45 million people in the US are living, 
working, or attending school within 300 feet (91 m) of a major road, airport or 
railroad [9]. Some cities provide air quality information to the public [10] [11], 
but not individualized information [12] [13]. 

Recent research projects (e.g., CitiSense, CITI-SENSE, EveryAware, and iS-
PEX) provided air quality information at smartphones to citizens equipped with 
low-cost pollution sensors [14] [15] [16] [17]. However, low cost sensors are 
typically neither stable nor accurate [18] [19] [20] [21]. It is infeasible to scale up 
to population level due to the large cumulative cost. A study in 2013 [20] pre-
sented an alternative approach of using individual mobile phone trajectories ac-
cumulating exposure from a pollution map without personal sensors.  

Since 2013, smartphones with location services has gained nearly 100% mobile 
phone market penetration. A second trend is that dedicated mobile networks are 
built to add billions of new sensors to the internet that is the Internet of Things 
(IoT). Indeed, 90% of all available data today were generated within the last two 
years. Trends in computer science include big data, data mining, advanced ana-
lytics, cognitive computing, virtual reality, and robotics. New algorithms are 
based on more abstract mathematics, including topology, network theory, and 
functional analysis. New knowledge is extracted from data lakes filled by streams 
of heterogeneous data. Simulators predict future states of complex systems as 
digital twins of the real systems. In this study, traffic emissions, pollution, expo-
sure and health effects were modeled by traffic map and smartphone data. 

2. Method 

The modelling principles were to value simplicity, computational speed and sca-
lability, above accuracy. Accuracy improvements can be added to the model at a 
later stage. The overall method is to mathematically model effects along the 
causal chain starting with single vehicle tailpipe emissions, ending up with 
health risk. Traffic map data and smartphone trajectories are used wherever 
possible. Figure 1 shows construction of a traffic map, an individual exposure 
trajectory, and up-scaled population risk distribution. Figure 2 illustrates the 
individual causal chain modeling steps. From the existing traffic maps, the traffic 
velocity can be extracted. From traffic velocity, by using the traffic engineering 
models, the traffic density can be calculated (see Section 2.3). Based upon the 
traffic density and traffic velocity, the traffic emission can be calculated (see Eq-
uation No. (6)). From traffic emission, by using Gaussian dispersion model, the 
pollutants concentration can be calculated. By combing individual smart phone 
based trajectory, the individual exposure can be calculated and the health risks  
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Figure 1. Trajectory based traffic pollution system by using a traffic map with street segment “traffic veloc-
ity” or “travel time” as a super-efficient pre-processor to calculate emission, concentration fields, and then 
using my mobile phone location trajectory to calculate exposure. 

 

 
Figure 2. Step-by-step causal chain modelling. 

 
can be further estimated. The individual exposure and health risk can be scaled 
up to the population exposure and health risks.  

2.1. Vehicle Tailpipe Emission 

Vehicle tailpipe emission is the sum of emissions from an idle engine and a 
working engine. The idle engine gives a constant base load while the engine is 
turned on [22]. The emission rate per unit length jq  (g/(s∙m)) can be given as a 
sum over N vehicle types: 

0, 1,j k j
N N

kk k k kk jq n E n E v= +∑ ∑                   (1) 
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where 0, jkE  is the idle engine emission factor (kg/s) of the jth pollutant of ve-
hicle type k, 1, jkE  is the working engine emission factor in (kg/m) for the jth 
pollutant and vehicle type k, kn  is the number of vehicles of type k per length in 
(m), and kv  is the velocity (m/s) of a vehicle of type k. On average, vehicles move 
with the local traffic flow velocity v, so kv v= , and Equation (1) simplifies to 

0, 1,j k jk
N N

jkk k kq n E v n E= +∑ ∑                   (2) 

The change of vehicle distribution kn  is slow, over years, such that the dis-
tribution of vehicle types is approximately constant in time and space at country 
level. Thus, a set of effective constant parameters 0, ,j jE E  and n can be applied 

