
Journal of Software Engineering and Applications, 2017, 10, 843-853
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.1011047 Oct. 30, 2017 843 Journal of Software Engineering and Applications

Research on Establish an Efficient Log Analysis
System with Kafka and Elastic Search

Yuanzhou Wei1, Manman Li2, Binsen Xu3

1Henan University of Technology, Zhengzhou, China
2Henan University of Economics and Law, Zhengzhou, China
3Beijing Jiaotong University, Beijing, China

Abstract
Search logs in a timely and efficient manner are an important part of SRE
(Site Reliability Engineer). Logs help us solve the problems during our devel-
opment work. In this paper, we will introduce you a way how to build an effi-
cient logs analysis system based on kafka and Elastic Search. We hope you can
learn something through the iteration of the Version and get some inspiration
with your own log analysis system.

Keywords
Log Analysis System, Kafka, Elastic Search, Software Applications, Site
Reliability Engineer

1. Introduction

This article shared with you the method how we built ourselves’ log analysis sys-
tem step by step, and introduced the version from the beginning to evolve into
this version that we are now using. If you want to use Elastic Search and Kafka
doing log analysis, there will be some inspiration. The full text mainly focuses on
the following Topics:

1) The basic needs of log analysis system;
2) The evolution of our log system;
3) Our experiences and thoughts;
First, we needed to understand what is log? In simple, log is just a structured

data with stamp. Log is there when the computer was appeared, from that time,
we created a wide variety of tools to help us analyse, interpret or search logs.

At beginning, many teams feel that was not necessary to make this thing, en-

How to cite this paper: Wei, Y.Z., Li,
M.M. and Xu, B.S. (2017) Research on
Establish an Efficient Log Analysis System
with Kafka and Elastic Search. Journal of
Software Engineering and Applications, 10,
843-853.
https://doi.org/10.4236/jsea.2017.1011047

Received: January 19, 2017
Accepted: October 27, 2017
Published: October 30, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.1011047
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.1011047
http://creativecommons.org/licenses/by/4.0/

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 844 Journal of Software Engineering and Applications

gineers can log in to the server to do some cat or grep operate and other simple
expression handling, you can find the information you need through these oper-
ations. If not enough, such as in many machines, then, you can use other tools
like mssh and cssh.

If you found it was also not enough for you, you can write your own tools by
yourself, one time I found a tool on our production server, there was an engineer
who wrote a system from their own desktop, did a ssh tunnel to the actual pro-
duction system which made a remote code call, remote to take those files back,
this was a level of safety accidents, and it was very irresponsible, but it also
showed that we do have this demand.

When we had 50,000 servers, or more than 500 micro-services, you can’t ex-
pect everyone to be very skilled to solve such things. Development or operation
and maintenance often encounter such a demand, for example, take a time be-
tween two points of all the logs, only to see WARN or ERROR or FATAL mes-
sage, and there are a dozen errors are known to be ignored.

This service was running on several data centers which contain hundreds of
servers, but we needed to care about whether there got no new errors, this error
was not due to a particular user caused, or some specific user behavior caused,
for example, what post someone did? Whether the length of the request was
more than a fixed length? Whether the error message on this server was asso-
ciated with the error message on the other server? Give me 30 minutes I have the
possibility to write a four or five lines grep order to hundreds of servers to log
down, but if at three o’clock in the morning, this is an unlikely task.

1) For important logs, we needed to meet the index, retrieval, sorting, classifi-
cation, and to provide a certain degree of visualization, analysis of the log func-
tion;

2) Can be scaled horizontally according to the size of the data. Because the
development of the Internet is very fast, we hope to find a solution, not a year or
even six months, when the server or the number of users doubled, the solution is
completely unavailable. So, we need to find a program, when the number of us-
ers doubled, simply add a few machines or servers can continue to use;

3) The system can be easily extended, because many companies already have a
lot of alarm or monitoring system. Can it be easily accessed through the API or
through extended access to the existing monitoring, alarm, or other systems in-
side [1].

There were a number of other scalability requirements, including logging
samples, improving security, and protecting the information contained in the
logs.

