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Abstract 
Search logs in a timely and efficient manner are an important part of SRE 
(Site Reliability Engineer). Logs help us solve the problems during our devel-
opment work. In this paper, we will introduce you a way how to build an effi-
cient logs analysis system based on kafka and Elastic Search. We hope you can 
learn something through the iteration of the Version and get some inspiration 
with your own log analysis system. 
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1. Introduction 

This article shared with you the method how we built ourselves’ log analysis sys-
tem step by step, and introduced the version from the beginning to evolve into 
this version that we are now using. If you want to use Elastic Search and Kafka 
doing log analysis, there will be some inspiration. The full text mainly focuses on 
the following Topics: 

1) The basic needs of log analysis system; 
2) The evolution of our log system; 
3) Our experiences and thoughts; 
First, we needed to understand what is log? In simple, log is just a structured 

data with stamp. Log is there when the computer was appeared, from that time, 
we created a wide variety of tools to help us analyse, interpret or search logs. 

At beginning, many teams feel that was not necessary to make this thing, en-
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gineers can log in to the server to do some cat or grep operate and other simple 
expression handling, you can find the information you need through these oper-
ations. If not enough, such as in many machines, then, you can use other tools 
like mssh and cssh. 

If you found it was also not enough for you, you can write your own tools by 
yourself, one time I found a tool on our production server, there was an engineer 
who wrote a system from their own desktop, did a ssh tunnel to the actual pro-
duction system which made a remote code call, remote to take those files back, 
this was a level of safety accidents, and it was very irresponsible, but it also 
showed that we do have this demand. 

When we had 50,000 servers, or more than 500 micro-services, you can’t ex-
pect everyone to be very skilled to solve such things. Development or operation 
and maintenance often encounter such a demand, for example, take a time be-
tween two points of all the logs, only to see WARN or ERROR or FATAL mes-
sage, and there are a dozen errors are known to be ignored. 

This service was running on several data centers which contain hundreds of 
servers, but we needed to care about whether there got no new errors, this error 
was not due to a particular user caused, or some specific user behavior caused, 
for example, what post someone did? Whether the length of the request was 
more than a fixed length? Whether the error message on this server was asso-
ciated with the error message on the other server? Give me 30 minutes I have the 
possibility to write a four or five lines grep order to hundreds of servers to log 
down, but if at three o’clock in the morning, this is an unlikely task. 

1) For important logs, we needed to meet the index, retrieval, sorting, classifi-
cation, and to provide a certain degree of visualization, analysis of the log func-
tion; 

2) Can be scaled horizontally according to the size of the data. Because the 
development of the Internet is very fast, we hope to find a solution, not a year or 
even six months, when the server or the number of users doubled, the solution is 
completely unavailable. So, we need to find a program, when the number of us-
ers doubled, simply add a few machines or servers can continue to use; 

3) The system can be easily extended, because many companies already have a 
lot of alarm or monitoring system. Can it be easily accessed through the API or 
through extended access to the existing monitoring, alarm, or other systems in-
side [1]. 

There were a number of other scalability requirements, including logging 
samples, improving security, and protecting the information contained in the 
logs. 

Our log system evolution back to four years ago, from established in 2012 we 
had a system called Splunk, very easy to use, only one problem, too expensive. In 
2012, we had three or four thousand servers in the production environment, and 
when we renewed our contract for the second year, their offer was $20 million a 
year. This was really unacceptable, and that time was 2012, we now server num-
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ber, the number of user requests had turned almost ten times, then the price if it 
was $20 million at 2012, now more, because it was based on the amount of data 
Operator to calculate price. 

From 2012 to 2014, we decided not use Splunk, and we entered a chaotic pe-
riod, this time was very painful, we all had needs, but no one has the method, 
many people began to engage in their little tricks, make some small tools. I had 
looked at the internal tool before the library, which had 20 or 30 python or shell 
written with a small tool that is used to find a small period of time log or log of a 
particular user, but there is a great waste, Many tools was repeated, and also very 
difficult to maintain. 

So we made a determined effort at 2014 to 2015, we must build a Log system 
which can stretch all logs across LinkedIn, and extended to the entire LinkedIn. 
ELK was selected, its advantages were: open source, release cycle was very fast, of 
course, there were some shortcomings, it was very new and there were many 
small problems. 

I believed many people had already know what ELK is—Elastic Search, Logs-
tash and Kibana. Elastic Search was based on the Lucene storage, indexing, 
search engine; Logstash is to provide input and output and conversion processing 
plug-in log standardization of the pipeline; Kibana provide visualization and 
query ES user interface, as shown in Figure 1. 