0, 0,
1 N

j kk jkE n E
n

= ∑                        (3) 

1, 1,
1 N

j kk jkE n E
n

= ∑                        (4) 

N
kk

n n= ∑                           (5) 

Plug-in Electric Vehicles (PEVs) and Plug-in Electric Hybrid Vehicles 
(PEHVs) are positive for air quality, but market penetration varies among coun-
tries. For example, the share of PEVs of the new car sales in 2015 was 0.66% in 
the USA and 22.39% in Norway [23]. Inserting Equations (3)-(5) in Equation 
(2), the emission rate for pollutant j is 

( )0, 1,j j jq E E v n= +                        (6) 

In the next section, traffic maps information is assessed.  

2.2. Traffic Flow Velocity Measurements 

A traffic map (for example from Google, Here, TomTom, Yandex, and Baidu) 
shows near-real-time traffic velocity or travel time by a color code of data on 
street segments in a street map [24]. Consider a street segment i of length is  in 
a traffic map, and the travel time it  driving from start to end with local traffic 
flow velocity iv   

i
i

i

s
v

t
=                             (7) 

Two velocity averages are used in traffic engineering [25] [26]: time mean ve-
locity tv  that is the time-averaged instantaneous velocity of vehicles passing a 
given position on the road over some time interval t with ( )m t  vehicles meas-
ured by a pair of nearby induction loop detectors embedded in the road  

1 m

it iv v
m

= ∑ , and space mean velocity sv  that is the average velocity of m ve- 

hicles passing a fixed street segment of length s where each velocity is calculated 
by time intervals it  to cross street segment from start to end, for example by 
video camera recording the segment, and 

1 1 11 1 1 1i
s

m

i

m

i i
m

i i

t
v s t

m v m s m

− − −     = = =        
∑ ∑ ∑            (8) 
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In practice, the time mean velocity is about 2% greater than the space mean 
velocity. Smartphone location service can be used to measure velocity by spatial 
difference is  in individual GPS (Global Positioning System) positions over a 
fixed sampling time interval t and average over vehicles on a street segment  

( ) 1GPS i
it
m s

v
m t

= ∑                       (9) 

Global traffic maps are calculated by millions of GPS positions, other static 
and dynamic input data, filtering, position corrections, and historical data to fill 
in blanks [26] [27]. In the next section, the vehicle density is constructed by us-
ing traffic-engineering models.  

2.3. Traffic Engineering Models of Vehicle Density 

In traffic engineering, the fundamental diagram for traffic flow relates traffic flux 
( nv ), the number of vehicles passing a fixed point per time, to vehicle density 
[24] [28] [29] [30]. Traffic density is related to traffic flow velocity by the van 
Aerde model (1995) [31] where the average headway per vehicle (street length 
per vehicle) 1/n is:  

2
1 3

0

1 cc c v
n v v
= + +

−
                      (10) 

where 0v  is the free float traffic velocity at zero density 0n = , 1c  is a fixed 
distance, 2c  is a constant of the term that ensures zero density as 0v v→ , and 

3c  is a constant time interval per vehicle. For safe driving in Norway, 3 3 sc ≈ . 
By inverting 1/n 

2
1 3

0

1n
cc c v

v v

=
+ +

−

                      (11) 

Thus, the vehicle density in Equation (6) can be obtained from the traffic map 
velocity. The maximal density maxn  is given for complete standstill 0v =  as 
follows: 

max
2

1
0

1n
cc
v

=
+

                        (12) 

By inserting Equation (11) in Equation (6), the emission rate per unit length 

jq  becomes 

0, 1,

2
1 3

0

j j
j

E E v
q

cc c v
v v

+
=

+ +
−

                     (13) 

