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Abstract 
As is well known, hand-arm vibration syndrome (HAVS), or vibration-induced 
white finger (VWF), which is a secondary form of Raynaud’s syndrome, is an 
industrial injury triggered by regular use of vibrating hand-held tools. Ac-
cording to the related biopsy tests, the main vibration-caused lesion is an in-
crease in the thickness of the artery walls of the small arteries and arterioles 
resulted from enlarged vascular smooth muscle cells (VSMCs) in the wall 
layer known as tunica media. The present work develops a mechanobiological 
picture for the cell enlargement. The work deals with acoustic variables in solid 
materials, i.e., the non-equilibrium components of mechanical variables in the 
materials in the case where these components are weakly non-equilibrium. The 
work derives an explicit expression for the infinite-time cell-volume relative 
enlargement. This enlargement is directly affected by the acoustic pressure in 
the soft living tissue (SLT). In order to reduce the enlargement, one can re-
duce either the ratio of the acoustic pressure in the SLT to the cell bulk mod-
ulus or the relaxation time induced by the cell osmosis, or both the characte-
ristics. Also, a mechanoprotective role of the above relaxation time in the 
cell-volume maintenance is noted. The above mechanobiological picture fo-
cuses attention on the pressure in an SLT and, thus, modeling of propagation 
of acoustic waves caused by the acceleration of a vibrating hand-held tool. 
The present work analyzes the propagation along the thickness of an infinite 
planar layer of an SLT. The work considers acoustic modeling. As a general 
viscoelastic acoustic model, the work suggests linear non-stationary partial 
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integro-differential equation (PIDE) for the weakly non-equilibrium compo-
nent of the average normal stress (ANS) or, briefly, the acoustic ANS. The PIDE 
is, in the exponential approximation for the normalized stress-relaxation func-
tion (NSRF) reduced to the third-order linear non-stationary partial differen-
tial equation (PDE), which is of the Zener type. The unique advantage of the 
PIDE is that it presents a compact model for the acoustic ANS in an SLT, 
which explicitly includes the NSRF, thereby enabling a consistent description 
of the lossy-propagation effects inherent in SLTs. The one-spatial-coordinate 
version of this PDE in the planar SLT layer with the corresponding boundary 
conditions is considered. The relevance of these settings is motivated by a 
conclusion of other authors, which is based on the results of the frequen-
cy-domain simulation in three spatial coordinates. The boundary-value prob-
lem at arbitrary value of the stress-relaxation time (SRT) and arbitrary but 
sufficiently regular shape of the external acceleration is analytically solved by 
means of the Fourier method. The obtained solution is the steady-state acous-
tic ANS and allows calculation of the corresponding steady-state acoustic 
pressure as well. The derived analytical representations are computationally 
implemented. Propagation of the pressure waves in the SLT layer at zero and 
different nonzero values of the SRT, and the single-pulse external acceleration 
is presented. They complement the zero-SRT and zero-SRT-asymptote results 
with the results for various values of the SRT. The obtained pressure values 
are, at all of the space-time points under consideration, meeting the condition 
for the adequateness of the linear model. In the case where the SRT is zero, the 
results well agree with the ones obtained by using the simulation software 
package LS-DYNA. The dependence of the damping of acoustic variables in 
an SLT on the SRT in the present third-order case significantly generalizes the 
one in the second-order linear systems. The related resonance effect in the 
waves of the acoustic pressure propagating in an SLT is also discussed. The ef-
fects of the NSRF-originated memory function provided by the present 
third-order PDE model are necessary for proper simulation of the pressure, 
which is of special importance in the aforementioned mechanoboiological 
picture. The results obtained in the work present a viscoelastic acoustic 
framework for SLTs. These results open a way to quantitatively specific evalu-
ation of technological strategies for reduction of the vibration-caused injuries 
or, loosely speaking, achieving “zero’’ injury. 
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1. Introduction 

As is well known (e.g., [1]), vibration and compressive loads are mechanical 
stimuli that have a powerful influence on living tissues. Recent studies in the 
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animal models demonstrate that certain types of mechanical loads regulate 
various tissues. However, “over exposure’’ to mechanical stimuli is damaging for 
the tissues. It can cause symptoms, syndromes, and even diseases (e.g., see Refs. 
7 - 9 in [1] and the papers in [2]). One of the most well-known negative 
implications is hand-arm vibration syndrome (HAVS), or vibration-induced 
white finger (VWF). It is a secondary form of Raynaud’s syndrome, an industrial 
injury triggered by regular use of vibrating hand-held tools. 

The vibrating tools generate the accelerations acting on, and perpendicular to 
the surface of human fingers and neighboring regions of palms. These 
accelerations create acoustic waves propagating in the human soft tissues and 
causing injuries. An acoustic variable in a solid material is the non-equilibrium 
component of a mechanical variable in the material in the case where this 
component is weakly non-equilibrium. 

The Appendix develops a mechanobiological picture for the main vibration 
injuries. It indicates that there are two characteristics that directly affect the cell 
volume. One of them is the mechanical variable, which is the acoustic pressure 
in a SLT, whereas the other is the biophysical variable, which is the relaxation 
time induced by the cell osmosis. The main text of the present work focuses on 
modeling of the mentioned pressure. The purpose of the work is formulated in 
Subsection 1.2 on the basis of the discussion of the state of the art in the area in 
Subsection 1.1. Subsection 1.3 specifies the topics of the other sections and 
outlines the approach of the work. 

1.1. State of the Art in Propagation of Acoustic Waves in Soft 
Solids 

Propagation of acoustic waves in solids in the cases where the solids are elastic, 
i.e., inviscid, or, equivalently, conservative systems, is the well-studied topic. 
There is a vast literature on it (e.g., [3] and the references therein) and a lot of 
corresponding software packages, commercial or research. Moreover, the topic 
is described and analyzed in many text-books. To mention a few, we note [4] [5] 
and [6]. These materials enable one to solve virtually any elastic-solid acoustic 
problem. This is equally true with respect to soft solids as is explained in the 
remark below. 

Remark 1.1. The expressions for the elastic components of the entries of the 
Cauchy stress matrix in a solid material (e.g., [5], (1.3), (1.2)) in terms of the 
strains are known as the Hooke law (e.g., [5], (1.43)). These expressions are 
linear in the strains with the coefficients, which present the bulk and shear 
moduli of the material, K  and G . The latter one is also known as the 
modulus of rigidity. These moduli are coupled with the Young modulus E  
and the Poisson coefficient ν  as follows  

( ) ( ) ( ) ( )3 1 2 2 1 , 3 2 6 2E K G G K G Kν ν ν= − = + = − +       ,   (1.1) 

and determine the volume and shear viscosities η  and µ , 
,K Gη θ µ θ= =                       (1.2) 
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where 0θ ≥  is the stress-relaxation time (SRT). 
As follows from the experimental data in Table 1, shear moduli of SLTs are 

usually a few orders less than the corresponding bulk moduli. Table 1 specifies 
this feature in the case of SLTs in Column 3. Note that elastic properties and 
parameters of SLTs are discussed in considerable detail in the review work [9] 
(see also the references therein). 

The mentioned feature enables one to neglect the shear-modulus-related 
terms in the aforementioned expressions for the elastic components of the 
entries of the Cauchy stress matrix, thereby reducing the stress matrix to the 
scalar matrix. The scalar in this matrix is P−∆  where P∆  is the acoustic 
average normal stress (ANS). 

Term P∆  presents the sum of its elastic and viscous components. The elastic 
one is known as the acoustic pressure, p∆ . Consequently, P∆  coincides with 

p∆  if and only if the material is inviscid, i.e., (see (1.2)), at 0θ = . Thus, 
P p∆ − ∆  is the viscous components of P∆ .                             
The above discussion shows that acoustic problems in soft elastic solids can 

adequately be solved in terms of the well-established elastic-solid models (e.g., 
[3] and [9], and the references therein). This means that new research and 
development in acoustics of soft solids are associated with other, less studied 
problems. One of them is soft viscoelastic solids. An important example of 
viscoelastic solids is living tissues (e.g., p. R3 of [9], pp. 194 and 196 of [3]), both 
SLTs and bones (e.g., [10]). 

In the case of soft viscoelastic solids, the reduction to the shearless version (see 
Remark 1.1) is also applicable. However, key difficulties here are associated with 
allowing for non-nonzero values of bulk (or volume) viscosity η  or, 
equivalently (see (1.2)), SRT θ . 

The spatially heterogeneous viscoelastic model for solids, which is known 
since long ago, is the corresponding generalization (e.g., [5], (6.15), [11], 
Chapter 3 and Epilogue, [12], §34) of the spatially homogeneous Kelvin-Voigt 
(KV) model (e.g., [5], (6.8) or (6.9)). This generalization presents the system of 
linear nonstationary (LNS) partial differential equations (PDEs) for the entries 
of the three-dimensional displacement vector in a solid, and includes not only  

 
Table 1. Experimental data on the bulk and shear moduli of soft tissues [7]. For 
comparison, one can obtain value 30.2 10G K −= ×  for natural rubber from the Poisson 
coefficient reported in Table 1 in [8] and the first equality in (1.1). 

Soft tissue 

Bulk modulus, K  
[7, Table 1] MPa 

Shear modulus, G  
[7, Table 1] kPa 

Ratio of the shear modulus  
to the bulk one, G/K -- 

1 2 3 

Stomach 480 8 - 45 ( ) 30.017 - 0.094 10−×  

Liver 280 37 - 340 ( ) 30.132 -1.214 10−×  

Heart 490 60 - 48 ( ) 30.122 - 0.302 10−×   

Lung 150 10 - 54 ( ) 30.067 - 0.36 10−×  
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elastic moduli (1.1) but also viscosities (1.2). In particular, a version of this 
model is used as the linearized core ([3], (5) or (6)) of the non-linear model in 
one spatial coordinate considered in [3]. (Note that the equation of the form 
([3], (5)) was published by G.G. Stokes [13], and further analyzed in ([11], 
Chapter 3 and Epilogue) and [14] long before work [3] was submitted.) 

Remark 1.2. According to theoretical physics (e.g., [15], Section 6 of Chapter 
II, [16], (8.6); see also the discussion in [17], Appendix), the acoustic stress in 
any viscoelastic solid is the sum of its elastic and viscous components where the 
viscous component is presented with the Boltzmann superposition integral. The 
integrand in this integral includes the normalized stress-relaxation function 
(NSRF). It is a function of the non-negative time separation. The integral of the 
NSRF in the time separation over the interval from zero to infinity is known as 
the SRT, θ . (The above term “normalized’’ means that the NSRF at zero time 
separation is unit.) 

As one can show, the Boltzmann superposition integral, in the asymptotic 
limit case as 0θ ↓ , is the product of θ  and the time-derivative of the elastic 
component of the acoustic stress. This product presents the zero-SRT asymptote. 
Also, in the mentioned limit case, the expression for the total acoustic stress in a 
solid presents the KV model.                                          

One should note that the models based on the KV representation are, as 
models for the stress rather than the strain, applicable in the asymptotic limit 
indicated in Remark 1.2 only. The aforementioned work [3] on the brain tissue 
indicates value 232 ps of the SRT ([3], p. 196). It is apparently within the 
applicability of the zero-SRT asymptote and is only 166 times greater than the 
extremely low value of the SRT for liquid water (see Remark 2.1 below). 

Along with this, the SRT values for the SLTs of the VWF-patient fingers and 
palms need not be that low. (These SLTs include the dermis, epidermis, 
subcutaneous tissue, and muscle tissue mentioned in Appendix.) For this very 
reason, the zero-SRT asymptote or the KV treatments are generally not suitable 
for the VWF problems. 

However, to our knowledge, there is no any consistent acoustic model, which 
takes into account the NSRF at arbitrary values of the SRT rather than in the 
particular case of the zero-SRT asymptote only. 

1.2. Beyond the State of the Art. Purpose of the Work 

In order to fill the gap indicated in the last sentence of the previous subsection, 
paper [17] derives the general LNS partial integro-differential equation (PIDE) 
in the three spatial coordinates for the acoustic ANS (see [17], (2.10)). This 
equation takes into account the NSRF strictly in the way summarized in Remark 
1.2. Moreover, in the NSRF exponential approximation determined by a single 
parameter, SRT, the derived equation is reduced to the third-order LNS PDE 
(see [17], (2.11)), which appears to be of the Zener type. 

There are more complex approximations for the NSRF, for instance, the 
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Prony series (e.g., [18]) and a number of other empirical and semi-empirical 
models (e.g., [19]). However, parameters of these models are determined from 
the NSRF measured values, which are difficult (if possible at all) to obtain by 
means of the patient-specific in vivo or ex vivo tests. In contrast to that, the 
single parameter of the exponential NSRF model, SRT θ , can be obtained from 
the measured values of one of the viscosities and the corresponding elastic 
modulus (see (1.2)). Another advantage of the exponential approximation is that 
it not only includes the basic parameter, SRT, but also allows to keep the number 
of the input parameters for the modeling at the minimum level. Also note that a 
consistent theoretical-physics model for the NSRF and the list of its parameters 
remains unknown. 