Our log system evolution back to four years ago, from established in 2012 we
had a system called Splunk, very easy to use, only one problem, too expensive. In
2012, we had three or four thousand servers in the production environment, and
when we renewed our contract for the second year, their offer was $20 million a
year. This was really unacceptable, and that time was 2012, we now server num-

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 845 Journal of Software Engineering and Applications

ber, the number of user requests had turned almost ten times, then the price if it
was $20 million at 2012, now more, because it was based on the amount of data
Operator to calculate price.

From 2012 to 2014, we decided not use Splunk, and we entered a chaotic pe-
riod, this time was very painful, we all had needs, but no one has the method,
many people began to engage in their little tricks, make some small tools. I had
looked at the internal tool before the library, which had 20 or 30 python or shell
written with a small tool that is used to find a small period of time log or log of a
particular user, but there is a great waste, Many tools was repeated, and also very
difficult to maintain.

So we made a determined effort at 2014 to 2015, we must build a Log system
which can stretch all logs across LinkedIn, and extended to the entire LinkedIn.
ELK was selected, its advantages were: open source, release cycle was very fast, of
course, there were some shortcomings, it was very new and there were many
small problems.

I believed many people had already know what ELK is—Elastic Search, Logs-
tash and Kibana. Elastic Search was based on the Lucene storage, indexing,
search engine; Logstash is to provide input and output and conversion processing
plug-in log standardization of the pipeline; Kibana provide visualization and
query ES user interface, as shown in Figure 1.

2. Related Work
2.1. Fundamentals and Strengths of Kafka

Apache kafka was a distributed push-subscribe-based messaging system, it has a
fast, scalable, and sustainable features. It was now an open source Apache sys-
tem, as Hadoop ecosystem as a part of a wide range of commercial companies
was widely used. Its biggest feature was the ability to process large amounts of
data in real time to meet a variety of needs scenarios: such as hadoop-based batch
processing system, low-latency real-time systems, storm/Spark streaming engine.

Kafka has these basic fundamentals: High throughput, low latency: kafka can
handle hundreds of thousands of messages per second, with latency of only a few
milliseconds; Scalability: kafka clusters support thermal expansion; Persistence,
reliability: messages were persisted to a local disk, and data backup is supported
to prevent data loss fault tolerance: Allows nodes in a cluster to fail (n − 1 nodes
are allowed if the number of replicas is n) High concurrency: supports thou-
sands of clients reading and writing at the same time [2].

Figure 1. How to use log data.

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 846 Journal of Software Engineering and Applications

2.2. Fundamentals and Strengths of ElasticSearch

ElasticSearch (ES) was an open source, distributed, RESTful full-text search en-
gine built on top of Lucene.

However, ElasticSearch was not just a full-text search engine, it was also a dis-
tributed real-time document storage, where each field was indexed data and can
be searched; was a real-time analysis of the distributed search engine, and Can
be expanded to hundreds of servers to store and process petabytes of data [3].

The main advantages of ES can see the following aspects:
1) Horizontal scalability: only need to add a server, do a little configuration,

start the ES process can be incorporated into the cluster;
2) Fragmentation mechanism to provide better distribution: the same index

into multiple sharding (sharding), which is similar to the HDFS block mechan-
ism; divide and conquer the way to improve processing efficiency, I believe we
are not unfamiliar;

3) High Availability: Provides a replica mechanism that allows multiple repli-
cas to be set up in a single fragment, so that when one server goes down, the
cluster can still function as usual and restore replication lost due to server down-
time to another Available on the node; this is also similar to the HDFS replica-
tion mechanism (HDFS default is 3 copies).

3. Evolution of Our Log Analysis System

Everyone can spend 30 minutes in their own computer or production environ-
ment to take such a thing: Log through Logstash read out, into the ElasticSearch,
then Kibana to read. This step can be achieved after the fact that very good re-
sults. All business groups will require an exception panel, for example, payment
system business groups; it was probably about 10 different small services [4].

When the alarm system found that the payment system has a variety of prob-
lems, our first step was to look at the abnormal panel to find through the log,
according to the timeline, make sure that if there are new services get new log in
the near future or error log was different. And it will be based on different ex-
ception/java stack out to do count, which also brings great help to the analysis,
you can also write a lot of complex query.

The first version was very simple (as shown in Figure 2), we only applied it to
one or two very critical system. We made a comparison after this system is done,
the average time to resolve the fault from the previous 50 minutes to less than 30
minutes. Our online systems typically took 5 to 10 minutes at the earliest to have

Figure 2. (Version 1).