2. Related Work 
2.1. Fundamentals and Strengths of Kafka 

Apache kafka was a distributed push-subscribe-based messaging system, it has a 
fast, scalable, and sustainable features. It was now an open source Apache sys-
tem, as Hadoop ecosystem as a part of a wide range of commercial companies 
was widely used. Its biggest feature was the ability to process large amounts of 
data in real time to meet a variety of needs scenarios: such as hadoop-based batch 
processing system, low-latency real-time systems, storm/Spark streaming engine. 

Kafka has these basic fundamentals: High throughput, low latency: kafka can 
handle hundreds of thousands of messages per second, with latency of only a few 
milliseconds; Scalability: kafka clusters support thermal expansion; Persistence, 
reliability: messages were persisted to a local disk, and data backup is supported 
to prevent data loss fault tolerance: Allows nodes in a cluster to fail (n − 1 nodes 
are allowed if the number of replicas is n) High concurrency: supports thou-
sands of clients reading and writing at the same time [2]. 

 

 
Figure 1. How to use log data. 
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2.2. Fundamentals and Strengths of ElasticSearch 

ElasticSearch (ES) was an open source, distributed, RESTful full-text search en-
gine built on top of Lucene. 

However, ElasticSearch was not just a full-text search engine, it was also a dis-
tributed real-time document storage, where each field was indexed data and can 
be searched; was a real-time analysis of the distributed search engine, and Can 
be expanded to hundreds of servers to store and process petabytes of data [3]. 

The main advantages of ES can see the following aspects: 
1) Horizontal scalability: only need to add a server, do a little configuration, 

start the ES process can be incorporated into the cluster; 
2) Fragmentation mechanism to provide better distribution: the same index 

into multiple sharding (sharding), which is similar to the HDFS block mechan-
ism; divide and conquer the way to improve processing efficiency, I believe we 
are not unfamiliar; 

3) High Availability: Provides a replica mechanism that allows multiple repli-
cas to be set up in a single fragment, so that when one server goes down, the 
cluster can still function as usual and restore replication lost due to server down-
time to another Available on the node; this is also similar to the HDFS replica-
tion mechanism (HDFS default is 3 copies). 

3. Evolution of Our Log Analysis System 

Everyone can spend 30 minutes in their own computer or production environ-
ment to take such a thing: Log through Logstash read out, into the ElasticSearch, 
then Kibana to read. This step can be achieved after the fact that very good re-
sults. All business groups will require an exception panel, for example, payment 
system business groups; it was probably about 10 different small services [4]. 

When the alarm system found that the payment system has a variety of prob-
lems, our first step was to look at the abnormal panel to find through the log, 
according to the timeline, make sure that if there are new services get new log in 
the near future or error log was different. And it will be based on different ex-
ception/java stack out to do count, which also brings great help to the analysis, 
you can also write a lot of complex query. 

The first version was very simple (as shown in Figure 2), we only applied it to 
one or two very critical system. We made a comparison after this system is done, 
the average time to resolve the fault from the previous 50 minutes to less than 30 
minutes. Our online systems typically took 5 to 10 minutes at the earliest to have  

 

 
Figure 2. (Version 1). 
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a non-critical alarm. If we can quickly find out where the problem was, solve the 
problem, such as a simple rollback operation on hundreds of machines it will 
take 5 to 10 minutes, the real time left to determine the problem under the log 
was only a short period of 5 to 10 minutes. 

If there was not an abnormal panel can see all the information, such as 
whether there were any server’s anomalies more than other servers, whether 
there was an anomaly sudden appeared many times today, or whether there was 
a server appeared many anomalies Today. And it will be at least take us 20 to 30 
minutes to see the log manually. 

The first version got a few problems, first, the Logstash Agent’s maintenance 
was not very good, Logstash was based on Ruby, it will have dozens of mega-
bytes of memory eaten by jvm when it started, we wanted to avoid every ma-
chine from running a Logstash. And we found Logstash was very unstable dur-
ing the process we use it, sometimes inexplicable to die and it also needed a 
daemon to protect it. 

The second problem was Log standardization, also a very troublesome prob-
lem. 

The first problem with Logstash Agent was solved by introducing Kafka, 
which does not require an agent on every host after the introduction of Kafka 
[5]. 