The following four facts should also be noted. 
Firstly, in a number of cases (e.g., [20], Figure 3), the accelerations generated 

by vibrating hand-held tools, can be outlined the following way. The acceleration 
is in the form of, loosely speaking, large periodic pulses (e.g., with the periods of 
0.03 - 0.02 s [20]). The pulse-peak values of these accelerations may reach ±105 
m/s2. The corresponding displacements are, however, extremely small. All of the 
pulses are very similar to each other, roughly, the same. The shape of a pulse 
tends to zero as the time tends to infinity. The settling-to-zero time is usually 
noticeably less than the period. The corresponding acoustic signals in SLTs also 
well settle to zero within the period between the pulses. Consequently, it is 
usually sufficient to analyze the acoustic response to a single pulse only. 

Secondly, works related to the areas described in Subsection 1.1 (e.g., [3] and [9] 
and the references therein) include numerous illustrations of computer-simulation 
results on propagation of acoustic waves in SLTs. They facilitate understanding 
of the acoustic phenomena. 

Thirdly, a finger and a palm of the hand, which holds the handle of a vibrating 
tool, presents a complex geometrical system. Within a bounded area of the 
finger/palm-handle contact, the contact surface can be regarded as planar and 
the tool acceleration acting on the surface can be regarded as acting perpendicularly 
to the planar surface. These settings are adopted, for example, in paper [21] 
(where the planar contact region of the finger is termed the finger pad). The 
acoustic computer simulation of a finger model in three spatial dimensions 
presented in [21], which was preceded by the simulation in two spatial 
dimensions [22], comes to the following conclusion. The region of the soft tissue, 
which is the most prone to formation of vibration-induced injuries, is the tissue 
domain neighboring the contact, and this domain is the location of the greatest 
variations of acoustic variables (e.g., strains) during vibration exposure. 
Consequently, analysis of the dominating acoustic phenomena in the finger or 
palm soft tissue can focus on a planar layer of the tissue between the contact 
plane and the finger/palm bones in the direction of the spatial coordinate 
perpendicular to the plane, i.e., along the thickness of the layer. One can add that, 
for simplicity, the planar layer can be regarded as infinite. 
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Fourthly, the computer simulations in the aforementioned papers [21] and [22] 
are based on nonlinear frequency-domain methods, which provide nonlinear 
response functions, and only deal with harmonic external time-varying signals. 
In contrast to that, the approach developed in the present work is intended to 
deal not only with smooth signals (such as linear combinations of harmonics) 
but also the measured, highly irregular external time-varying signals. For this 
reason, it considers the time-domain models and methods only. 

Taking into account the above four facts and the fact that the aforementioned 
third-order PDE open a way to consistent computer simulation of SLTs, the 
purpose of the present work is three-fold: 

1) derivation of the answers to the three questions formulated in Appendix;  
2) development of the Fourier-method steady-state solutions of the 

boundary-value problem for the third-order LNS PDE of the Zener type in an 
infinite planar layer of an SLT under the action of the acceleration produced by 
the vibrating hand-held tools;  

3) simulation of propagation of the pressure waves in the SLT layer, which are 
caused by the single-pulse accelerations, at zero and different nonzero values of 
the SRT, and different settings for the acceleration pulse; the simulation is 
supposed to be implemented in two different ways: by means of the one- 
dimensional version of the model in Point (1) and, at zero relaxation time, by 
means of LS-DYNA, the well-known purely numerical, finite-element simulator 
(e.g., [23]).  

Achieving the above purpose will complement the aforementioned, zero-SRT 
and zero-SRT-asymptote results with the results for arbitrary values of the SRT. 
Task (1) is solved in Appendix. Tasks (2) and (3) are solved in the way described 
in the next subsection. 

1.3. Topics of the Subsequent Sections and an Outline of the 
Present Approach 

The work presents and discusses the aforementioned third-order PDE for the 
acoustic ANS in an SLT (Section 2). The corresponding boundary-value problem 
is formulated in the case of an infinite planar layer of an SLT (Sections 3 and 4). 
This formulation includes the external acceleration of a vibrating hand-held tool. 
The exact analytical expression for the acoustic ANS in the general case of the 
arbitrary but sufficiently regular shape of the acceleration is derived in the form 
of the Fourier-method series (Sections 5 and 6). 

The above results are summarized in Section 7. The analytical representation 
for the acoustic pressure in an SLT and the convergence of the series are 
considered in Section 8. 

The developed analytical representations are computationally implemented in 
computer simulation. The corresponding simulation results along the thickness 
of the muscle-tissue layer of a palm are exemplified in Section 9. Section 10 
concludes the work. It can also serve as an executive summary. The role of 
Appendix is mentioned in Subsection 1.2 and specified at the beginning and in 
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the first bullet of Section 10. 
In general, exact analytical expressions for solutions of models provide the 

most transparent views of the structure of the solutions. These forms include the 
explicit dependences of the solutions on the parameters and other input 
variables of the models. This is an advantage of analytical solutions. 

Another advantage is that analytical solutions can provide the modeling terms, 
which are inaccessible in purely numerical approaches. For instance, the latter 
do not allow to determine the natural angular frequencies, which, in particular, 
can play a noticeable role in interpretation of the features of the related 
computational results (see (6.7) in connection with the text in Table 3). 

The present work only considers the steady-state solutions of the aforementioned 
boundary-value problem. Loosely speaking, these are the ones independent of 
the initial values (e.g., see [24] for further details). Due to this feature, the 
steady-state solutions present the core behaviors of the systems, i.e., the 
behaviors, which are not affected by specific initial values or initial time points. 

Also note that all of the physical-quantity values specified below, with the 
exception of the ones in Figures 1-12 are presented in the SI.  

2. Acoustic Equation for the Scalar Stress in Soft Living Tissues 

The model described below assumes that SLTs are isotropic, isothermal, spatially 
homogeneous at equilibrium, and, according to the SLT data in Table 1, 
shearless. In this case, one can use the LNS PIDE for acoustic ANS P∆  of the 
following form (see (2.10) in work [17]) 

( ) ( )2
2 2

2 0
,

P tP s P t
tt
ψ

ψ ψ
∞ ∂∆ − ∂ ∆

= ∇ ∆ + Ψ ∂ ∈ ∂∂  
∫  ,       (2.1) 

where 0s >  is the speed of the bulk acoustic waves, 2∇  is the Laplace  
 

 
Figure 1. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in 
the case of Example 1 at zero value of SRT θ. The pressure unit is MPa. The data were 
obtained with the help of the LS-DYNA software package [33]. 
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Figure 2. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at zero value of SRT 
θ. The data were obtained in the present treatment. 
 

 
Figure 3. Propagation of the pressure wave in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.001 × θ* = 
0.95 × 10−7 of SRT θ (see (9.1) for θ*). The data were obtained in the present treatment. 
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Figure 4. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.003 × θ* = 
0.285 × 10−6 of SRT θ (see (9.1) for θ*). The data were obtained in the present treatment. 
 

 

Figure 5. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.010 × θ* = 
0.95 × 10−6 of SRT θ (see (9.1) for θ*). The data were obtained in the present treatment. 
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Figure 6. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.030 × θ* = 
0.285 × 10−5 of SRT θ (see (9.1) for θ*). The data were obtained in the present treatment. 
 

 

Figure 7. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.100 × θ* = 
0.95 × 10−5 of SRT theta (see (9.1) for θ*). The data were obtained in the present treatment. 
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Figure 8. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 0.300 × θ* = 
0.285 × 10−4 of SRT θ (see (9.1) for θ*). The data were obtained in the present treatment. 
 

 

Figure 9. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 1 at value 1.000 × θ* = 
0.95 × 10−4 of SRT theta (see (9.1) for θ*). The data were obtained in the present treatment. 
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Figure 10. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 2 at value 0.030 × θ* 
= 0.285 × 10−5 of SRT theta (see (9.1) for θ*). The data were obtained in the present treatment. 
 
 

 
Figure 11. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 3 at zero value of SRT 
θ. The pressure unit is kPa. The data were obtained with the help of the LS-DYNA software package [33]. 
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Figure 12. Propagation of the pressure waves in the 10-mm layer of the muscle tissue in the case of Example 3 at zero value of 
SRT θ. The data were obtained in the present treatment. 
 

differential expression with respect to the three spatial coordinates, 0ψ ≥  is 
the time separation, and ( )ψΨ  is the NSRF. The term “normalized’’ denoted 
with the letter “N’’ in the abbreviation “NSRF’’ (introduced in Subsection 1.2) 
means that ( )0 1Ψ = . 

The first and second terms in the brackets in (2.1) correspond to the elastic 
and viscous stresses in the way discussed in Section 2 and Appendix of work [17]. 
Parameters s and K are coupled by means of relation (e.g., [17], (2.2))  

s K ρ=                          (2.2) 

where 0ρ >  is the volumetric mass density of an SLT. The integral in (2.1) is 
known as the Boltzmann superposition integral. Due to the presence of this 
integral in Equation (2.1), the equation is suitable for viscoelastic rather than 
elastic-only materials. 

The basic parameter of NSRF ( )ψΨ  is SRT θ  (already mentioned in 
Remark 1.1), which is determined with the well-known relation (e.g., [17], 
(A.6))  

( )
0

dθ ψ ψ
∞

= Ψ∫                      
 (2.3) 

Parameter θ  is included in (1.2). Any of the relations (1.2) can be used for 
evaluation of θ . Two of many examples are indicated in the remarks below. 

Remark 2.1. In the case of liquid water, 33.09 10η −= ×  and 92.2 10K = ×  
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(e.g., [25] and [26], respectively). Application of these values to the first equality 
in (1.2) results in estimation 121.4 10θ −≈ ×  for liquid water.               

A number of works on non-invasive measurements in SLTs available in the 
literature indicate that in various SLTs, 0.1 - 20µ = . As follows from Column 2 
of Table 1, the related values of G are 8 - 340 × 103. Application of the values of 
µ  and G to the second equality in (1.2) results in the range of the values of SRT 
θ , which appear to be typical for SLTs, namely between 60.3 10−×  and 

32.5 10−× . 
Equation (2.1) was derived under the condition that (e.g., [27], (A.1.13))  

1p K∆ �                         (2.4) 

(see Remark 1.1 for p∆ ). Condition (2.4) assures that the SLT under 
consideration can be regarded as a linear material. 

Remark 2.2. As follows from equations (A.1.14) and (B.8) in [27], that  

( ) ( ) ( ) 1, ,1 tr ,
p x t x t

I x t
K t t

ε
ε

−∂∆ ∂ 
= − +   ∂ ∂             

 (2.5) 

where ( ),x tε  is the strain matrix, I  is the 3 3×  identity matrix, and ( )tr ⋅  
is the trace of a matrix. Equality (2.5) enables one to formulate condition (2.4) in 
terms of the strain matrix. 

If one prefers the frequency-domain paradigm rather than the time-domain 
one, one can use a consistently derived frequency-domain counterpart of 
relation (2.5) in order to check condition (2.4).                           

In the simplest, exponential approximation for NSRF ( )ψΨ , i.e., under the 
assumption that ( ) ( )expψ ψ θΨ = −  at all 0ψ ≥ , Equation (2.1) is specified 
to (see (2.12) in [17]) 

( )2
*2 2 *

*2 0
exp ,

P t ttP s P t t
tt θ

∞ ∂∆ − ∂ ∆  = ∇ ∆ + − ∂ ∈ ⋅   ∂∂   
∫        (2.6) 

Paper [17] shows that PIDE (2.6) expresses the steady-state solution of LNS 
PDE (see [17], (2.11)) 

( )3 3 2 2 2 2 2P t P t s P P tθ θ∂ ∆ ∂ + ∂ ∆ ∂ = ∇ ∆ + ∂∆ ∂           (2.7) 

regarded as an ordinary differential equation (ODE) of the first order for 
variable 2 2 2 2P t s P∂ ∆ ∂ − ∇ ∆ . Equation (2.7) is formally a PDE of the Zener 
type ([5], (6.40)) but, with respect to the origin and meaning, differs from the 
Zener PDEs noticeably (see the corresponding discussion in [17]). The fact that 
PIDE (2.6) is nothing but the aforementioned steady-state case of PDE (2.7) 
indicates that (2.7) is a more general description than (2.6). 

Each of the PIDEs (2.1) and (2.6), and, thus, PDE (2.7) is valid only if 
condition (2.4) holds. In order to verify it, p∆  should be available. Work [17] 
also derives the explicit expressions for p∆  in terms of solutions P∆  of PDE 
(2.7). The simplest of them is expression ([17], (2.8))  

2P t P p p tθ θ∂∆ ∂ + ∆ = ∆ + ∂∆ ∂                 (2.8) 
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As is noted on p. 512 in [17], ODE (2.8) is the ANS-member of the family of 
spatially homogeneous versions of the Zener acoustic models (e.g., [5], (6.25)), 
which corresponds to the exponential approximation for the NSRF. Notably, this 
family is also used for experimental determination of SRTs in SLTs. For example, 
work [28] proposes a framework of quantitative assessment of SLTs that can be 
used in clinical diagnostics. The work applies the Zener models "(e.g., see (1) in 
[28]) and determines the tissue SRT in terms of the Young modulus and the 
corresponding viscosity (see [28], the right column on p. 154). Since the Young 
modulus E is coupled with both bulk and shear moduli K and G with the 
well-known linear relations (see the first relation in (1.1)), the SRT determined 
in the above way can be used in the capacity of SRT θ  regarded in the present 
work (in particular, in expressions (1.2) for the corresponding viscosities). 