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 847 Journal of Software Engineering and Applications

a non-critical alarm. If we can quickly find out where the problem was, solve the
problem, such as a simple rollback operation on hundreds of machines it will
take 5 to 10 minutes, the real time left to determine the problem under the log
was only a short period of 5 to 10 minutes.

If there was not an abnormal panel can see all the information, such as
whether there were any server’s anomalies more than other servers, whether
there was an anomaly sudden appeared many times today, or whether there was
a server appeared many anomalies Today. And it will be at least take us 20 to 30
minutes to see the log manually.

The first version got a few problems, first, the Logstash Agent’s maintenance
was not very good, Logstash was based on Ruby, it will have dozens of mega-
bytes of memory eaten by jvm when it started, we wanted to avoid every ma-
chine from running a Logstash. And we found Logstash was very unstable dur-
ing the process we use it, sometimes inexplicable to die and it also needed a
daemon to protect it.

The second problem was Log standardization, also a very troublesome prob-
lem.

The first problem with Logstash Agent was solved by introducing Kafka,
which does not require an agent on every host after the introduction of Kafka
[5].

We get an internal SRE team to maintain Kafka, kafka was very cheap and do
not need to spend money to maintain. As for log standardization, we spent a lot
of time to research, 99% of the services were java service in LinkedIn, there were
more than 15 kinds of logs, most important was the access log and application
log. One thing we did was writing directly to Kafka via the java Container logger
normalization. Some procedures directly wrote in kafka, not on the disk, some
procedures have to write to the disk inside, this was configurable.

These were rollout through our standard container to all services. Developers
do not have to control anything, as long as the process of writing logger, in-
fo/logger, error, the information will be directly into the Kafka. For the program
log, the default warning above the level of access to Kafka, can be controlled
through the jmx online. For the access log, we had 10% of the sample, can be
dynamically controlled through the ATS entrance [6].

As shown in Figure 3, this was the second version, you can see in the produc-
tion environment of the Java service side, Host has no Logstash, all the log was
directly written in Kafka, Logstash consume these logs from Kafka and write in-
side ElasticSearch [7].

Figure 3. (Version 2).

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 848 Journal of Software Engineering and Applications

The second version also got some problems, for example, a service problem
will affect the entire ELK cluster. We met such a situation, a team wrote a new
service, which defined all the level of logs as errors, the whole ElasticSearch was
down by it. In many cases there will be other problems like network saturation.

Solutions: Very simple, the second step was to split it to optimize: The deci-
sion we made to solve the second version’s problem was to split it to optimize:
First, split ELK cluster by business functions, for example, payment system,
money-related system use a same cluster; Systems landing with the user-related,
security-related use a cluster; Next, separately Run Logstash and ElasticSearch.
ElasticSearch was a disk-intensive operation, Logstash was a CPU-intensive op-
eration, we put them on a same physical machine, but found the influence be-
tween each was quite big, so we decided to use Logstash mixed with other sys-
tems, separately from ElasticSearch [8].

For each Kafka topic, the number of Logstash was not less than the number of
topic partitions. We had more than 500 services; each service will produce two
Kafka topics: access log and program log. When Logastash produce Kafka, if the
number of consumers less than the partition numbers, it will trigger a hidden
vulnerability of Kafka, resulting in uneven Kafka partition, and appeared all
kinds of strange problems. Our proposal was that under normal circumstances,
each topic has four to eight partitions, and then set the appropriate number of
Logstashs according to the specific circumstances.

According to business needs, we split out about 20 of this same cluster, as
shown in Figure 4, in this version, there were also some problems. The First
problem was querying from cross-business clusters. Although a problem can be
found in a business group under normal circumstances, but there were still
many cases we have to find out the problem cross to other clusters inside.

Figure 4. (Version 3).

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 849 Journal of Software Engineering and Applications

Second, do not make the ElasticSearch clusters cross the data center, it was
very poor and simply do not run up. Even if the two data centers were very close,
especially when the amount of data comes up, there will be some very strange
problems. The ElasticSearch cluster, which had a very large data volume, will
require it to be all in one rack, and if there was a server in another rack, there
would be a timeout problem.