We get an internal SRE team to maintain Kafka, kafka was very cheap and do 
not need to spend money to maintain. As for log standardization, we spent a lot 
of time to research, 99% of the services were java service in LinkedIn, there were 
more than 15 kinds of logs, most important was the access log and application 
log. One thing we did was writing directly to Kafka via the java Container logger 
normalization. Some procedures directly wrote in kafka, not on the disk, some 
procedures have to write to the disk inside, this was configurable. 

These were rollout through our standard container to all services. Developers 
do not have to control anything, as long as the process of writing logger, in-
fo/logger, error, the information will be directly into the Kafka. For the program 
log, the default warning above the level of access to Kafka, can be controlled 
through the jmx online. For the access log, we had 10% of the sample, can be 
dynamically controlled through the ATS entrance [6]. 

As shown in Figure 3, this was the second version, you can see in the produc-
tion environment of the Java service side, Host has no Logstash, all the log was 
directly written in Kafka, Logstash consume these logs from Kafka and write in-
side ElasticSearch [7]. 

 

 
Figure 3. (Version 2). 
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The second version also got some problems, for example, a service problem 
will affect the entire ELK cluster. We met such a situation, a team wrote a new 
service, which defined all the level of logs as errors, the whole ElasticSearch was 
down by it. In many cases there will be other problems like network saturation. 

Solutions: Very simple, the second step was to split it to optimize: The deci-
sion we made to solve the second version’s problem was to split it to optimize: 
First, split ELK cluster by business functions, for example, payment system, 
money-related system use a same cluster; Systems landing with the user-related, 
security-related use a cluster; Next, separately Run Logstash and ElasticSearch. 
ElasticSearch was a disk-intensive operation, Logstash was a CPU-intensive op-
eration, we put them on a same physical machine, but found the influence be-
tween each was quite big, so we decided to use Logstash mixed with other sys-
tems, separately from ElasticSearch [8]. 

For each Kafka topic, the number of Logstash was not less than the number of 
topic partitions. We had more than 500 services; each service will produce two 
Kafka topics: access log and program log. When Logastash produce Kafka, if the 
number of consumers less than the partition numbers, it will trigger a hidden 
vulnerability of Kafka, resulting in uneven Kafka partition, and appeared all 
kinds of strange problems. Our proposal was that under normal circumstances, 
each topic has four to eight partitions, and then set the appropriate number of 
Logstashs according to the specific circumstances. 

According to business needs, we split out about 20 of this same cluster, as 
shown in Figure 4, in this version, there were also some problems. The First 
problem was querying from cross-business clusters. Although a problem can be 
found in a business group under normal circumstances, but there were still 
many cases we have to find out the problem cross to other clusters inside. 

 

 
Figure 4. (Version 3). 
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Second, do not make the ElasticSearch clusters cross the data center, it was 
very poor and simply do not run up. Even if the two data centers were very close, 
especially when the amount of data comes up, there will be some very strange 
problems. The ElasticSearch cluster, which had a very large data volume, will 
require it to be all in one rack, and if there was a server in another rack, there 
would be a timeout problem. 

In order to solve the problem just said, we introduced the Tribe, with the 
down feeling can be used, but this is obviously not a function they support. Tribe 
is a good idea, but it does not support tiered, we need two different Tribes, the 
first to be able to cross-business group, but also across the data center. 

The best situation was to make a hierarchical structure, the data center in the 
outermost, business group in the innermost, however, as for the design concept, 
it was another one, so it did not make sense. In a data center, there will be a 
Tribe across all of the business groups. There will also be a Tribe across the data 
center for the same business group. There were two different types of Tribe that 
can be queried [9]. 

As shown in Figure 5, most basic functions were achieved in this version. We 
probable spent a half and a month to put more than 500 services into kafka and 
found that consume can’t keep up, we encountered a performance bottleneck. 
ElasticSearch with more than 50 or 100 servers, will encountered many such bot-
tlenecks. We spent almost three months doing various performance tuning. 

This step was the last step, first, understand what our business logic was, the 
thing we were going to do was very clear, very single, was the need for real-time, 
or quasi-real-time log to do online trouble shooting, basically do not use the data 
before 14 Days. There was no time to consider the problems a few months ago 
unless today’s problems are solved. The actual business status was most log queries  

 

 
Figure 5. (Version 4). 
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up within 24 hours, very little log queries up before 14 days. The query speed 
requirements should be within 15 seconds, if more than 30 seconds, it would be 
timeout. The index speed was acceptable for 30 seconds or less but triggers an 
alarm while more than 5 minutes. 