Remark 2.3. In view of (2.3), the asymptotic representation of PIDE (2.1) in 
the limit case as 0θ ↓  is PDE (2.1) in [17],  

( )2 2 2 2P t s P P tθ∂ ∆ ∂ = ∇ ∆ + ∂∆ ∂                (2.9) 

that, at 0θ = , is reduced to  
2 2 2 2P t s P∂ ∆ ∂ = ∇ ∆                     (2.10) 

Both (2.9) and (2.10) do not include the integral indicated in (2.1). This 
integral where the kernel function is the NSRF is often termed the memory 
function. It provides the integral influence of the values of a solution of (2.1) at 
all t tψ− <  upon the value at t. In this sense, the value at t “remembers’’ the 
values at all t tψ− < . This effect significantly complicates the behaviors of the 
solutions. The NSRF-originated memory function corresponds to the friction 
distributed in time. 

Equation (2.9) was derived in [27]. It presents the zero-SRT asymptote of (2.1). 
In the case where the solution variable is the velocity potential of a fluid, the 
version of (2.9) was derived by G.G. Stokes [13] (see the discussion in [27], p. 
964). 

Equation (2.10) presents the zero-SRT case of (2.1) and corresponds to a 
purely elastic (or inviscid) material. 

Comparison of particular version (2.6) of Equation (2.1) with Equation (2.7) 
shows that, in the latter equation, the terms, which include SRT θ , originate 
from the exponential-NSRF-originated memory function in (2.6).            

The advantage of PIDE (2.1) and its particular cases (2.6) or (2.7) is that any 
of them eliminates the zero-SRT asymptote limitation of the Stokes-type 
equation indicated in Remark 2.3. 

Remark 2.4. The input data for PDE (2.7) are the following three parameters: 
ρ , K , and θ . Number s  used in (2.7) is determined in terms of ρ  and 
K  by means of (2.2). 

The output data of LNS-PDE (2.7) include (but need not be limited to) the 
following two space-time-dependent variables of an SLT, acoustic ANS P∆  and 
acoustic pressure p∆  (see (2.8)).                                  
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Expression (2.8) not only describes pressure p∆  in terms of the P∆  but 
also enables one to answer the question on if the results of the above linear 
models are acceptable. For example, any solution of PDE (2.7), which, by means 
of (2.8), provides the values of p∆  such that (2.4) holds, presents an adequate 
result. This, so to say, self-testing allows to avoid a use of much more complex, 
nonlinear models (e.g., [3]) in the cases where linear models suffice. 

3. Boundary Conditions for the Stress in the Case of an 
Infinite Planar Layer of a Soft Living Tissue 

The present section considers the geometrically simplest case of the 
configuration of an SLT, namely where the SLT is an infinite planar layer. 
Without a loss of generality, one can assume that the coordinate axis 
perpendicular to the layer is the x-axis and the two planar surfaces of the layer 
correspond to two different values of coordinate x, say, 0x =  and x h=  where 

0h >  is the thickness of the layer. Consequently, PDE (2.7) is reduced to 

( )3 3 2 2 2 2 22 , 0P t P t s P P t x x hθ θ∂ ∆ ∂ + ∂ ∆ ∂ = ∂ ∆ + ∂∆ ∂ ∂ ≤ ≤ .   (3.1) 

One of the basic settings for this equation presumes that the external acceleration 
acting on the SLT layer is present at plane 0x = , whereas the other plane, the 
one at x h= , contacts air. The corresponding boundary conditions are  

( ) ( )1 0,a t P t xρ−= − ∂∆ ∂                    (3.2) 

where ( )a t  is the acceleration and  

( ), 0P h t∆ = .                        (3.3) 

Note that term ( ),P x t x−∂∆ ∂  presents the volumetric density of the force 
acting at space-time point ( ),x t . 

Remark 3.1. The input data for boundary-value problem (3.1)-(3.3) are the 
three parameters indicated in Remark 2.4, as well as parameter h and function 
( )a ⋅ . 
The output data of the mentioned problem are the versions of the two space- 

time-dependent variables indicated in Remark 2.4 in one spatial coordinate, x. 
Remark 3.2. The above single-layer system can be generalized to a multi-layer 

system. In this case, one should include the boundary conditions at the 
inter-layer surfaces. Each of these conditions presents the equality of the acoustic 
ANS and the equality of the accelerations in the neighboring layers. 

Multi-layer systems can substantially extend the scope of the present approach. 
For example, in a three-layer system, one of the layers can be the muscle tissue of 
a palm, whereas the other two layers can be the skin and a layer of a protective 
material intended for a reduction of the amplitude or altering the frequency 
content of the acoustic waves penetrating into the soft tissues. Another example 
is a three-layer system where the layers represent the stratum corneum, 
epidermis, dermis, and subcutaneous tissue of a finger. The list of the related 
examples can easily be continued.                                      
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Individual solutions of boundary-value problem (3.1)-(3.3) are specified with 
the initial conditions and can be obtained by the Fourier method. 

4. Transformation of the Boundary-Value Problem for the 
Stress to the One with Homogeneous Boundary Conditions 

As is well known, the Fourier method is applicable to boundary-value problems if 
the boundary conditions are homogeneous. Problem (3.1)-(3.3) can be 
transformed into this form in the following way (e.g., [4], Section 4 in Chapter IX). 

One introduces the change of variable  

( ) ( ) ( )( ), ,P x t w x t a t x hρ∆ = − −                 
 (4.1) 

where the physical dimension of variable ( ),w x t  is the squared velocity. This 
change allows to substitute (4.1) into (3.1)-(3.3) and thereby obtain the PDE and 
homogeneous boundary conditions for ( ),w x t , 

( ) ( )( )3 3 2 2 2 2 22 , 0w t w t s w w t x a t h x x hθ θ∂ ∂ + ∂ ∂ = ∂ + ∂ ∂ ∂ − − ≤ ≤   (4.2) 

( )0, 0w t x∂ ∂ =                        (4.3) 

( ), 0w h t =                          (4.4) 

where  

( ) ( ) ( )3 3 2 2d d d da t a t t a t tθ= +                 (4.5) 

The last term on the right-hand side of (4.2) presents the source term. It results 
from change of variable (4.1). In connection with the source terms, we accept the 
following. 

Assumption 4.1. Function ( )3 3d da t t  and, thus (see (4.5)), function ( )a t  
are piecewise differentiable in the entire time axis.                        

Assumption 4.1 is used in the consideration below. 

5. Exact Analytical Expression for the Steady-State Stress 

The present section considers solution of boundary-value problem (4.2)-(4.4) by 
means of the Fourier method (e.g., [4], Chapters VIII and IX). It is applicable to 
the PDEs, which are based on the Laplace differential operators. The Fourier 
method provides expansions of solutions of these PDEs in the space-dependent 
operator eigenfunctions with time-dependent coefficients (e.g., [29], Chapter V) 
and formulates the ODE systems for these coefficients. The main advantages of 
the Fourier method are the following. 
• The above expansions enable the exact analytical solutions.  
• The exact analytical expressions provide an explicit insight in the structure of 

the solution in the terms, which are also meaningful physically.  
• The method allows a variety of approximations of different accuracy and 

complexity.  
The consideration in this section down (5.5) is based on the well-known ideas 

(e.g., [4], Ch. IX, Sections 1 and 4 in Chapter IX). According to the Fourier 
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method, solutions w of boundary-value problem (4.2)-(4.4) are representable in 
the form of function series  

( ) ( ) ( )1, , 0i iiw x t f t X x x h∞

=
= ≤ ≤∑               (5.1) 

where ( )iX x  are the orthonormed eigenfunctions of the Laplace operator in 
PDE (4.2). This operator is differential expression 2 2x∂ ∂  endowed with 
boundary conditions (4.3) and (4.4). As one can easily check, the eigenvalues 
and eigenfunctions of the operator are numbers 2 , 1, 2,i iκ− = � , where 

π 2 1, 1, 2,
2i

i i
h

κ −
= = �                     (5.2) 

and  

( ) ( )2 cos , 0 , 1,2, .i iX x h x x h iκ= ≤ ≤ = �            (5.3) 

Since the source term in PDE (4.2) includes linear function h x− , it is 
necessary to involve the corresponding expansion for this function. By using 
(5.2), (5.3), and the well-known results (e.g., [29], Sections 21.4 and 22.3 of 
Chapter V, [30], 440.11), one can show that the expansion is 

( ) ( ) ( )

( )

* * *1 0

2
1

d

2 , 0 .

h
i ii

i ii

h x h x X x x X x

h X x x hκ

∞

=

∞ −
=

 − = −  

= ≤ ≤

∑ ∫

∑
            (5.4) 

Application of (5.1) and (5.4) to PDE (4.2) results in  

( ) ( ) ( ) ( )
( )

3 3 2 2 2 2 2 2

2

d d d d 2 d d

2 , 1, 2,
i i i i i i

i

f t t f t t s f t t s f t

ha t i

θ θ κ κ

κ −

+ + +

= − = �
      (5.5) 

Relations (5.5) present the countably infinite set of linear non-autonomous 
ODEs of the third order for time-dependent coefficients ( )if t  in the Fourier 
expansion (5.1). The forms of these ODEs show that they can be mutually 
independent. 

The third-order ODEs (5.5) can be represented in the form of the first-order 
ODE systems  

( ) ( ) ( )d d 2 , 1,2, ,i i i iF t t F t ha t iφ= Γ − = �            (5.6) 

where vectors ( )iF t  and iφ , and matrixes iΓ  are described with the 
following expressions 

( )
( )
( )
( )2 2

 
d d , 1,2, ,

d d

i

i i

i

f t
F t f t t i

f t t

 
 = = 
 
 

�                 (5.7) 

1 2

0 
 0 , 1, 2, ,

 
i

i

iφ
θ κ− −

 
 = = 
 
 

�

                 

 (5.8) 

1 2 2 1 2 2

0 1 0 
 0 0 1 , 1, 2, .

 2
i

i i

i
s sθ κ θ κ− −

 
 Γ = = 
 − − − 

�            (5.9) 
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As is well known in theory of systems of linear ODEs, if systems (5.6) are 
asymptotically stable, then: 
• the steady-state solutions of these systems (under Assumption 4.1) are 

described as  

( ) ( ) ( )* * *2 d , 1,2,
t

i i iF t h a t t t t iφ
−∞

= − Φ − =∫ �          (5.10) 

where  

( ) ( )* *exp , 1,2,i it t t t iΦ − = − Γ =   �
            

 (5.11) 

are the Cauchy matrixes of the systems 
• and all entries of these matrixes exponentially tend to zero as *t t− →∞ .  

Note that column-vectors ( ).1 *i t tΦ − , ( ).2 *i t tΦ − , and ( ).3 *i t tΦ −  of 
matrixes (5.11) are the solutions of homogeneous version  

( ) ( )d d , 1,2,i i iF t t F t i= Γ = �                 (5.12) 

of the ODE system (5.6), which are such that (see (5.11)) ( )0 , 1,2,i I iΦ = = � , 
where I  is the identity 3 3× -matrix, or, equivalently,  

( ). 0 , 1, 2,3, 1, 2,i l le l iΦ = = = �                (5.13) 

where le  is the l th column of matrix I . Due to (5.8), relations (5.10) are 
reduced to expressions  

( ) ( ) ( )* .3 * *2

2
d , 1,2, ,

t
i i

i

h
F t a t t t t i

θκ −∞
= − Φ − =∫ �          (5.14) 

which do not include matrixes (5.11) and emphasize a special role of their third 
columns ( ).3 *i t tΦ − . In view of the structure of vectors (5.7), it is sufficient to 
consider the first entries of vectors (5.14) only. The versions of (5.14) for these 
entries are  

( ) ( ) ( ).13 * * *2

2
d , 1, 2,

t
i i

i

h
f t t t a t t i

θκ −∞
= − Φ − =∫ �         (5.15) 

where ( ).13 *i t tΦ −  is the first entry of vector ( ).3 *i t tΦ − . Thus, the analytical 
expressions for the time-dependent coefficients ( )if t  in expansion (5.1) are 
(5.15). Note that the physical dimension of ( ).3 *i t tΦ −  is the squared time. 

Assumption 5.1. Each of the functions ( )2 2d da t t  and ( )3 3d da t t , and, 
thus (see (4.5)), function ( )a t  is uniformly bounded in the entire time axis.  

Taking into account the exponential tendency to zero noted in the text on 
(5.12) as well as Assumptions 4.1 and 5.1, one can show that all of the 
coefficients (5.1) are uniformly bounded in the entire time axis. 