MacNicholas (2009) [32] developed an alternative traffic model as 

max

0

max

1

1

n
nv

v nc
n

α

α

 
−  
 =
 

+  
 

                       (14) 
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where 0v  is the free flow velocity, maxn  is the maximal vehicle density, and c  
and α  are curve-shape constants. The end-points are ( )00,n v v= =  and 
( )max , 0n n v= = . The free flow velocity is based on the speed limit, and the 
maximum density is given by the average length of vehicles plus a safety margin. 
The parameters α  and c  are specified by curve fitting to measured data. 
MacNicholas (2009) [32] used 0 90.58 km hv = , max 136.4n = , 6.83c = , 

1.81α = . Equation (14) in normalized velocity and density is 
1

0

max

0

1

1

v
vn

n vc
v

α
  

−  
  =   

 +     

                     (15) 

Inserting Equation (15) in Equation (6) gives  

( )

1

0
0, 1, max

0

1

1
j j j

v
v

q E E v n
vc
v

α
  

−  
  = +   

 +     

               (16) 

Van Aerde [31] and MacNicholas [31] ignored fluctuations. An example of a 
more advanced model is the three phase model of Kerner (1998) [33] with free 
flow, synchronized flow and a wide-moving jam. A wide-moving jam is a wide 
jam that has almost a step change in density at the upstream side of the jam. The 
step change moves upstream at a velocity of about 20 km/h as vehicles are added 
to the jam. The step change is similar to a solitary wave, a so-called soliton, such as 
a Tsunami wave, and in physics, the step-change moving jam is called a “jamiton”. 
These effects are ignored here. In the next section, the pollution field is modeled.  

2.4. Gaussian Plume and Turbulent Mixing at a Street Segment 

Air dispersion is modelled by a Gaussian plume [34]. The steady state concen-
tration of the jth pollutant jc  (in kg/m3) at a x, y, z- position, relative to the 
center of line source in the downwind x, crosswind y and vertical z directions are 
given as [35] 

( )
( )

2 2
1 1
2 2

0

, , e e
2 2π sin

sin sin cos
2 2erf

2

sin sin cos
2 2erf

2

z z

z h z h
j

j
z

y

y

q
c x y z

u u

L Ly y x

L Ly y x

σ σ

σ θ

θ θ

σ

θ θ

σ

   − +
− −   

   

 
 = + 

+   
     − − −     

     ×
  
  

 
    + + +     

     +
 
 

 

       (17) 
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where jq  is the line source strength or mass emission rate per unit length 
(kg/(s⋅m)), θ  is the angle between the wind direction and the road in the range 
0˚ - 180˚, h is the effective source height, L is the line source length that is the 
length of a street segment, u is the average wind speed, and 0u  is the wind 
speed correction due to a traffic wake. The standard deviations ( )y y xσ σ=  
and ( )z z xσ σ=  are the horizontal and vertical dispersion coefficients that de-
pends on atmospheric stability. The ( )erf x  is the error function 

( ) 2

0

2erf e d
π

x
x τ τ−= ∫                      (18) 

has unit slope flow small x, ( )erf 1x x≈ , and tend to unity for large x, 
( )erf 2 1x ≥ ≈ . Atmospheric stability classes are A (very unstable), B, C and D 

(neutral), E and F (very stable). Consider, for simplicity, that the wind is per-
pendicular to the road that is 90θ =   ( sin 1θ = , cos 0θ = ). The two error 
functions model a tapering-off of the concentrations over a distance of the order 
of yσ  at the ends of the street segment, i.e., at 2y L≈ ± . For relevant x, the 
standard deviation yσ  is small compared to the street half-length, and the ta-
pering-off-effect was ignored. Both error functions are approximately equal to 
unity, and their sum is equal to two, and Equation (17) reduces to 

( )
( )

2 2
1 1
2 2

0

, e e
2π sin

z z

z h z h
j

j
z

q
c x z

u u
σ σ

σ θ

   − +
− −   

   

 
 = + 

+   

        (19) 