So how to solve the questions we met in version 4? As shown in Figure 6, we 
made improvements by using hot and cold partition to solve this question in 
version 5. We tested a lot of different hardwares, and finally selected SSD as 
thermal index on the cluster which has very important and very large amount of 
data, all indexes were on the SSD Machine within 24 hours, moved to the cold 
cluster if more than 24 hours. After doing this, the system became more stable, 
and function was also normal, internal system would retain 7 to 14 days of data 
according to needs. 

After this step, we extended it to the entire company LinkedIn, the next day I 
received a phone call from Ministry of Justice and Security. When we did a very 
easy system, we showed all the logs in front of everyone. If we can easily search 
out 400 million users of the user name, password, mail, this thing was very se-
rious, so we made a few adjustments [10]. 

The first was to scan all the ES regularly, according to a specific keyword to 
prevent sensitive information into the log, if in, alarm immediately. There was 
also the issue of user privacy. All ElasticSearch records were also sent to Kafka, 
where access to sensitive business units was isolated and all access logs were reg-
ularly reviewed. Our approach was to add an Nginx for access control can be 
done through the nginx, and there was a scanning process regularly scanning a 
variety of keywords while all the user access logs back to Kafka. 

4. Results and Evaluation 

This was the state of our production system, as shown in Figure 7, there were 
more than 20 modules for different business ELK clusters, 1000 + servers, main-
ly ElasticSearch. We can search the production system log we want on this side 
within 1 minute of, all the log reserves 7 to 14 days. There were now about 50 
billion index files, 500 to 800 T, and this system can normally work when pushed 
to 1500 to 2000 T. 

Because we had more than 500 services, more than 20 clusters, there is was no 
way to maintain so many clusters, so each business module SRE team needs to  
 

 
Figure 6. (Version 5). 
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maintain their own ElasticSerach cluster. The Virtual Team mode ensures that 
the ELK is up-to-date. There was also another critical point, you needed to en-
sure that your ES would not be accessed by users who had no permission. It does 
not accept SSL connections by default. You can use SearchGuard or Sheild to 
solve this problem. 

I would like to focus on sampling, this is more interesting, but also a more 
general way. Sampling method is 10% + specific users, why did we sample like 
this? As shown in Figure 8, we had transferred a different proportion, and found 
that does not affect, if there is a problem, it can be found through 10% of the 
sample. Why were user specific users? Most of the time, there were some active 
users often give you the error, gave you feedback, you needed to see in what 
happened in time. 

There were only about a few percent of the power users on the site are very 
active, did a lot of things, we needed to add their logs in the sample. All the user 
requests came into the data center through the Apache Traffic Server, in which it 
would visit Lix, asking whether to label the current user, if labeled, then put the 
label inside Invocation Context. 
 

 
Figure 7. (Final version). 
 

 
Figure 8. User request and process flow. 
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From the front to the background, as long as all the servers the touch to the 
request, we would see the request ID in the Invocation Context. Got the request 
ID through the java container by default, and made a sample by sending the log 
of that visit to Kafka. 

This way had two advantages, that was, if there was any problem, we only 
needed to put his member ID or request ID on top layer of the Tribe, the system 
would appear all the service logs about this request. We can find out the problem 
at once at 99.9% of the situation [11]. 

5. Conclusions 

Efficient log analysis system can provide effective and efficient help for engi-
neers’ daily development activities, it can help the engineers find the problem 
and solve it in time, through the continuous exploration, we finally found an ef-
ficient log analysis system based on kafka and ElasticSearch. 

After our system was finished, we can easily found that it do have a lot of ad-
vantages for our team’s daily development activities. This system not only sig-
nificantly improved the development efficiency of our team of engineers, but al-
so let us find a lot of unexpected surprises, so that our development process 
more standardized, more development process clear and thorough, in the face of 
urgent problems, we can solve faster and more efficient, and, a lot of potential 
problems in our development process has been resolved. 

All in all, the log analysis system was for our development activities, how to 
find a suitable log analysis system for their own team’s development activities 
was based on the specific circumstances of each team. 

With the continuous development of computer technology, we believe that 
there will be many more excellent tools in the future, log analysis system will be 
more intelligent and humane, computer science is a fascinating subject, and one 
of the important features is that you can use the computer to complete many of 
the original impossible tasks. Let us explore the future of computers, explore the 
unknowns possible, and create more useful value. 
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