Combination of (4.1), (5.1), (5.3), and (5.15) results in  

( )

( )( ) ( ) ( ) ( ).13 * * *21

,

2 1 1 d cos ,

0

t
i ii

i

P x t

a t x h t t a t t x
h

x h

ρ κ
θ κ

∞

= −∞

∆

   = − − + Φ −  
   
≤ ≤

∑ ∫  (5.16) 
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Remark 5.1. The exact analytical expression for the steady-state solution of 
boundary-value problem (3.1)-(3.3) is described with expression (5.16) (see also 
(4.5) and (5.2)) in terms of entries ( ).13 *i t tΦ −  of the Cauchy matrixes (5.11) of 
ODE systems (5.6) under Assumptions 4.1 and 5.1, as well as the assumption 
that all of the ODE systems (5.6) are asymptotically stable.                  

The next section establishes asymptotic stability of systems (5.6) and derives 
the exact analytical expressions for the entries mentioned in Remark 5.1. 

6. Expression for the Stress in Terms of the Input Data Only 

The present section establishes asymptotic stability of the ODE systems for the 
time-coefficients in the Fourier representation for the scalar stress and derives 
expressions for the entries of the Cauchy matrixes of these systems. On the basis 
of this, the section obtains the exact analytical representation for the steady-state 
stress in terms of the input data. 

In order to investigate the asymptotic stability of ODE systems (5.6), one 
needs to consider the real parts of the eigenvalues of matrixes (5.9) in (5.6). Due 
to the connection of the first-order systems (5.6) to the third-order scalar 
Equation (5.5), these eigenvalues are the roots λ  of equations  

( ) ( )2 23 2 2 0, 1, 2, ,i is s iθλ λ θ κ λ κ+ + + = = �            (6.1) 

which are the characteristic equations for homogeneous versions 

( ) ( ) ( ) ( )3 3 2 2 2 2 2 2d d d d 2 d d 0, 1, 2, ,i i i i i if t t f t t s f t t s f t iθ θ κ κ+ + + = = �   (6.2) 

of ODEs (5.5). Note that iκ  in (6.1) are determined with (5.2). In view of the 
results developed in  Theorem 2.1 of [17] on characteristic Equation (2.13), the 
following statements are valid. 

(i) Each of the characteristic Equation (6.1) has one real root, 1 iθ− , and a 
pair of the complex conjugate roots 1 i iιω− Θ ± , where ι  is the imaginary 
unit, i.e., 2 1ι = − .  

(ii) 1 2 1i iθ θ+ Θ = .  
(iii) 0lim

is iκ θ θ→ = , lim 2
is iκ θ θ→∞ = , and iθ  strictly monotonically 

increases as isκ  increases from zero to infinity.  
(iv) Asymptotic representation for 1 iΘ  in the limit case as 0isκ →  is 

( )21 2i isθ κΘ = .  

(v) ( ) 22
1 1

2
i i

i
i

sκ
ω

θ θ
Θ  

= − − Θ 
.  

(vi) Asymptotic representations for iω  in the limit cases as 0isκ →  and 

isκ →∞  are i isω κ=  and 2i isω κ= , respectively.  
(vii) Each of ODEs (5.5) is asymptotically stable. 
Statement (vii) implies that each of the ODE systems (5.6) is asymptotically 

stable and, thus, the analysis presented in Section 5 below (5.9) is relevant. As 
follows from statements (ii) and (v), the parameters iΘ  and iω  of the 
complex conjugate root in statement (i) are functions of not only SRT θ  and 
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angular frequencies isκ , which directly follow from the input data (see Remark 
3.1, (2.2), and (5.2)), but also iθ , which is not quantified above. 

As is indicated in statement (i), 1 iλ θ= −  is the only real root of cubic 
Equation (6.1). It can be determined with the help of the well-known method of 
S. del Ferro and N. F. Tartaglia for solving cubic equations. Nowadays, it is 
known as the Cardano solution (e.g., [31], 1.8-3). One can show that, according 
to it, the mentioned root is determined as follows  

( )11 , 1,2,i

i

M s
i

θ κ
θ θ

−
= = �                  (6.3) 

where  

( ) ( ) ( )M M Mχ χ χ+ −= +                   (6.4) 

and 

( )
( )2 4 2

3
9 3 3 32 13 41 1 1 .

3 2
M

χ χ χ χ
χ±

 ± − + 
= − + 

 
        

 (6.5) 

Continuous variable χ  in (6.4) and (6.5) generalizes discrete variable 
0isθ κ >  in (6.3). Numerical values of function (6.4) are exemplified in Table 2. 

In view of (6.3), the equality in statement (ii) is equivalent to 

( )1 , 1,2, ,
2

i

i

M s
i

θ κ
θ

= =
Θ

�                   (6.6) 

which, in turn, transforms the expression in statement (v) into  

( )
( )

( )

( )
( ) ( )

( )

22

22

1 1
2

1 1 , 1,2, .
4

i i
i

i

ii
i

i

s M s
M s

M ss
M s i

M s

θ κ θ κ
ω

θ θ κ

θ κθ κ
θ κ

θ θ κ

 
= − − 

 

  = − + − = �

    (6.7) 

Remark 6.1. As follows from statements (iii) and (iv), as well as expressions  
 

Table 2. Examples of the numerical values of function ( )M χ  (see (6.4)). 

χ  ( )M χ  χ  ( )M χ  χ  ( )M χ  χ  ( )M χ  χ  ( )M χ  χ  ( )M χ  

0.0 0 2.0 0.48389 4.0 0.49606 6.0 0.49826 8.0 0.49902 10.0 0.49937 

0.2 0.0399 2.2 0.48675 4.2 0.49643 6.2 0.49837 8.2 0.49907 10.2 0.4994 

0.4 0.15465 2.4 0.48891 4.4 0.49675 6.4 0.49847 8.4 0.49911 10.4 0.49942 

0.6 0.29622 2.6 0.49058 4.6 0.49703 6.6 0.49856 8.6 0.49915 10.6 0.49944 

0.8 0.38634 2.8 0.49190 4.8 0.49727 6.8 0.49865 8.8 0.49919 10.8 0.49946 

1.0 0.43016 3.0 0.49296 5.0 0.49749 7.0 0.49872 9.0 0.49923 11.0 0.49948 

1.2 0.45293 3.2 0.49382 5.2 0.49768 7.2 0.49879 9.2 0.49926 11.2 0.49950 

1.4 0.46611 3.4 0.49454 5.4 0.49785 7.4 0.49886 9.4 0.49929 11.4 0.49952 

1.6 0.4744 3.6 0.49513 5.6 0.49800 7.6 0.49892 9.6 0.49932 11.6 0.49954 

1.8 0.47997 3.8 0.49563 5.8 0.49814 7.8 0.49897 9.8 0.49935 11.8 0.49955 
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(6.3) and (6.6), the properties below hold.  
• ( )0lim 0Mχ χ→ =   
• ( )lim 1 2Mχ χ→∞ =   
• Function ( )M χ  strictly monotonically increases as χ  increases from 

zero to infinity.  
• The asymptotic representation for ( )M χ  in the limit case as 0χ →  is 

( ) 2M χ χ= .                                                    
Remark 6.2. As follows from the fist two bullets in Remark 6.1 and expression 

(6.7), relations  

0lim , lim 2 , 1,2,i i i is s iθθ ω κ ω κ→∞↓ = = = �  

hold.                                                             
Remark 6.3. The above consideration enables one to express three sequences 

{ } 1i i
θ

≥ , { } 1i i≥
Θ , and { } 1i i

ω
≥  of the parameters of the real root and complex 

conjugate roots in statement (i) in terms of parameter θ , physically 
dimensionless function ( )M ⋅ , and physically dimensionless sequence 
{ } 1i i

sθ κ
≥  where s  and iκ  are determined with (2.2) and (5.2) by means of 

(6.3), (6.6), and (6.7).                                                
According to theory of linear ODEs with time-independent coefficients, the 

roots of Equation (6.1), which are indicated in Remark 6.2, enable one to specify 
the general solutions of the third-order scalar ODEs (6.2) at the initial time point, 
s , which was already used in expressions (5.11). These solutions are  

( ) ( ) ( ){
( ) } ( )

* * *

* *

ˆ exp sin

cos exp , 1,2, ,

i i i i i

i i i

g t t E t t S t t

C t t t t i

θ ω

ω

− = − − + −      

+ − − − Θ =       �
    (6.8) 

where iE , iS , and iC  are the arbitrary parameters independent of time. This, 
in particular, means that 

( ) ( ) ( )
( )

3 3 2 2 2 2
* * *

2 2
*

ˆ ˆ ˆd d d d 2 d d

ˆ 0, 1,2, .
i i i i

i i

g t t t g t t t s g t t t

s g t t i

θ θ κ

κ

− + − + −

+ − = = �      
 (6.9) 

The forms of the corresponding solutions of the first-order ODE systems (5.12) 
are 

 ( )
( )
( )
( )

*

* *
2 2

*

ˆ
ˆ ˆd d , 1,2, .

ˆd d

i

i i

i

g t t
G t t g t t t i

g t t t

− 
 − = − = 
 − 

�

           

 (6.10) 

These vector-functions describe all of the solutions of the systems specifying 
them with individual values of parameters iA , iB , and iC . In particular, 
vectors (6.10) describe the three columns of each of the Cauchy matrixes (5.11) 
by means of conditions (5.13) with expressions  

( ) ( )
( ). * * ˆ 0

ˆ , 1, 2,3, 1, 2,
i l

i l i G e
t t G t t l i

=
Φ − = − = = � . Consequently, the third 
columns, which include entries ( ).13 *i t tΦ −  used in (5.16), are determined as 

( ) ( )
( ) 3

.3 * * ˆ 0
ˆ , 1, 2,

i
i i G e

t t G t t i
=

Φ − = − = � , or, in more detail, 
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( )
( )
( )
( )

( ) ( ) ( )2 2

*

.3 * *
2 2

* ˆ ˆ ˆ0 0,d 0 d 0,d 0 d 1

ˆ
ˆd d , 1,2, .
ˆd d

i i i

i

i i

i g g t g t

g t t
t t g t t t i

g t t t
= = =

− 
 Φ − = − = 
 − 

�  (6.11) 

In order to carry out the calculations presumed by (6.11), one needs to evaluate 
the first and second time derivatives of function ( )ˆig t s− . As follows from 
(6.8), 

( ) ( ) ( ){

( ) ( ) }

* *
*

*
*

ˆd
exp sin

d

1cos exp , 1,2, ,

i i
i i i i i

i i

i i i i i
i i

g t t E t t S C t t
t

t tS C t t i

ω ω
θ θ

ω ω

−  −
= − − + − −Θ −    

 
 −

+ Θ − − − =     Θ Θ 
�

 (6.12) 

( )

( ){ } ( ){
( ){ } ( ) }

2
*

2

2*
*2

2 *
* 2

ˆd g
d

exp 1 2 sin

12 1 cos exp , 1,2, .

i

i
i i i i i i i

ii

i i i i i i i
ii

t t
t

E t t S C t t

t tS C t t i

ω ω ω
θθ

ω ω ω

−

 −  = − + − Θ + Θ −      
 − + − Θ + − Θ − × − =      ΘΘ  

�

(6.13) 

Entries ( ).13i t sΦ −  are specified with the condition indicated on the 
right-hand side of (6.11). On the strength of (6.8), (6.12), and (6.13), this 
condition is equivalent to three equalities, which are the second ones in the 
following three relations 

( )ˆ 0 0, 1,2, ,i i ig E C i= + = = �  

( )ˆd 0
0, 1,2, ,

d
i i i i i i

i i

g E S C
i

t
ω

θ
Θ −

= − + = =
Θ

�  

( ) ( )2
2

2 2 2

2 1ˆd 0
1, 1,2, .

d
i i i i i ii i

i i

S Cg E
i

t

ω ω

θ

 − Θ + − Θ = + = =
Θ

�  

These systems are the ones for determination of parameters iE , iS , and iC . 
One can readily check that the corresponding solutions are 

( )2 2

1 , 1, 2, ,
1 1

i i
i i i

E C i
θ ω

= − = =
− Θ +

�  

( )1 1 1 , 1,2, ,i i i i
i

S A iθ
ω

= − Θ = �  

or, in view of (6.3) and (6.6), 
2 , 1, 2, ,i i iE C D iθ= − = = �                  (6.14) 

, 1, 2, ,i
i i

i

S E i
γ
θω

= = �                    (6.15) 

where 

 2 2 2 , 1, 2, ,i i iD iγ θ ω= + = �                   (6.16) 
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 ( )( )1 3 2 , 1,2, .i is iγ θ κ= − = �                 (6.17) 

Note that parameters (6.16) and (6.17) are physically dimensionless. The remark 
below is similar to Remark 6.2. 

Remark 6.4. As follows from the fist two bullets in Remark 6.1, Remark 6.2, 
and express- ions (6.15)-(6.17), relations 

 0lim 1, lim 1 4, 1,2, ,i i iθθ γ γ→∞↓ = = = �  

( ) ( ) ( ) ( )22 2
 0lim 0, lim 1 2 , 1,2, ,i i iD D s iθθ θ θ κ→∞↓ = = = �  

hold.                                                             
Remark 6.5. Three sequences { } 1i i

E
≥ , { } 1i i

S
≥ , and { } 1i i

C
≥  are expressed in 

terms of SRT θ , physically dimensionless function ( )M ⋅  (see (6.4)), and 
physically dimensionless sequence { } 1i i

sθ κ
≥  by means of (6.7) and (6.14)-(6.17).                                                     

 
We also not the following feature. 
Remark 6.6. As follows from (6.16), (6.2), the properties of function ( )M ⋅  

in Remark 6.1, and statement (vi), the asymptotic representation for iD  in the 
limit case as i →∞  is ( )22i iD sθ κ= .                                 