Next, the vertical standard deviation is modeled. Turbulent wakes or trailing 
vortices behind vehicles form at fluid mechanical Reynolds numbers Re  great-
er than about 1000 

vlRe ρ
µ

=                           (20) 

where ρ  is air density, v  is traffic flow velocity, l  is the size of a vehicle and 
µ  is air dynamic viscosity. Wake turbulence mixes released pollutants [36]. Air at 
20˚C and atmospheric pressure has 51.83 10 Pa sµ −= × ⋅  and 31.204 kg mρ =  
[37]. A vehicle of height 2 ml =  reaches a Reynolds number of 1000 at 

23.04 10 m sv −= ×  or 0.11 km hv = . Thus, congested traffic has turbulent 
wakes. Volume averaged turbulent kinetic energy increases linearly with velocity 
[38], while turbulent mixing by vehicle interaction increases by decreasing ve-
locity. Immediate turbulent mixing is assumed. 

Consider two cars A and B, with B in front of car A. In congestion, the dis-
tance between the inlet suction of car A and the tailpipe outlet of a car B may be 
one meter. The exhaust gas of car B is almost directly sucked into car A, and the 
people in car A are heavily exposed to pollution. At this stage, this added con-
gestion exposure is ignored.  

Turbulent mixing increases the size of the emission source by ,0yσ  and ,0zσ  

( )( )1 222
,0 ,1y y y xσ σ σ= +                     (21) 
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( )( )1 222
,0 ,1z z z xσ σ σ= +                     (22) 

Empirical Pasquill Gifford sigmas [39], were made analytical by Green et al. 
(1980) [40].  

( )
3

1
,1

2

1
y a

a xx
x

a

σ =
 
+ 

 

                     (23) 

( )
5

4
,1

2

1
z a

a xx
x

a

σ =
 
+ 

 

                     (24) 

The tailpipe and the suction inlet have small vertical positions compared to 
the mixing length, ,0z zz h σ σ± ≤ . Thus, the two exponential terms in Equa-
tion (19) are both approximately equal to unity and their sum is equal to two, so 
that:  

( )
( )

( )

0, 1,

20
0 1 3

0

22

2π sin 2π sin

j jj
j

z
z

E E vq
c

cu u u u c c v
v v

σ θ σ θ

+
= =

 +
+ + + − 

   (25) 

Velocity is the key variable of pollution concentration. Next, exposure is mod-
eled. 

2.5. Exposure from Traffic Map Trajectories 

Human exposure is concentration times the residence time [20] [41], as follows: 

ij j i
N

k k kX c t= ∑                         (26) 

where iX  is the total exposure for person i over a specified period, jkc  is the 
concentration of pollutant j concentration in microenvironment or street seg-
ment k, ikt  is the residence time of the person i in segment k, and K is the total 
number of microenvironments.  

Individual time-activity patterns are mapped by smartphone location service 
trajectories. Exposure depends on two types of trajectories: i) Fixed-time trajec-
tory: Individual trajectory of fixed time duration, such as the working hours of 
taxi drivers, and people residing near a street with heavy traffic; and ii) Fixed- 
route trajectory: Individual who has to move from location A to B, no matter 
how long time it takes, such as a commuter who travels the same route from 
home to work every workday. 

Fixed time exposure is a sum over time intervals ikt  up to a given total time 

ik
N

k
T t= ∑  of person i at position ( ) ( ) ( ) ( )( ), ,p p pp t x t y t z t=  

( )( )N

kij jk ikX c p t t= ∑                      (27) 

The ( )jkc p  includes the sum of concentration contributions from all street 
segments and is mathematically a convolution. Residents may have a large daily 
time T but not directly at the peak pollution on the street.  
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Now, consider a fixed route trajectory. The residence time ikt  of exposure at 
street segment k is related to traffic flow velocity ikv  and length iks  of the 
road segment as: 

ik ik iks v t=                           (29) 

Solved for ikt  and inserted into the exposure 

ik
ij j

N

ik
k k

s
X c

v
= ∑                        (30) 