In order to solve the problem just said, we introduced the Tribe, with the
down feeling can be used, but this is obviously not a function they support. Tribe
is a good idea, but it does not support tiered, we need two different Tribes, the
first to be able to cross-business group, but also across the data center.

The best situation was to make a hierarchical structure, the data center in the
outermost, business group in the innermost, however, as for the design concept,
it was another one, so it did not make sense. In a data center, there will be a
Tribe across all of the business groups. There will also be a Tribe across the data
center for the same business group. There were two different types of Tribe that
can be queried [9].

As shown in Figure 5, most basic functions were achieved in this version. We
probable spent a half and a month to put more than 500 services into kafka and
found that consume can’t keep up, we encountered a performance bottleneck.
ElasticSearch with more than 50 or 100 servers, will encountered many such bot-
tlenecks. We spent almost three months doing various performance tuning.

This step was the last step, first, understand what our business logic was, the
thing we were going to do was very clear, very single, was the need for real-time,
or quasi-real-time log to do online trouble shooting, basically do not use the data
before 14 Days. There was no time to consider the problems a few months ago
unless today’s problems are solved. The actual business status was most log queries

Figure 5. (Version 4).

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 850 Journal of Software Engineering and Applications

up within 24 hours, very little log queries up before 14 days. The query speed
requirements should be within 15 seconds, if more than 30 seconds, it would be
timeout. The index speed was acceptable for 30 seconds or less but triggers an
alarm while more than 5 minutes.

So how to solve the questions we met in version 4? As shown in Figure 6, we
made improvements by using hot and cold partition to solve this question in
version 5. We tested a lot of different hardwares, and finally selected SSD as
thermal index on the cluster which has very important and very large amount of
data, all indexes were on the SSD Machine within 24 hours, moved to the cold
cluster if more than 24 hours. After doing this, the system became more stable,
and function was also normal, internal system would retain 7 to 14 days of data
according to needs.

After this step, we extended it to the entire company LinkedIn, the next day I
received a phone call from Ministry of Justice and Security. When we did a very
easy system, we showed all the logs in front of everyone. If we can easily search
out 400 million users of the user name, password, mail, this thing was very se-
rious, so we made a few adjustments [10].

The first was to scan all the ES regularly, according to a specific keyword to
prevent sensitive information into the log, if in, alarm immediately. There was
also the issue of user privacy. All ElasticSearch records were also sent to Kafka,
where access to sensitive business units was isolated and all access logs were reg-
ularly reviewed. Our approach was to add an Nginx for access control can be
done through the nginx, and there was a scanning process regularly scanning a
variety of keywords while all the user access logs back to Kafka.

4. Results and Evaluation

This was the state of our production system, as shown in Figure 7, there were
more than 20 modules for different business ELK clusters, 1000 + servers, main-
ly ElasticSearch. We can search the production system log we want on this side
within 1 minute of, all the log reserves 7 to 14 days. There were now about 50
billion index files, 500 to 800 T, and this system can normally work when pushed
to 1500 to 2000 T.

Because we had more than 500 services, more than 20 clusters, there is was no
way to maintain so many clusters, so each business module SRE team needs to

Figure 6. (Version 5).

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 851 Journal of Software Engineering and Applications

maintain their own ElasticSerach cluster. The Virtual Team mode ensures that
the ELK is up-to-date. There was also another critical point, you needed to en-
sure that your ES would not be accessed by users who had no permission. It does
not accept SSL connections by default. You can use SearchGuard or Sheild to
solve this problem.

I would like to focus on sampling, this is more interesting, but also a more
general way. Sampling method is 10% + specific users, why did we sample like
this? As shown in Figure 8, we had transferred a different proportion, and found
that does not affect, if there is a problem, it can be found through 10% of the
sample. Why were user specific users? Most of the time, there were some active
users often give you the error, gave you feedback, you needed to see in what
happened in time.

There were only about a few percent of the power users on the site are very
active, did a lot of things, we needed to add their logs in the sample. All the user
requests came into the data center through the Apache Traffic Server, in which it
would visit Lix, asking whether to label the current user, if labeled, then put the
label inside Invocation Context.

Figure 7. (Final version).

Figure 8. User request and process flow.

https://doi.org/10.4236/jsea.2017.1011047

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 852 Journal of Software Engineering and Applications

From the front to the background, as long as all the servers the touch to the
request, we would see the request ID in the Invocation Context. Got the request
ID through the java container by default, and made a sample by sending the log
of that visit to Kafka.