As is well known (e.g., [30], (401.02), (401.04)) 

( ) ( ) ( ) ( ) ( )sin sin cos cos sin , 1,2, ,i i i i it t t t t t iω ω ω ω ω∗ ∗ ∗− = − =   �  

( ) ( ) ( ) ( ) ( )cos cos cos sin sin , 1,2, .i i i i it t t t t t iω ω ω ω ω∗ ∗ ∗− = + =   �  

Substituting these expressions into (6.8) and taking into account the first entries 
of vectors (6.11), one obtains  

( )
( ) ( ) ( ) ( ){
( ) ( ) ( )} ( )

.13 *

*exp sin cos sin

sin cos cos exp , 1,2, ,

i

i i i i i i i

i i i i i i

t t

E t t C t S t t

S t C t t t t i

θ ω ω ω

ω ω ω

∗ ∗

∗ ∗ ∗

Φ −

 = − − + +    

 + − + × − − Θ =    �

 

which, after application of (6.14)-(6.17), become 

( )

( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( )}

.13 *

*

*

exp sin cos sin

sin cos cos exp , 1,2, .

i

i i i i i i
i

i i i i i
i

t t

t tD t t t

t tt t t i

θ θ θ ω γ ω ω ω

γ ω ω θ ω ω

∗ ∗

∗ ∗

Φ −

  −  = × − − −    Θ  
 −  + + × − =   Θ  

�

 

These expressions enable one to calculate the integrals in (5.16) as 

( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )

.13 * d , , sin

, cos , 1, 2, ,

t
i i i i

i

i i

t t a s s E t a S t a t
D

C t a t i

∨ ∨

∨

θ ω

ω

−∞
Φ − = ⋅ + ⋅

+ ⋅ =

∫

�
  

 (6.18) 

where 

( )( ) ( ) ( ) ( )* *, exp exp d , 1,2, ,
t

i i iE t a t t a t t i
∨

θ θ θ∗−∞
⋅ = − =∫ �     (6.19) 
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( )( )
( ) ( ) ( ) ( ) ( ) ( )* *

,

exp exp sin cos d ,
1,2, ,

i
t

i i i i i i

S t a

t t t t a t t
i

∨

θ ω γ ω ω∗ ∗ ∗−∞

⋅

 = − − Θ Θ − 
=

∫
�

(6.20) 

( )( )
( ) ( ) ( ) ( ) ( ) ( )* *

,

exp exp sin cos d ,
1, 2, .

i
t

i i i i i i

C t a

t t t t a t t
i

∨

γ ω ω θ ω∗ ∗ ∗−∞

⋅

 = − − Θ Θ + 
=

∫
�

 (6.21) 

In view of (4.5), the physical dimension of each of the coefficients (6.19)-(6.21) is 
acceleration. Relation (6.18) transforms (5.16) into  

( ) ( )( )

( )( ) ( )( ) ( ) ( )( ) ( )
( )21

,

, , sin , cos2 cos ,

0 .

i i i i i
ii

i i

P x t a t x h

E t a S t a t C t a t
x

h D
x h

∨ ∨ ∨

ρ

ω ω
κ

κ
∞

=

∆ = − × −


⋅ + ⋅ + ⋅ + 


≤ ≤

∑  (6.22) 

The derived analytical expression (6.22) explicitly shows the wave nature of 
the scalar stress propagating in layers of SLTs. The scalar stress presents the 
superposition of the space- or time-dependent sine and cosine waves with 
coefficients (6.19)-(6.21), which depend on time and the external-acceleration 
function with coefficients. 

A special advantage of expressions (6.22) and (6.19)-(6.21) is that they deal with 
the general case of the involved variables and parameters rather than selected 
particular examples. The general case enables any number of particular examples, 
which can present individual settings and be quantified by computing, thereby 
providing the input data for the corresponding visualization for illustrative 
purposes. Other related output acoustic variables (such as the pressure) have similar 
properties. The expression for the pressure based on solution (6.22) is discussed 
in Section 8, which also explains the convergences of the series in (6.22). 

Remark 6.7. The numerator in each of the ratios in (6.22) comprises three 
additive terms. Expressions (6.19)-(6.21), as well as (6.3), (6.6), and (6.17) show 
the following. 

The sum of the second and third of the three terms presents the 
harmonic-type oscillations with frequency iω , time-dependent amplitude  

( )( ) ( )( )2 2
, ,i iS t a C t a

∨ ∨

   ⋅ + ⋅    , 

and a time-dependent phase around zero. These oscillations are present, no 
matter if SRT θ  is positive (damped oscillations) or zero (undamped oscillations 
described with (2.10)). 

In contrast to that, the first of the three terms, namely (6.19), is present only if 
SRT θ  is positive. If the latter is zero, the term is also zero. This means that the 
first term is present if and only if the exponential-NSRF-originated memory 
function noted in Remark 2.3 is not neglected as, for instance, in the zero-SRT 
and zero-SRT-asymptote cases also noted in Remark 2.3. Notably, expression 
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(6.19) indicates that this term is, in contrast to the above harmonic, of the 
non-oscillatory form. As follows from its role in the aforementioned numerator, 
it creates a time-dependent shift of the above harmonic along the P∆ -axis, 
thereby producing the behavior and values of P∆  unavailable in the 
harmonic-type oscillations.                                           

The effect of the exponential-NSRF-originated memory-function terms 
discussed in Remark 6.7 is quantitatively illustrated with computer-simulation 
results in Section 9. 

Section 7 summarizes the exact analytical solution derived in the present 
section. 

7. Summary of the Expression for the Stress 

Boundary-value problem (3.1)-(3.3) describes the acoustic ANS propagating in 
an SLT layer due to the external time-dependent acceleration. The input data for 
this problem are listed in Remark 3.1. 

The exact analytical expression for the steady-state solution of the problem is, 
according to Remark 5.1, expression (6.22) (see also (4.5), (5.2), (6.16), and (6.17)) 
under Assumptions 4.1 and 5.1, and with coefficients (6.19)-(6.21). Parameters s , 

iκ , iθ , iΘ , and iω  are determined with (2.2), (5.2), (6.3), (6.6), and (6.7), 
respectively, in terms of the input parameters ρ , K , h , and θ . 

As follows from (6.22), the derived solution presents the superposition of the 
space- and time-dependent sine and cosine waves with the coefficients, which 
depend on the time and the external-acceleration function. Expression (6.22) is 
similar to the ones, which are well known in analysis of wave equations in 
acoustics (e.g., [4], Section 4 of Chapter IX). Thus, solution (6.22) explicitly 
shows the wave nature of the signals propagating in SLTs. 

The above analytical expression provides the explicit dependences of the solu-
tion not only on the space-time point ( ),x t  but also on each of the input 
parameters and the external-acceleration function. 

8. Expressions for the Steady-State Pressure. Convergences 
of the Corresponding Series 

As follows from Remark 3.1, in addition to solution (6.22), there is one more 
space-time-dependent output variable: the acoustic pressure. The corresponding 
expressions are derived in this section. 

Expression (6.22) presents the steady-state acoustic ANS. The related acoustic 
pressure ( )p t∆  can be obtained as the steady-state solution of ODE (2.8) 
regarded as the equation for ( )p t∆ . 

The steady-state solution of ODE (2.8) is  

( ) ( )

( )

*
* *

**
*

*

1, exp , d
2 2

,1 exp d , 0 .
2 2

t

t

t tp x t P x t t

P x tt t t x h
t

θ θ

θ

−∞

−∞

− ∆ = − ∆ 
 

∂∆− + − ≤ ≤  ∂ 

∫

∫
      

 (8.1) 
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We accept the following assumption. 
Assumption 8.1. Function ( , )P x t∆ , as a function of t at every fixed 
[ ]0,x h∈ , is uni- formly bounded in the entire t-axis.                       

Integrating the second integral by parts and taking into account Assumption 
8.1, one obtains that  

( )

( ) ( )

**
*

*

*
* *

,
exp d

2
1, exp , d , 0 .

2 2

t

t

P x tt t t
t

t tP x t P x t t x h

θ

θ θ

−∞

−∞

∂∆− −  ∂ 
− = ∆ − − ∆ ≤ ≤ 

 

∫

∫
     

 (8.2) 

Substitution of (8.2) into (8.1) leads to 

( ) ( ) ( )*
* *

1 1, , exp , d , 0 .
2 2 2

t t tp x t P x t P x t t x h
θ θ−∞

 −  ∆ = ∆ + − ∆ ≤ ≤  
  

∫  (8.3) 

In the limit case as 0θ ↓ , the integral in (8.3) tends to ( ),P x t∆ . 
Term ( ),P x t∆  in (8.3) is determined with (6.22) (see also (6.19)-(6.21)). 

Regarding the convergence of the series in (6.22), one can note the following. 
Remark 8.1. One can readily check that each of the coefficients (6.19)-(6.21) 

of the series in (6.22) is uniformly bounded in [ ]0,x h∈  and ( ),t∈ −∞ ∞ . 
Moreover, the i th term, 1,2,i = � , of the series in the limit case as i →∞ , is 
proportional to 4

iκ
−  or, equivalently (see (5.2)), to ( ) 42 1i −− . This follows from 

the denominator in (6.22), expression (6.16) and (6.17), the form of sine and 
cosine coefficients (6.20) and (6.21), statement (vi) in Section 6, and Remark 6.6. 
Since series ( ) 4

1 2 1i i −∞

=
−∑  converges (e.g., [30], 48.004), the series in (6.22) 

converges uniformly and absolutely in [ ]0,x h∈  and ( ),t∈ −∞ ∞ .          
Remark 8.1 shows that representation (6.22) is properly defined. 

9. Examples of the Computer Simulation Results along the 
Thickness of an Infinite Planar Layer of the Muscle Tissue 
of a Palm 

This section reports examples of computer simulation results obtained by means 
of computational implementation of the present modeling. The examples are 
based on the following values of the input parameters (see Remark 3.1) h , ρ , 
K , and θ : 210h −= , 31.04 10ρ = × , 92.2 10K = × , and *θ θ=  where  

4
* 0.95 10θ −= ×                        (9.1) 

The value of θ  is determined as described below. 
As follows from the discussion on pp. 1961 and 1966 in [7], the tissues 

indicated in Table 1 are generally anisotropic materials and the ranges of the 
values in this table can be due to this feature. Since the heart tissues are muscle 
tissues, the lowest value of G  for heart in Table 1, i.e., 360 10G = × , can be 
regarded as the one corresponding to the direction across the muscle fibers. The 
measured value of the shear viscosity of the in vivo bovine muscle fibers is 

5.7µ =  (e.g., see p. 59 in [32]). These values of G  and µ , in view of the 
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second equality in (1.2), result in value (9.1) of θ . 
The present work considers the three examples. They are based on the above 

values of h , ρ , and K  at different values of θ  indicated in the captions for 
Figures 1-12. The examples also differ with different external-acceleration 
functions of the following two forms 

( ) ( ){ }4

0, 0 or

10 1 cos 2π 2, 0

p

p p

t t T
a t

T t t T

< >=   − ≤ ≤  
        (9.2) 

( ) ( ){ }4

0, 0

10 1 cos 2π 2, 0p

t
a t

T t t

<=   − ≤  
           (9.3) 

where 0pT >  is the parameter of function ( )a t . More specifically, function 
( )a t  is: (9.2) at 510pT −=  in Example 1, (9.3) at 510pT −=  in Example 2, and 

(9.2) at 610pT −=  in Example 3. In all of the examples, the pressures in Figures 
2-10 and Figure 12 are calculated according to (8.3) where term ( ),P x t∆  is 
determined with (6.22). The countably infinite sum in (6.22) is replaced with the 
finite sum where the number of the terms is on the order of a few tens or 
hundreds, depending on specific example. 

For comparison of the quantitative results of the present modeling, the 
simulation with the multi-physics LS-DYNA software package is also carried out. 
According to [33], the corresponding settings are the following. 

The prediction of wave propagation in the SLT material is modeled with a 
two-dimensional plane strain finite-element model. The central-difference 
method is adopted. The numerical simulation model consists of a rectangular 
plate of the material with a height of 10−2, discretized with two-dimensional 
plane strain continuum elements. In order to make the simulation model 
comparable to the above one-dimensional simulation, a lateral displacement 
boundary condition is introduced, which reduces the model to a one-dimensional 
problem. In addition, a non-reflecting boundary condition is used at the lateral 
boundaries of the simulation model in order to prevent stress wave reflections, 
which otherwise would be generated at these boundaries. At the upper 
boundary, no boundary condition is applied, so that approaching pressure waves 
are completely reflected. The material-layer response is time and history 
dependent and is usually described by viscoelastic constitutive models, based on, 
in the simplest case, exponential stress relaxation functions. In the present 
one-dimensional version, shear relaxation phenomena are not present and such 
physical phenomena as strain rate dependence and bulk viscosity are not taken 
into account. Therefore, the material is described with a linear elastic isotropic 
material model with the aforementioned values of ρ  and K  (see the text 
above (9.1)). The tissue layer is accelerated at the bottom boundary with a single 
sinusoidal pulse (9.1). The pressure is evaluated at five discrete spatial points 
throughout along the height of the tissue layer to capture the transient 
propagation and subsequent reflection of the pressure wave at the top and 
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bottom. 
Analysis of Figures 1-12 enables one to indicate a few features. 
1) Comparison of Figure 1 and Figure 2, as well as Figure 11 and Figure 12 

shows that, in the cases of Examples 1 and 3 and at zero SRT, the computational 
results of the present work well agree with the purely numerical results obtained 
with the help of the LS-DYNA simulation package.  