( )

0, 1,

2
0 1 3

0,

π 2 sin

j j ik ik
ij ijk

ik
z i

N N

k

i

k

k
k ik

E E v s
X X

vcu u c c v
v v

σ θ

+
= =

 
+ + +  − 

∑ ∑    (31) 

where residence time and velocity for a given street segment are functions of 
time, ( )ik ikt t t= , and ( )ik ikv v t= . During rush hours, the exposed time for a 
fixed route is longer than outside rush hours. Equation (31) has velocity singu-
larities for 0,ik ikv v→  and 0ikv →  with associated low and high velocity re-
gimes. 

The low velocity regime, characterized by 0, 1, ,ik j jv E E  and 0,ik ikv v , is 
derived by Taylor expanding [42] Equation (30) to leading order in a Taylor ex-
pansion: 

( ) ( )

23
0,

1,2
0, 0,

1 0, 0,
0,

2 0, max, 1

02
0 1

0,

1
2 1

1
2

~
2π sin

2π sin

ik
j ik

j ik
j ik

ik
j ik

ijk ik ik ik
z

z
ik

c v E vcE vc E vv
c E n

X t t v
u ucu u c

v
σ θ

σ θ

−

  +  
  − −
  +  

  ≈ ≈
  +

+ +  
 

 (32) 

The exposure is given by the travel time, 1
ik ik ikt s v−= , and the exposure per 

travelled distance may become large. Hence, congestion is a high pollution ex-
posure regime.  

In the high velocity regime, 0, 1,ik j jv E E  the velocity effects of travel time 
and working engine cancels, and exposure is proportional to vehicle density 

( )
1,

0

2

2π sin
j ik

ijk k
z

E s
X n

u uσ θ
≈

+
                  (33) 

where 0,

2

ik ik
k

v v
n

c
−

≈ . In the limit of free flow velocity 0,ik ikv v→ , 0kn →  and  

the exposure vanishes. The high-velocity regime is a low exposure regime. To 
the best of our knowledge, the discovered effect of velocity on exposure new. In 
the next section, the input parameters to the model are specified. 

For the specification of input parameters to the traffic exposure model, Engine 
emission factors for pollutants are shown in Tables 1-3 from US EPA [22]. The 
free float velocity 0,kv  can be set equal to the speed limit. The maximal traffic 
density max,kn  is equal to a dense packing of vehicles on the road. For example, 
7 m per vehicle gives a density of 1/7 vehicle per meter, or 143 vehicles per kilo- 
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Table 1. Abbreviation for vehicle types (GVW = Gross Vehicle Weight; Source: US EPA 
[22]). 

Abbreviation Vehicle type definition 

LDGV1 
Light-duty gasoline-fueled vehicles, up to 2722 kg (6000 lb) GVW; gasoline-fueled 
passenger cars. 

LDGT2 
Light-duty gasoline-fueled trucks, up to 3856 kg (8500 lb) GVW; includes pick-up 
trucks, minivans, passenger vans, sport-utility vehicles, etc. 

HDGV3 
Heavy-duty gasoline-fueled vehicles, over 3856 kg (8500 lb) GVW; gasoline-fueled 
heavy-duty trucks. 

LDDV4 Light-duty diesel vehicles, up to 2722 kg (6000 lb) GVW; diesel engine passenger cars. 

LDDT5 Light-duty diesel trucks, up to 3856 kg (8500 lb) GVW; diesel engine light-duty trucks. 

HDDV6 Heavy-duty diesel vehicles, over 3856 kg (8500 lb) GVW; diesel engine heavy-duty trucks. 

MC7 Motorcycles; only those certified for highway use, all are gasoline-fueled 

1Light-duty gasoline-fueled vehicles; 2Light-duty gasoline-fueled trucks; 3Heavy-duty gasoline-fueled ve-
hicles; 4Light-duty diesel vehicles; 5Light-duty diesel trucks; 6Heavy-duty diesel vehicles; 7Motorcycles 

 
Table 2. Idle emission rates by pollutant and vehicle type (Source: US EPA [22], unit: 
g/hr). 