This way had two advantages, that was, if there was any problem, we only
needed to put his member ID or request ID on top layer of the Tribe, the system
would appear all the service logs about this request. We can find out the problem
at once at 99.9% of the situation [11].

5. Conclusions

Efficient log analysis system can provide effective and efficient help for engi-
neers’ daily development activities, it can help the engineers find the problem
and solve it in time, through the continuous exploration, we finally found an ef-
ficient log analysis system based on kafka and ElasticSearch.

After our system was finished, we can easily found that it do have a lot of ad-
vantages for our team’s daily development activities. This system not only sig-
nificantly improved the development efficiency of our team of engineers, but al-
so let us find a lot of unexpected surprises, so that our development process
more standardized, more development process clear and thorough, in the face of
urgent problems, we can solve faster and more efficient, and, a lot of potential
problems in our development process has been resolved.

All in all, the log analysis system was for our development activities, how to
find a suitable log analysis system for their own team’s development activities
was based on the specific circumstances of each team.

With the continuous development of computer technology, we believe that
there will be many more excellent tools in the future, log analysis system will be
more intelligent and humane, computer science is a fascinating subject, and one
of the important features is that you can use the computer to complete many of
the original impossible tasks. Let us explore the future of computers, explore the
unknowns possible, and create more useful value.

References
[1] Bai, J. and Guo, H.B. (2014) Software Integration Research of Large-Scale Logs

Real-Time Search Basedon ElasticSearch. Journal of Jilin Normal University (Natu-
ral Science Edition), 2014, No. 2.

[2] Kreps, J., Narkhede, N. and Rao, J. (2011) Kafka: A Distributed Messaging System
for Log Processing. http://notes.stephenholiday.com/Kafka.pdf

[3] Gormley, C. and Tong, Z. (2015) Elasticsearch: The Definitive Guide. O’Reilly Me-
dia, Inc., Sebastopol.

[4] Bagnasco, S. and Berzano, D. (2015) Monitoring of IaaS and Scientific Applications
on the Cloud Using the Elasticsearch Ecosystem. Journal of Physics: Conference Se-
ries, 608, No. 1. https://doi.org/10.1088/1742-6596/608/1/012016

[5] Narkhede, N., Shapira, G. and Palino, T. (2017) Kafka: The Definitive Guide.
O’Reilly Media, Inc., Sebastopol.

[6] Jiang, K., Feng, J., Tang, Z.X. and Wang, C. (2015) The Metadata Searching and

https://doi.org/10.4236/jsea.2017.1011047
http://notes.stephenholiday.com/Kafka.pdf
https://doi.org/10.1088/1742-6596/608/1/012016

Y. Z. Wei et al.

DOI: 10.4236/jsea.2017.1011047 853 Journal of Software Engineering and Applications

Sharing Platform Based on ElasticSearch. Computer and Modernization, No. 2.

[7] Xu, D.H. (2014) Application Research in Vehicle License Plate Recognition System
Based on Elaticsearch. Computer Era, No. 12.

[8] Lei, X.F., Wang, Z. and He, Y.Z. (2015) Log Real-Time Management Scheme Based
on International Workshop on Materials Engineering and Computer Sciences. The
International MultiConference of Engineers and Computer Scientists 2015, Hong
Kong, 18-20 March 2015.

[9] Baker, J., et al. (2011) Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. Fifth Biennial Conference on Innovative Data Systems Re-
search, Asilomar, January 9-12 2011.

[10] Nguyen, C.N., Kim, J.-S. and Hwang, S. (2016) KOHA: Building a Kafka-Based Dis-
tributed Queue System on the Fly in a Hadoop Cluster. IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W), Augsburg,
12-16 September 2016, 48-53. https://doi.org/10.1109/FAS-W.2016.23

[11] Chen, J.J. and Huang, G.F. (2015) Reconstruct Library Search Engine Based on
Elasticsearch. Information Research, No. 11.

https://doi.org/10.4236/jsea.2017.1011047
https://doi.org/10.1109/FAS-W.2016.23

	2.1. Fundamentals and Strengths of Kafka
	2.2. Fundamentals and Strengths of ElasticSearch