2) The influence of different values of the SRT scaled with respect to value 
(9.1) is exemplified with the present results in Figures 3-10.  

Comparison of Figure 3 and Figure 4 indicate that the SRT value 

*0.001θ θ= ×  is that small that the pressure is very weakly affected by the SRT.  
The influence of the SRT upon the pressure is more pronounced in Figure 4, 

which corresponds to *0.003θ θ= × . 
Figures 5-9 corresponding to the SRT values *0.010θ θ= × , *0.030θ θ= × , 

*0.100θ θ= × , *0.300θ θ= × , and *1.000θ θ= × , respectively, show that these 
values indicate that the pressures well “feel’’ them. In Figures 5-7, one can even 
see how the pressures settle to zero. However, this settling cannot be seen in 
Figure 8 and Figure 9 because it takes place at the time values beyond the 
interval shown in the figures due to rather high SRTs, 40.285 10−×  and 

40.95 10−× .  
Figures 3-9 show that the damping of the pressure waves in an SLT is 

inversely proportional to SRT θ  at not very small θ  but is directly 
proportional to θ  if θ  is sufficiently small (cp., Figure 2 and Figure 3), and is 
not present at all if 0θ =  (see Figure 2). This picture is physically sound and 
remains valid not only for the pressure but also for other acoustic variables 
because it reflects the properties of the eigenvalues of matrixes (5.9) in (5.6) (see 
(6.6) and Remark 6.1). The mentioned dependence of the damping on SRT θ  
means that this dependence is nonlinear.  

3) Concerning the high maximums of the pressures in Figures 2-9, one can 
note the following.  

In the case of Figures 1-9, the external acceleration is (9.2) at 510pT −= , i.e., 
with the angular frequency  

52π 2π 10 628319pTω = = × ≈                  (9.4) 

As is well known (e.g., [4], (66) in Chapter IX), in the case where 0θ =  or, 
equivalently, PDE (2.7) is of the second rather than third order (e.g., see Figure 
1), the Fourier series for the solution includes the resonance terms proportional 
to ( ) 12 2

iω ω
−

−  where ω  is the angular frequency of the external signal (cp., 
(9.4)) and , 1, 2,i iω = � , are the natural angular frequencies of the system (cp., 
(6.7)). If there is such 1,2,i = �  that iω ω= , then the resonance occurs and the 
solution is infinite. None of these equalities takes place in the case corresponding 
to Figure 1, according to the present computational results. However, there are 
two natural angular frequencies, which are rather close to ω  (see Row 1 of 
Table 3). Consequently, the corresponding versions of ( ) 12 2

iω ω
−

−  contribute 
to the resonance-related increase in the amplitude of the solution.  
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Note that, in the case of Example 3 in Figure 11 or Figure 12, the external- 
acceleration angular frequency is an order higher than the one in the case of 
Example 1 in Figure 1 or Figure 2. Consequently, the frequency in Example 3 is 
an order away from the principal frequency and the one closest to it in Row 1 of 
Table 3. This feature contributes to the fact that the pressure amplitude in 
Example 3 (see Figure 11 or Figure 12) is significantly lower than the one in 
Example 2 (see Figure 1 or Figure 2) due to the reduced resonance effect.  

In the cases of Figures 2-9, SRT θ  is positive rather than zero and, thus, 
PDE (2.7) is of the third order. In each of these cases, there are also two natural 
angular frequencies, which are rather close to ω  (see Rows 2-8 of Table 3). 
However, the non-zero SRT values preclude the solution to become infinite, and 
the third order of the equation makes the resonance-effect dependences more 
complex. When the pressure weakly “feels’’ the SRT value, as is the cases of the 
behaviors in Figure 3 and Figure 4, the increase in the pressure amplitude is 
fairly small. When the pressure “feels’’ the SRT value well, as is the cases of the 
behaviors in Figures 5-9, the increase in the pressure amplitude is quite pro- 
nounced.  

Moreover, the fact that PDE (2.7) at positive SRT ( 0θ > ) is of the third rather 
than second order creates the time behaviors, which do not exist in the 
second-order, i.e., zero-SRT ( 0θ = ) case. Indeed, Remark 6.7 emphasizes the 
new components of the solution, which are due to the exponential-NSRF- 
originated memory function in (2.6) and time-dependently shift the oscillations 
along the P∆ -axis. These shifts, in view of (8.3), provide the time-dependent 
shifts along the p∆ -axis as well. Since the single pulse in Example 1 (see (9.2)) 
and each pulse in the pulse sequence in Example 2 is positive, the shifts are in 
the positive direction of the p∆ -axis (e.g., they, in particular, increase positive  

 
Table 3. The pairs of the angular natural frequencies of the solution of the model in the 
case of Example 1, which are closest to the external-acceleration angular frequency (9.4). 
The values of the SRT correspond to the ones for Figures 1-12. These values present the 
fractions of the SRT value *θ  (see (9.1)), which is discussed at the beginning of Section 
9. The fractions are indicated in the left column. The data in the middle and right 
columns are obtained in the present approach. 

SRT θ  
Pair of the angular  
natural frequencies 

Is the smallest of the two  
frequencies the principal one? 

1 
*0.000 θ×  228,463, 685,389 yes 

2 
*0.001 θ×  228,499, 686,478 yes 

3 
*0.003 θ×  228,826, 695,624 yes 

4 
*0.010 θ×  232,716, 816,686 yes 

5 
*0.030 θ×  272,229, 949,518 yes 

6 
*0.100 θ×  317,753, 967,498 yes 

7 
*0.300 θ×  322,499, 969,085 yes 

8 
*1.000 θ×  323,041, 969,266 yes 
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amplitudes). These effects are especially clearly seen in Figures 5-9. The 
presented behaviors and values of ( ),p x t∆  unavailable with common wave 
PDE (2.10) or the Stokes-type PDE (2.9).  

One should also note that the compressions and rarefactions in an SLT, which 
are associated with an oscillatory pressure, can cause lesions in it. The above 
shifts in the pressure oscillations lead to the pressure values that cannot be 
described in terms of familiar wave equations. Thus, the effects of the 
NSRF-originated memory function provided by the present, third-order PDE 
model are of importance for proper evaluation of the risks of formation of 
lesions in SLTs.  

4) The aforementioned figures illustrate how the pressure damps to zero if the 
external acceleration damps to zero (see (9.2)). If the acceleration does not damp 
to zero, for example, is periodic at positive values of the time (see (9.3)), the 
pressure does not damp to zero either, and the shape of its damping is more 
complex.  

Figure 10 corresponds to the SRT value of 50.285 10−× , i.e., the same one 
related to Figure 6. Figure 10 shows that the pressure damps to periodic 
oscillations rather than zero, as is the case in the behavior in Figure 6. The 
time-dependent shifts along the p∆ -axis in its positive direction are already 
commented in the next to last paragraph of the above Point 3. Comparison of 
Figure 10 and Figure 6 illustrates that the shape of the acceleration, even at the 
same key parameters (such as the amplitude and frequency), in general affects 
the outcome of the pressure damping.  

5) The above results are obtained in the exponential approximation for NSRF 
( )ψΨ  (see the text above (2.6)). The exponential dependence qualitatively 

correctly represents the behaviors of the NSRF of more complex shapes. 
Consequently, the qualitative aspects of the obtained results remain valid in the 
general case where the NSRF need not be exponential. Also, since NSRF ( )ψΨ  
enters the general PIDE (2.1) under the sign of integral, the errors of one or 
another approximation for the NSRF affect the quantitative behaviors of the 
acoustic ANS ( ),P x t∆  and, thus (see (8.3)), the acoustic pressure ( ),p x t∆  
not very significantly. We also note the following. 

Remark 9.1. In view of the value 92.2 10K = ×  (see above) and relation (2.4), 
the pressure values in Figures 1-12 meet requirement (2.4). This shows that, in 
all of the mentioned cases, the linearity of the present model is adequate.      

Remark 9.2. The present work assumes that the soft tissue under 
consideration is linearly viscoelastic. The work emphasizes condition (2.4) for 
the linear-model adequacy and check it with the obtained results. It appears that 
the linear-model results are adequate. 

In contrast to that, work [22] assumes that the viscoelastic soft tissues, which 
are under consideration in it, are non-linearly elastic. The work calculates all of 
the entries of the strain matrix in the frequency domain. This matrix is used in 
the frequency-domain version of relation (2.5). However, work [22] does not 
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check, e.g., in the way specified in Remark 2.2, if the results of [22] violate 
condition (2.4) for the linear-model adequacy at least at a single space-time 
point. This leaves the need in the elastic model of work [22] to be nonlinear 
beyond the scope. Consequently, the purpose of the nonlinear model underlying 
[22] remains elusive. As is well known, nonlinearity of models significantly 
complicates not only both qualitative and quantitative analyses but also a mea-
ningful interpretation of their results.                                   

Remark 9.3. Work [22] dealing with a nonlinear acoustic model in the 
frequency domain notes a few peaks of the displacement in the finger soft tissue 
and interprets them as the resonance ones. However, the work does not include 
analysis sufficient for this interpretation. 

Indeed, the nature of nonlinear systems is much more complex than the one 
of linear systems. In general, a peak in the frequency behavior of a scalar variable 
of a non-linear system need not be a manifestation of resonance. From the point 
of view of physics, resonances in both linear and nonlinear systems are defined 
by whether or not the external-signal frequency coincides with, or close to, one 
of the (generalized) natural frequencies of the system (e.g., [34], Section 29, [35]). 
However, work [22] does not show that the above peaks result from the 
coincidence (or proximity) of the external-signal frequency and one of the 
generalized natural frequencies. In other words, no natural frequency is derived 
or at least approximately estimated. This is in a striking contrast with what is 
discussed in the above Point 3 in connection with the natural frequencies listed 
in Table 3. Thus, the resonance reading in [22] needs a substantial extra devel-
opment.                                                          

One can also note that paper [22] formulates other conclusions, which are in 
fact at the hypothesis level. For example, this paper, by means of computer 
simulation, studies the behavior of the finger-tissue strain in the frequency 
interval 316,2 10 ×   (that does not contain values 105 and 106 used in the 
above Examples 1 - 3). The conclusion of [22] is that the strain is concentrated 
in the skin tissue (at the soft-tissue depth less than 10−3) at all frequencies in the 
range ( )310 ,∞  (see [22], p. 726). The reason why this interval includes not only 
interval ( 3 310 ,2 10 ×  , which is a part of the above range 316,2 10 ×  , but also 
interval ( )32 10 ,× ∞ , which is not considered in [22] at all, is unknown. 

The results of the present works are summarized in the next section. 

10. Conclusion 

As is well known, hand-arm vibration syndrome (HAVS), or vibration-induced 
white finger (VWF), which is a secondary form of Raynaud’s syndrome, is an 
industrial injury triggered by regular use of vibrating hand-held tools. According 
to the related biopsy tests (see the corresponding references in Appendix), the 
main vibration-caused lesion is an increase in the thickness of the artery walls of 
the small arteries and arterioles resulted from enlarged vascular smooth muscle 
cells (VSMCs) in the wall layer known as tunica media. The threefold purpose of 
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the work formulated in Points (1)-(3) in Section 1.2 is achieved. More 
specifically, the outcomes of the work include the following key components. 
• The present work develops a mechanobiological picture for the cell enlargement. 

The work deals with acoustic variables in solid materials, i.e., the non-equilibrium 
components of mechanical variables in the materials in the case where these 
components are weakly non-equilibrium. The work derives an explicit 
expression for the infinite-time cell-volume relative enlargement. This 
enlargement is directly affected by the acoustic pressure in the SLT. In order 
to reduce the enlargement, one can reduce either the ratio of the acoustic 
pressure in the SLT to the cell bulk modulus or the relaxation time induced 
by the cell osmosis, or both the characteristics. Also, the mechanobiological 
picture shows a mechanoprotective role of the above relaxation time in the 
cell-volume maintenance.  

The mentioned results focus attention on the acoustic pressure and, thus, 
modeling of propagation of acoustic waves caused by the acceleration of a 
vibrating hand-held tool. This topic is addressed by the results listed below.  
• The present work analyzes the propagation along the thickness of an infinite 

planar layer of an SLT. The work considers the modeling in the time domain 
(rather than the frequency domain) only. As a general viscoelastic acoustic 
model, the work suggests linear non-stationary partial integro-differential 
equation (PIDE) (2.1) for the weakly non-equilibrium component of the 
average normal stress (ANS) or, briefly, the acoustic ANS that was derived in 
[17]. This equation explicitly includes the normalized stress-relaxation 
function (NSRF).  