Pollutant LDGV1 LDGT2 HDGV3 LDDV4 LDDT5 HDDV6 MC7 

VOC 2.683 4.043 6.495 1.373 2.720 3.455 19.153 

THC 3.163 4.838 7.260 1.353 2.680 3.503 21.115 

CO 71.225 72.725 151.900 7.018 5.853 25.628 301.075 

NOx 3.515 4.065 5.330 2.690 3.705 33.763 1.625 

PM2.5 N/A N/A N/A N/A N/A 1.100 N/A 

PM10 N/A N/A N/A N/A N/A 1.196 N/A 

 
Table 3. Emissions rates for passenger and light duty trucks (LDT) (Source: US EPA 
[22]). 

Pollutant 
Emission & fuel consumption 
rates for passenger cars (g/km) 

Emission & fuel consumption 
rates for light duty trucks (g/km) 

VOC 0.64264 0.76072 

THC 0.66936 0.80112 

CO 5.84214 7.35861 

NOx 0.43070 0.59043 

PM2.5 0.00255 0.00280 

PM10 0.00273 0.00305 

CO2 228.96 319.14 

Gasoline consumption 0.04149 0.05780 

 
meter. Based on the normalized Equation (15), the density-velocity shape para-
meters are assumed to be fixed.  

The traffic map provides static data such as street segment length iks  and 
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orientation, and dynamic velocities. A smartphone location service provides tra-
jectories. Weather conditions (e.g., wind direction, and atmospheric stability 
classes) can be given by a near real-time weather map layer. Currently, traffic 
and weather map layer data are not available for public use, so collaboration 
with data providers is needed.  

2.6. Health Impact 

A person moving through a city accumulates a dose of pollution through expo-
sure that gives an incremental increase in health risk that is statistically reflected in 
the public health. Traditionally, one distinguishes between short-term (i.e. minute, 
hour, day) acute exposure to pollution that may result in headache/irritation or an 
asthma attack, and long term, years to lifetime, exposure that can lead to chronic 
effects including cancer, chronic obstructive pulmonary disease, and neurologi-
cal problems.  

The dose equals concentration times respiration rate times duration and is li-
near in exposure. The respiration rate, for normal adults is 12 - 20 breaths per 
minute. Each breath volume (or tidal volume) is about 5 liters or 30 - 37 ml/kg 
and total lung volume is about 6 liters. An average of 16 breaths per minute gives 
a standard deviation of ±25%. Respiration rate increases with increasing heart 
rate, possibly linearly. Except for runner, bikers and other high-activity persons, 
people in traffic are passive in a vehicle and have a heart rate close to the resting 
heart rate; in the range 60 - 100 beats/minute.  

It is assumed that the risk R  (both for an individual and for population) sa-
turates at a maximum level maxR , where an increase in exposure gives no fur-
ther increase in the risk. The exposure level that saturates the risk depends on 
the seriousness of the risk. For example, the risk of a slight headache due to traf-
fic pollution will saturate at a small exposure, while number of years lost due to 
early death will saturate at an extremely high exposure. The saturation effect can 
be modelled by a logistic differential equation as: 

max

d 1
d

R RrR
X R

 
= − 

 
                      (34) 

For small risks maxR R , the risk grows exponentially as function of expo-
sure with a rate r. The growth rate is reduced linearly as the risk increases, and 
stops growing at maximum risk maxR . The logistic risk differential equation can 
be solved analytically by partial fraction expansion after the R-terms on the right 
hand side of Equation (34) are moved to the left hand side of Equation (34). The 
initial condition is a background risk ( )b bR R X X= =  at exposure bX X= , 
as: 

 

( )
1

max
max 1 1 e br X X

b

R
R R

R

−

− −  
= + −     

               (35) 