The unique advantage of Equation (2.1) is that it presents a compact model 
for the acoustic ANS in an SLT, which explicitly includes the NSRF, thereby 
enabling a consistent description of the lossy-propagation effects inherent in 
SLTs. A more simple equation, the third-order linear non-stationary partial 
differential equation (PDE) (2.7) of the Zener type, has the same advantage, 
however, only in the case where the NSRF is of the exponential type.  
• The one-spatial-coordinate version (3.1) of PDE (2.7) in the SLT layer with 

boundary conditions (3.2) and (3.3) is considered. The relevance of these 
settings is motivated by a conclusion of other authors on the results of the 
frequency-domain simulation in three spatial coordinates. The 
boundary-value problem (3.1)-(3.3) at arbitrary value of SRT 0θ ≥  and 
arbitrary but sufficiently regular shape of the external acceleration is 
analytically solved by means of the Fourier method. The obtained solution is 
the steady-state acoustic ANS. It allows calculation of the corresponding 
steady-state acoustic pressure with (8.3).  

• The derived analytical representations are computationally implemented in 
simulation software. Propagation of the pressure waves in the SLT layer at 
zero and different nonzero values of the SRT and the single-pulse external 
acceleration is illustrated by the corresponding simulation results. They 
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complement the zero-SRT and zero-SRT-asymptote results with the results 
for various values of the SRT.  

• The obtained pressure values are, at all of the space-time points under 
consideration, meeting the condition for the adequateness of the linearity of 
the applied model.  

• It is shown that, in the case where 0θ = , the obtained quantitative results 
well agree with the ones obtained by numerical simulation with the help of 
the LS-DYNA software package.  

• The influence of values of SRT θ  is discussed in terms of the obtained 
quantitative results and graphic illustrations. It is shown that dependence of 
the damping of acoustic variables in an SLT on θ  in the present, third-order 
case significantly generalizes the one in the second-order linear systems. This 
picture is consistent and physically sound. Also, the related resonance effect 
in the waves of the acoustic pressure propagating in an SLT is discussed. It is 
explained in terms of the angular frequency of the external acceleration and 
specific values of the angular natural frequencies. The latter are computed in 
the present approach but are difficult to be determined within the frame of 
purely numerical simulation software.  

• There are the solution components, which are new with respect to the 
zero-SRT and zero-SRT-asymptote cases and are due to the effects of the 
NSRF-originated memory-function. The role of the new components is 
discussed in connection with the shifts of the pressure plots along the 
pressure axis. The memory-function effects provided by the present, 
third-order PDE model are of importance for proper evaluation of acoustic 
variables in SLTs. 

• It is found that, in general, a combination of the resonance effects and the 
effects of the above damping-only components complicate the space-time 
behaviors of the acoustic ANS and acoustic pressure.  

The results mentioned in the above bullets, with the exception of the first one, 
are obtained in the exponential approximation for the NSRF. More general cases 
where the NSRF shape need not be exponential can also be targeted. However, it 
is explained that the results based on the exponential approximation are correct 
qualitatively and can be acceptable quantitatively. 

The outcomes of the main part of the work, in conjunction with the 
mechanobiological picture developed in Appendix, present a viscoelastic acoustic 
framework for SLTs. This framework opens a way to quantitatively specific 
evaluation of technological strategies for reduction of the vibration-caused 
injuries or, loosely speaking, for achieving “zero’’ injury. This evaluation is 
suggested as the topic for the nearest future research. 
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Appendix. Main Vibration Injuries in an SLT, the 
Corresponding Mechanobiological Picture,  
and the Role of a Time-Varying Acoustic Pressure 

The VWF injuries or, in a more professional language, lesions in human fingers 
are well known. They are described in work [36] in terms of the data obtained by 
means of biopsy tests. This work notes ([36], p. 280) that the main lesion is an 
increase in the thickness of the artery walls of the small arteries and arterioles 
resulted from muscular hypertrophy. As is shown in Figure 13, the muscular 
content of the artery wall is the wall layer known as tunica media and formed by 
vascular smooth muscle cells (VSMCs). More specifically ([36], pp. 280-281), the 
thickening of the tunica media is identified by the presence of hypertrophied 
nuclei and an increased cytoplasmic bulk of the cells, i.e., enlargement of 
VSMCs. 

Paper [37], which is also based on the biopsy-test data, studies the 
enlargement of VSMCs in the small arteries as well. It deals with the arteries in 
the inner layer of the skin, i.e., the layer of subcutaneous fat. As follows from the 
measurement data in ([37], Table 2), the enlarged VSMC presents a significant 
lesion when the volume of an enlarged cell 1.5 times greater than the volume of a 
normal cell. 

The mentioned results of biopsy tests mean that populations of the enlarged 
VSMCs present long-lasting lesions. To the best of our knowledge, the literature 
does not provide facts on that these lesions, in the course of time, return to 
normal states (i.e., the enlarged-cell volumes return to their normal values). In  

 

 
Figure 13. The structure of an artery wall [46]. 

https://doi.org/10.4236/jamp.2017.510169


E. Mamontov, V. Berbyuk 
 

 

DOI: 10.4236/jamp.2017.510169 2036 Journal of Applied Mathematics and Physics 
 

this respect, the mentioned populations are similar to other long-lasting lesions 
such as scars or other infiltrates in chronic inflammation, and lesions caused by 
homeorhetic dysfunctions. The infiltrates and the notion of a homeorhetic 
dysfunction are discussed, for example, in [38] and a number of the references 
therein. 

The skin of the VWF patients also contains lesions. The experimental studies 
of [39] show a significantly reduced skin blood perfusion. In the light of works 
[36] and [37], the reduced perfusion can be explained with the aforementioned 
artery-wall thickening caused by an increase in the volumes of VSMCs. Other 
lesions in the VWF skin are described in [40]. 

As is well known, fingers, in contrast to palms, do not contain muscles (other 
than arrector pili). The soft tissues of a finger comprise the epidermis, dermis, 
and subcutaneous tissue. The soft tissues of a palm include the muscle tissue as 
well. The lesions in fingers of the VWF patients are also present in palms, first of 
all, in the palm regions neighboring the fingers (e.g., [39]). 

Thus, the vibration injuries to be prevented are VSMCs with noticeably 
increased volumes or, briefly, enlarged VSMCs. Enlargement of a cell is literally 
a geometric effect. It has a number of mechanical implications. However, the 
fact that, as is noted above, enlargement of the cells was emphasized by 
histopathologists (e.g., [36] [37]) endows this phenomenon with a critical 
biomedical content. It indicates the mechnobiological nature of HAVS/VWF. 

In order to provide the aforementioned prevention, it is necessary to develop 
a quantitative acoustic model that would include the influence of the 
acceleration of the vibrating hand-held tool upon the volumes of VSMCs. The 
questions to be answered on the way to this model are the following.  

1) What characteristics of an SLT directly influence upon enlargements of the 
cells in the SLT?  

2) How specifically is the mentioned influence implemented?  
3) How can one reduce the resulting enlargements of the cells?  
The answers to all of these questions are suggested in the present section. It 

deals with a cell, which is located at fixed spatial point x in an SLT, and acoustic 
pressure ( ),p p x t∆ = ∆  in the SLT (see (8.3)). In what follows, we, for brevity, 
do not explicitly indicate the dependences on x but acknowledge their presence 
by denoting the time differential as the partial differential t∂ . 

Let ( )c cV V t=  and cK  be the volume and bulk modulus of the cell, 
respectively. We also consider the pressures ( ),c cp p x t=  and ( ),if ifp p x t=  
in the cell and the interstitial fluid (IF) surrounding the cell in the SLT. The 
equilibrium versions of these pressures are denoted with ( )c cp p x=  and 

( )if ifp p x= . Then the corresponding acoustic pressures are expressed as  

,c c c if if ifp p p p p p∆ = − ∆ = −                 (A.1) 

where the sign “overline’’ denotes the equilibrium version of the corresponding 
quantity. This convention is used down to the end of the present section. 

As is assumed above (see (2.4)), the SLT is a linear solid. Similarly, we regard 
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the cell as a solid body and assume that it is also a linear solid, i.e.,  

1c cp K∆ �                        (A.2) 

Note that the property (A.2) also means (e.g., [5], (1.13), (1.38)) that  

1cε �                           (A.3) 

where  

( )c c c cV V Vε = −                      (A.4) 

is the relative change of the cell volume. 
Taking into account the linearity and the well-known continuum-mechanics 

result ([41], (2.8.22)), one can check that  

1c c
c c

c

V p
V

t K t
∂ ∂∆

+ = −Φ
∂ ∂

                   (A.5) 

where cΦ  is the cell-volume rate due to the phenomena that are not 
represented with the terms on the left-hand side. This rate is expressed with the 
well-known Starling equation (e.g., [42], (3.4); see also (3.2))  

( )* *
c c c c if c B c ifH S p p k T n nσ Φ = − − −               (A.6) 

where cH  is the hydraulic conductance of the semi-permeable membrane of 
the cell, cS  is the area of the cell-membrane surface, cσ  is the reflection 
coefficient of the cell membrane (e.g., [42], Section 3.4.3, [43]), which is 
dimensionless and is such that 0 1cσ< ≤ , Bk  is the Boltzmann constant, T  
is the absolute temperature of the tissue, *

cn  is the total concentration of the 
solutes in the intracellular fluid (ICF) of the cell, and *

ifn  is the total 
concentration of the solutes in the IF. A discussion on the solutes in the IF and 
ICF can be found in [42] (see also [42], Table 3.2). The term in the parentheses 
in (A.6) corresponds to the difference of the osmotic pressures in the cell and IF. 

Note that the sign “minus’’ in front of the term (A.6) in equation (A.5) is due 
to the well-known facts (e.g., [42], p. 100). 

If the term in the brackets in (A.6) is positive, there is a flow of fluid from the 
ICF into the IF. This flow decreases the cell volume. 

If the term in the brackets in (A.6) is negative, there is a flow of fluid from the 
IF into the ICF. This flow increases the cell volume. 

At equilibrium, the term in the brackets in (A.6) is zero, i.e.,  

( )* * 0c if c B c ifp p k T n nσ− − − = . Rewriting (A.6) in terms of (A.1) and allowing 
for the latter equality, one obtains 

 ( ) ( ) }{ * * * * .c c c c if c B c c if ifH S p p k T n n n nσ  Φ = ∆ −∆ − − − −          (A.7) 

We assume that concentration *
ifn  remains unchanged, i.e.,  

* *
if ifn n=                          (A.8) 

and the number of the solute molecules in the ICF, *
c cn V , remains unchanged as 
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well that results in  

( )* * .c c c cn n V V=                       (A.9) 

Combination of (A.7)-(A.9) enables one to present Equation (A.5) as follows 

( ) }{ *1 1 .c c
c c c c if c B c c c

c

V p
V H S p p k Tn V V

t K t
σ

∂ ∂∆  + = − ∆ − ∆ − − ∂ ∂
   (A.10) 

This equation includes three acoustic pressures: p∆ , which is modeled in the 
main text of the present work, as well as cp∆  and ifp∆ , which are not 
modeled in the work. In order to simplify Equation (A.10) to the form where the 
available pressure is the only one, which is used, we assume that cp p∆ = ∆  and 

c ifp p∆ = ∆ . These relations transform (A.10) into 

 ( )*1 1c c
c c c B c c c c

c

V p
V H k Tn S V V

t K t
σ

∂ ∂∆  + = − ∂ ∂         
 (A.11) 

The cell enlargement develops approximately at the same proportion along 
each of the three spatial axes (e.g., see the experimental data on the VSMC 
enlargement in ([37], Table 2)). This means that  

( ) ( )1 2 1 3

c c c c c cS S S V V V   − = −    or, in terms of (A.4),  

( )2 31c c cS S ε= +
                    

 (A.12) 

Substituting (A.4) into (A.11) and (A.12), one obtains  

( ) ( )* 2 31 1 1
1

c c
c c c c c B c c c

c c

pV V H k Tn S
t K t
ε ε

ε σ ε
ε

∂ ∂∆
+ + = − +

∂ ∂ +
 

or, equivalently, 

 
2 311 1 1

1
c c

c c
c c c c

p p
t K t K t
ε ε

ε ε
τ ε

∂ + ∂∆ ∂∆
= − − −

∂ + ∂ ∂  
         (A.13) 

where  
1 *

c c c B c c cH k Tn S Vτ σ− =                   (A.14) 

is the relaxation time induced by the cell osmosis. We consider ODE (A.13) in a 
semi-infinite time interval ot t>  under the initial condition that the cell volume 
is at equilibrium at point ot t= , i.e. (see (A.4)),  

0.
oc t tε

=
=                         (A.15) 

Example A.1. According to experimental study in [37], VSMCs have the 
shapes that can approximately be described as elongated cylinders (e.g., see [37], 
Table 2). In the case of a normal VSMC, the cylinder cell volume is 

152.05 10cV −≈ × , and the cell has the length of 672.2 10−×  and the radius of 
about 63 10−× . The corresponding cell-surface area cS  is estimated as 