Consider a far-from-saturation regime, let ( ) ( )max 1b bR R r X X−  , 
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( )max 1bR R < , and ( ) 1br X X−  . Then the following sequence of approxima-
tions is justified: 

( ) ( ) ( )( )0 e e 1br X XrX
b b bR R X R R r X X−≈ = ≈ ≈ + −          (36) 

Divide (36) by bR  and then subtract unity from both sides and obtain: 

( )b b
b b

b b

R R X X
r X X

R X
α

− −
≈ − =                 (37) 

where b brXα = . This approximation applies to serious health effects such as 
early deaths. Since the relative increase in risk is proportional to the relative in-
crease in exposure, the exposure figures can be used as a proxy for health risk 
figures. 

Traffic pollution’s impact on health depends both on accumulated exposure 
(one cause) and on the vulnerability of the person. For example, children and 
elderly people are more vulnerable to pollution, but also less exposed in traffic. 
Other factors are body weight, other diseases such as asthma, and exposure to 
other sources of pollution. 

2.7. Predictions of Future Exposure and Health Risk 

Traffic maps predict one-hour or daily traffic based on historic and current traf-
fic. Individual preferred route selection can be optimized by weighting “time to 
target location” versus “pollution exposure to target location”. Cities have a typ-
ical daily M-shaped density peak of morning and afternoon rush hours due to 
the tidal flow of commuters.  

Moreover, one may predict population health risk to optimize urban planning 
of transportation infrastructure, and residential and working areas. It may even 
be possible to develop urban simulators as a digital twin to the city where every 
person in the city has simulated trajectories and automatic collection of expo-
sures and health risks, and used to answer “what if” questions as a valuable tool 
for politicians and urban planners. 

3. Results and Discussion 

The plots in Figures 1-11 are explained in Table 4. 
Figure 3 shows the linear single vehicle emission 0, 1,j jE E v+  in Equation (6) 

for the pollutants: VOC, THC, and NOx, using the emission rate data per pollu-
tant and type of vehicle from the US EPA [22] (see Tables 1-3). 

Figure 4 compares the default van Aerde model [33] and the MacNicholas’ 
[31] model tuned to fit the curve shape of ( )n v . Figure 5 shows the traffic flow 
rate ( nv ) against the vehicle density by Equation (11). The maximum flow rate 
of 2047 vehicles per hour is given by a vehicle density of 40 vehicles per kilome-
ter.  

Figure 6 and Figure 7 shows the inverse of vertical ,z xσ  and horizontal 

,y xσ  standard deviations from the Gaussian plume model where it is used that 

,0 ,0 3 my zσ σ= = . Equation (20) shows that the vertical standard deviation ap- 
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Table 4. Explanation of Figures 1-11. 

Variable Definition/Interpretation 
Figure 
No(s). 

Traffic velocity, v 
Average velocity (= traffic flow velocity = speed) of vehicles on a road/street segment in 
distance per time, here used [km/h]. 

1, 4, 8, 9, 
10, 11 

Traffic density, n 
Traffic density measures level of traffic congestion by the number of vehicles per 
kilometer in unit [1/km]. 

4, 5 

Maximum traffic density, maxmax n n=  Maximum traffic density is the density at zero velocity that is at complete standstill. N/A 

Inverse traffic density, 1n− , 1
maxn−  Inverse of traffic density. Average road segment length per vehicle in [km] or [m]. 5 

Traffic flow rate, nv  
Traffic flow rate (= traffic flux) is average number of vehicles passing a point per unit 
time interval in [1/h]. 

5 

Traffic capacity, ( )max nv  
Traffic capacity is maximum traffic flow rate of a road that is maximum number of 
vehicles that passes a position on the road per unit time. 

5 

Concentration, c  Concentration of pollutant in the air in terms of weight per volume, for example in [g/m3]. 8 

Exposure, X ct=  
Exposure is the product of concentration and duration of exposure to pollutants in 
weight of pollutants per volume times residence time for example in [(g/m3) h]. 

9 

Concentration*Density, cn  
A proxy for total exposure rate (exposure per time) per segment length. Multiplying 
cn  by segment length, time interval and average number of persons per vehicle gives 
the total exposure of the population on the road segment during the time interval. 

10 

Concentration * Density/Velocity, 
cn v  in [(g⁄m3)(km)−1(km/h)−1] 

The product of concentration and vehicle density divided by velocity is equal to the 
exposure of one person per vehicle on one-kilometer road segment during one hour. 

11 

 

 
Figure 3. Vehicle pollutants emission as function of traffic flow velocity (See Equation No. (6)). 
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Figure 4. Vehicle density as function of traffic flow velocity (See Equation Nos. (10) and 
(15), respectively). 

 

 
Figure 5. Traffic flow rate as function of vehicle density (See Equation No. (11)). 

 

 
Figure 6. Inverse of vertical standard deviation (1/m) vs. distance by stability classes (A: 
very unstable, B, C and D: neutral, E and F: very stable). 
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Figure 7. Inverse of horizontal standard deviation (1/m) vs. distance by stability classes 
(A: very unstable, B, C and D: neutral, E and F: very stable). 

 

 
Figure 8. Pollutants concentration amplitude as function of traffic flow velocity. 
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Figure 8 shows the concentration of pollutants versus velocity. The concentra-
tion has a maximum of 1501 g/m3 for a traffic flow velocity of 45 km/h. 

Figure 9 shows pollution exposure per length as function of traffic flow veloc-
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limits. The exposure is decreasing for all four types of pollutants, i.e., VOC, 
THC, CO and NOx with increasing velocity. 

Figure 10 shows concentration time’s vehicle density ik ijkn c  that is a meas-
ure for a road segment’s contribution to exposure per unit time. The highest 
contribution to total population exposure is at velocities about 15 km/h. The 
contribution to exposure at the peak for NOx is about 30 times higher than at 
maximum velocity, while the concentration is almost constant. This indicates 
that traffic velocity is an extremely important parameter for traffic pollution 
health risk. 

 

 
Figure 9. Pollution exposure per length as function of traffic flow velocity. 

 

 
Figure 10. Plot showing contribution to exposure by a road segment. 
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Figure 11. Relative size of total exposure per vehicle ik ijk ikn c v . 
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ture population health risk is highest and direct infrastructure investments to 
minimize a combination of “population travel time” and “population health 
risk”. Our modelling of exposure showed that the high exposure at low velocity 
scales as 1~ijk ikX v−  and this correlates well to the traffic map itself, since a small 

ikv  gives both high exposure and congestion. Most people travel on the peaks of 
the M-shaped rush hour peaks it is clear that just reducing the size of the rush 
hour peaks would lead to a significantly improved population health. Exposure 
maps and health risk maps could be a highly useful tool for urban planning of 
transport infrastructure in interaction to where people live and work. Even more 
useful for predictions would be to develop urban simulators where every person 
in the city have simulated trajectories and would then get simulated exposures 
and health risks. An urban simulator could then be used to answer all kinds of 
“what if” questions. An urban simulator could be a highly valuable tool for poli-
ticians and urban planners. We predict that by 2030 urban trajectory simulators 
are routinely being applied in urban planning. 

4. Conclusions 

It is feasible to combine traffic maps data with smartphone location service tra-
jectories and big data analytics to simulate near real-time traffic air pollution 
exposure and health risk. Advantages of the approach are: i) low cost, ii) near 
real-time, iii) effortless citizen participation, and iv) global scalability. 

Nearly every modeling step of traffic air pollution depends on traffic velocity. 
A traffic map is a super-efficient pre-processor for calculating real-time traffic 
pollution.  

Universally, the exposure and health risk has a peak at lower velocities than 
the peak of concentration. Congestion is a higher health risk than conventionally 
believed. 
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