91.42 10−× . Consequently, value (A.14) is  
1 * 61.44 10c c c B cH k Tnτ σ− ≈ × × .                (A.16) 

Next, at normal human temperature of about 37˚C, 310T = . This results in 
214.28 10Bk T −≈ ×  that transforms (A.16) into  
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1 * 156.16 10 .c c c cH nτ σ− −≈ × ×                  (A.17) 

Parameter cH , the hydraulic conductance of the VSMC membrane, can be 
taken from [44]. Indeed, according to Fig. 2(b) in [44] on the basal-cell case, 

6
21.18 10 cm s cm H OcH −≈ × , i.e. (e.g., [45]), 101.2 10cH −≈ × . Substituting this 

value into (A.17), one obtains  
1 * 257.39 10c c cnτ σ− −≈ × ×                   (A.18) 

We assume that the well-known typical value of c cnσ  for an intracellular 
fluid (e.g., [42], the last column in Table 3 and Section 3.4.3) is applicable to the 
case of a VSMC. This value is 281.3 mOsmc cn Lσ ≈  or, in terms of the 
volumetric number density, 2516.94 10c cnσ ≈ × , that specifies (A.18) to 

1 125cτ
− ≈ , i.e., 38 10cτ

−≈ × . This value can be used as a preliminary estima-
tion.                                                           

Remark A.1. Multiplying Equation (A.13) considered in interval ot t>  by to 

cτ  and passing in the resulting equation to the limit as 0cτ ↓ , one obtains that 
0cε =  at all ot t> . This result and (A.15) lead to property  

0lim 0,
c c ot tτ ε↓ = ≥                    (A.19) 

It indicates that the cell osmosis plays a mechanoprotective role in the 
cell-volume maintenance.                                             

We note note a few features of the problem under consideration. 
Vibrating hand-held tools (e.g., impact wrenches outlined in Section 1) are 

usually used in such a way that the periods when the tool is active (continuously 
functions) alternate with the periods when the tool is inactive (does not 
function). Any of the activity periods is bounded and the total number of them 
is finite. In each of the inactivity periods, acceleration ( )a t  in (6.22) is a 
function with bounded support, and thus P∆ , and, in view of (8.3), p∆  
exponentially tend to zero (cp., (6.19)-(6.22)). In view of these features and the 
fact that p∆ , as function of time, is uniformly bounded (e.g., see (A.2)), 
property  

( )* *lim d
o

t

tt
p t t

→∞
∆∫  exists and is finite,           (A.20) 

holds. It in particular implies that  

( )lim 0t p t→∞ ∆ =                      (A.21) 

Vibrations, which are produced by the handles of active hand-held tools on 
the fingers of the users, present series of more or less regular pulses of the 
acoustic pressure in the finger SLT ( )p t∆ , which are compressive, i.e.,  

values of ( )p t∆  at all ot t≥  are predominantly positive;             
this feature is illustrated with any of Figures 3-10.        (A.22) 

As is noted in the second paragraph of the present section, an enlarged cell is a 
significant lesion if its volume is about 1.5 greater than the volume of a normal 
cell. This figure corresponds to 0.5cε ≈ . However, such lesions become 
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measurable only after a sufficiently long time of use of the vibrating tools. More 
specifically, the cell enlargement is an additive effect of a large number of the 
activity periods, i.e., a significant relative enlargement is achieved as the result of 
a long series of enlargements for small amounts. This means that it is sufficient 
to consider ODE (A.13) at small values of cε  prescribed by (A.3) in any period 
of the tool activity. This leads to reduction (A.13) to equation  

1 1 1c
c

c c c

p p
t K t K t
ε

ε
τ
 ∂ ∂∆ ∂∆

= − + − ∂ ∂ ∂ 
             (A.23) 

which is a linear ODE. 
The solution on the initial-value problem (A.23), (A.15) are studied in the 

following theorem. 
Theorem A.1. Let ( )R t  be the range of function ( )p t∆  in interval [ ],ot t , 

i.e.,  

( ) ( ) ( ) , oR t M t m t t t= − ≥ ,                (A.24) 

where 

( )
[ ]

( ) ( )
[ ]

( )
* *

* *, ,
min , max , .

o o
ot t t t t t

m t p t M t p t t t
∈ ∈

= ∆ = ∆ ≥
       

 (A.25) 

It is assumed that  

 ( ) 1, .c oR t K t t≥�                    (A.26) 

We also accept notation  

. limc t cε ε∞ →∞=                      (A.27) 

Then the following assertions are valid. 
(i) The solution of initial-value problem (A.23), (A.15) is  

( ) ( )

( ) ( )

*
*

1 exp

exp 1,

o

t

c
c c ct

oo
o

c c

p t p tt t t
K

p t p tt t
t t

K

ε
τ τ

τ

∗ ∆ − ∆ − = − + ∂  
   

  ∆ − ∆− + − + − >  
   

∫
        (A.28) 

(ii) Inequalities  

( ) ( ) ( ) ( )
exp 1 exp 1,c o

c c

m t p t M t p t
t t

K K
ε

− ∆ − ∆   
− ≤ ≤ − ≥   

   
    (A.29) 

( ) ( )exp 1 exp 1,c c c oR t K R t K t tε− − ≤ ≤ − − ≥            
 (A.30) 

hold. 
(iii) Linear ODE (A.23) is applicable.  
(iv) Relation  

( )*
.

1lim exp 1
o

t

c t
c c ct

p tt t t
K

ε
τ τ

∗
∞ ∗→∞

 ∆ − = − + ∂ −  
   

∫          (A.31) 
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is valid. 
Proof. According to theory of non-autonomous linear ODEs, the solution of 

initial-value problem (A.23), (A.15) is  

( )

( ) ( )

*

*
** *

*
*

1exp

1exp , ,

o

o o

t
o

c
c c ct

tt
o

o
c c ct t

p tt t
t

K K

p t p tt t tt t t
K t Kt

ε
τ

τ

∗

∗

∗

  ∆− = − − + ∂  
    
 ∂∆ ∂∆− ∂ × + ∂ >

∂∂  

∫

∫ ∫
 

or, equivalently,  

( ) ( )

( )*
**

**
*

exp

1exp exp ,
o

o

oo
c

c c

t
t o

ot
c c t

p t p tt t
K

p tt t
t t t t

t K t

ε
τ

τ

∗

  ∆ − ∆− = − − +  
   

 ∂∆ − ∂  × ∂ ∂ >  ∂ ∂    
∫∫

    (A.32) 

Calculating the integral, which is the second multiplier in (A.32), by parts, one 
obtains 

( )

( )

( )

*
**

**
*

*
**

*

*
**

**
*

1exp exp

1exp exp

1exp exp ,

o o

o
o

o o

tt
o

c ct t

t
t

o

c c t
t

tt
o

o
c ct t

p tt t
t t

t K t

p tt t
t

K t

p tt t
t t t t

t K t

τ

τ

τ

∗

∗

∗

 ∂∆ − ∂  ∂ ∂  ∂ ∂    

  ∂∆ −  = ∂  
∂     

 ∂∆  −∂  − ∂ ∂ >  ∂ ∂      

∫ ∫

∫

∫ ∫

 

that is 

 

( )

( ) ( )

( ) ( )

*
**

**
*

**
*

1exp exp

exp 1

1 exp ,

o o

o

tt
o

c ct t

oo

c c

t
oo

o
c c ct

p tt t
t t

t K t

p t p tt t
K

p t p tt t
t t t

K

τ

τ

τ τ

∗ ∂∆ − ∂  ∂ ∂  ∂ ∂    
 ∆ − ∆−

= + − 
 

 ∆ − ∆−
− + ∂ > 

 

∫ ∫

∫
       

 (A.33) 

Substitution of (A.33) into (A.32) results in (A.28). This proves assertion (i). 
Inequalities (A.29) follow from the from of the right-hand side of (A.28) and 

notations (A.25), (A.24). Inequalities (A.30) follow from (A.29) and also 
notations (A.25), (A.24). This proves assertion (ii). 

In order to prove assertion (iii), it is sufficient to note that application of 
assumption (A.26) to inequalities (A.30) assures relation (A.3), which, as is 
explained in the text above equation (A.23), makes this equation valid. 

Passing to the limit as t tends to infinity in (A.28) and taking into assumption 
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(A.26), notations (A.24), (A.25), and limit relation account (A.21), one obtains 
(A.31). This completes both the proofs of assertion (iv) and the theorem.      

In view of (A.27), the infinite-time value .cε ∞  (see (A.31)) presents the 
infinite-time residual value of the cell volume. In view of (A.22), one should 
expect that the limit in (A.31) is greater than unit and, thus,  

. 0cε ∞ >                         (A.34) 

i.e., the above residual value corresponds to the relative enlargement of a cell.  
Remark A.2. The main result of the present section is the explicit expression 

(A.31) (see also (A.34)) for the infinite-time value .cε ∞  of the cell-volume 
relative enlargement in terms of: 
• cτ , the relaxation time induced by the cell osmosis and described with 

(A.14);  
• cK , the bulk modulus of the cell;  
• ( )p t∆ , the acoustic pressure (see (8.3)) in the SLT, which includes the cell 

under consideration. 
Parameter cK  and the parameters underlying ( )p t∆  are mechanical. 

Concerning cτ , one can note that definition (A.14) of this parameter also 
includes mechanical parameters, namely cV , cS , Bk , and T . However, the 
three other parameters in (A.14), namely 
• cH , the hydraulic conductance of the semi-permeable membrane of the cell;  
• cσ , the reflection coefficient of the cell membrane;  
• *

cn , the equilibrium value the total concentration of the solutes in the ICF of 
the cell;  

are biological. Thus, expression (A.31) provides an explicit picture of the 
combined, mechanobiological effect on the infinite-time value .cε ∞  of the 
cell-volume relative enlargement. This picture indicates that .cε ∞  is directly 
proportional to both the ratio ( ) cp t K∆  (see (A.26) and cτ  (cp., Remark 
A.1). 

The developed mechnobiological picture for the cell enlargement can be 
summarized in terms of the answers to questions (1)-(3) formulated in the text 
above (A.1) as follows. 

According to (A.31), an acoustic variable in an SLT that directly affects the 
cell enlargement is acoustic pressure p∆  in the SLT. This is the answer to 
quation (1). 

Expression (A.31) also provides the answer to question (2). Indeed, the role of 
p∆  is specified with (A.31). 
The corresponding answer to question (3) is the following. In order to reduce 

the cell enlargement, one can reduce either the ratio of the acoustic pressure in 
the SLT to the cell bulk modulus or the relaxation time induced by the cell 
osmosis, or both the characteristics. 

Also, the mechanobiological picture shows a mechanoprotective role of the 
above relaxation time in the cell-volume maintenance. In particular, in the 
idealized case as this relaxation time tends to zero, the cell volume remains un-
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changed (see Remark A.1).                                           
Design of future vibtrating hand-held tools often focuses on improvement of 

the vibration characteristics, for example, on reduction of ( )p t∆ . However, 
these activities cannot be regarded successful until the effect of the improvement 
is estimated from either biopsy tests of the fingers of the persons who used the 
advanced tools (which is highly resource and time consuming) or, at least, from 
quantitative simulation in accordance with the summary formulated in Remark 
A.2 (which is much more affordable).                                   
 

 

 
 
 
 
 
 

Abbreviations 

ANS average normal stress  
HAVS  hand-arm vibration syndrome  
KV  Kelvin-Voigt  
LNS  linear nonstationary  
NSRF  normalized stress-relaxation function  
ODE  ordinary differential equation  
PDE  partial differential equation  
PIDE  partial integro-differential equation  
SLT  soft living tissue  
SRT  stress-relaxation time  
VWF  vibration-induced white finger 
 
 
 

 

https://doi.org/10.4236/jamp.2017.510169

	Propagation of Acoustic Waves Caused by the Accelerations of Vibrating Hand-Held Tools in Viscoelastic Soft Tissues of Human Hands and a Mechanobiological Picture for the Related Injuries
	Abstract
	Keywords
	1. Introduction
	1.1. State of the Art in Propagation of Acoustic Waves in Soft Solids
	1.2. Beyond the State of the Art. Purpose of the Work
	1.3. Topics of the Subsequent Sections and an Outline of the Present Approach

	2. Acoustic Equation for the Scalar Stress in Soft Living Tissues
	3. Boundary Conditions for the Stress in the Case of an Infinite Planar Layer of a Soft Living Tissue
	4. Transformation of the Boundary-Value Problem for the Stress to the One with Homogeneous Boundary Conditions
	5. Exact Analytical Expression for the Steady-State Stress
	6. Expression for the Stress in Terms of the Input Data Only
	7. Summary of the Expression for the Stress
	8. Expressions for the Steady-State Pressure. Convergences of the Corresponding Series
	9. Examples of the Computer Simulation Results along the Thickness of an Infinite Planar Layer of the Muscle Tissue of a Palm
	10. Conclusion
	Acknowledgements
	References
	Appendix. Main Vibration Injuries in an SLT, the Corresponding Mechanobiological Picture, and the Role of a Time-Varying Acoustic Pressure
	Abbreviations

