
Advances in Internet of Things, 2017, 7, 121-138
http://www.scirp.org/journal/ait

ISSN Online: 2161-6825
ISSN Print: 2161-6817

DOI: 10.4236/ait.2017.74009 Oct. 19, 2017 121 Advances in Internet of Things

Analysis of Impactful Factors on Performance
in Combining Architectural Elements of IoT

Shinji Kikuchi1, Shodai Watanabe1, Takahiro Kenmotsu1, Daishi Yoshino1, Akihito Nakamura1,
Takafumi Hayashi2

1Research Center for Advanced Information Science and Technology, University of Aizu, Aizuwakamatsu, Japan
2Faculty of Engineering, Niigata University, Niigata City, Japan

Abstract
We implemented a generalized infrastructure for Internet of Things (IoT in-
frastructure) to be applicable in various areas such as Smart Grid. That IoT
infrastructure has two methods to store sensor data. They commonly have the
features of double overlay structure, virtualization of sensors, composite ser-
vices as federation using publisher/subscriber. And they are implemented as
synthesizing the elemental architectures. The two methods majorly have the
common architectural elements, however there are differences in how to
compose and utilize them. But we observed the non-negligible differences in
their achieved performance by the actual implementations due to operational
items beyond these architectural elements. In this paper, we present the re-
sults of our analysis about the factors of the revealed differences based on the
measured performance. In particular, it is clarified that a negative side effect
due to combining independent elemental micro solutions naively could be
amplified, if maximizing the level of loose coupling is applied as the most pri-
oritized design and operational policy. Primarily, these combinations should
be evaluated and verified during the basic design phase. However, the varia-
tion of how to synthesize them tends to be a blind spot when adopting the
multiple independent architectural elements commonly. As a practical sug-
gestion from this case, the emphasized importance in carrying out a new syn-
thetization with multiple architectures is to make a balance naturally among
architectural elements, or solutions based on them, and there is a certain de-
mand to establish a methodology for architectural synthetization, including
verification.

Keywords
Sensor Data Management, Loose Coupling, Overlay Architecture,
Performance Analysis

How to cite this paper: Kikuchi, S., Wa-
tanabe, S., Kenmotsu, T., Yoshino, D., Na-
kamura, A. and Hayashi, T. (2017) Analysis
of Impactful Factors on Performance in
Combining Architectural Elements of IoT.
Advances in Internet of Things, 7, 121-138.
https://doi.org/10.4236/ait.2017.74009

Received: August 15, 2017
Accepted: October 16, 2017
Published: October 19, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ait
https://doi.org/10.4236/ait.2017.74009
http://www.scirp.org
https://doi.org/10.4236/ait.2017.74009
http://creativecommons.org/licenses/by/4.0/

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 122 Advances in Internet of Things

1. Introduction

We implemented a generalized IoT infrastructure containing the functionalities
such as message routing, message mediation, data storing and analyzing for Big
Data. The main purpose of developing this IoT infrastructure was to use this for
multiple evaluative experiments in various areas such as Smart Grid. Therefore,
it was greatly expected as the maximum requirement that it should easily execute
data aggregation with the various data used or generated by the numerous ap-
plications without a trouble. The following items are basic architectural re-
quirements:

1) Realizing the maximum level of loose coupling and service oriented for
various sensors, devices and utilities whenever connecting them are required.
[BAR-1]

2) Applying an overlay structure, in order to make various sensor networks be
connectable. [BAR-2]

3) Realizing the wide distributed computational environment in order to han-
dle the huge amount and various types of data. [BAR-3]

4) Implementing the functionalities of the message routing, the data media-
tion to transforming among various messages’ types, furthermore services that
provide the abstract information models and meta data to support the above
three items. [BAR-4]

In particular, [BAR-1], [BAR-2] and [BAR-4] are demanded as basic archi-
tectural requirements for realizing appropriate flexibilities needed in executing
the numerous experiments. And the meaning of the maximum level of loose
coupling in [BAR-1] corresponds to not only architectural aspects but also oper-
ational items such as procedures to exclude the any obstacles and constraints in
practical operations. Furthermore, the overlay structure mentioned in [BAR-2]
is quite general, and required as well in other platforms explained in the later
section.

In order to fulfill the above set of the requirements, various elemental func-
tionalities including several experimental mechanisms are applied. The first is,
for instance, to virtualize sensors and to abstract the structures embedding these
sensors. Then they are mapped into a generalized information model [1]. As a
solution to the above [BAR-1], easiness of embedding sensors into a structure
and flexibility for utilizing them is gained by using services with a repository to
access these information models. The second is to adopt the double overlay
structure consisting of three functional layers of the follows; the first layer is
Communication Agent which wraps the various sensor networks and applica-
tions commonly, that could be also seen in other infrastructures. The second
layer is that for the messaging routing, and the last layer is the set of storages and
persistent services titled as IEEE1888 FIAP storages. Here, these storages and
persistent services are treated as virtualized and independent elements. Based on
the above elements, the data access services are provided as composition and
federation using the publisher/subscriber based on utilizing the mentioned sto-

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 123 Advances in Internet of Things

rage, persistent services and repository services as required in [BAR-3].
However, there are two actual implementations for storing data by changing

the configuration consisting of the above three elemental functionalities com-
monly in order to respond to various demands on the sensors’ variation. In oth-
er words, the double overlay structure, the virtualization of sensors, the compo-
site services as federation using the publisher/subscriber are adopted commonly,
but there is a difference in how to compose and utilize them. However, we ob-
served the non-negligible differences in their achieved performance by the actual
implementations due to operational items beyond features of these architectural
elements. Thus, we analyzed the factors of these differences in performance. In
particular, we clarified that a negative side effect due to combining independent
elemental micro solutions unsophisticatedly could be amplified, if maximizing
the level of loose coupling is applied as the most prioritized design and opera-
tional policy. Generally, these combinations should be evaluated and verified
during the basic design phase. However, the variation of how to synthesize them
tends to be a blind spot when adopting the multiple independent architectural
elements as common ones. As a practical suggestion from this case, the empha-
sized importance in carrying out a new synthetization with multiple architec-
tures is to make a balance naturally among architectural elements, or solutions
based on them, and there is a certain demand to establish a methodology for
architectural synthetization, including verification.

The remainder of this paper is organized as follows: We briefly explain about
the related works in Section 2. Then, we will provide an overview of the basic
architecture in Section 3. And, we mention our two equivalent system models in
Section 4. This is an essential model on the viewpoint of traffic conditions, and
generally it is required in performance measurement and evaluation to identify
the scope of the measurement through the model of system configurations by
using the equivalent model. In Section 5, we will present the results of perfor-
mance measurement, especially the average throughput and average staying pe-
riods in system. In Section 6 we will demonstrate the analysis of the results by
showing steps of the procedures and evaluating them. Furthermore, we will give
explanations about the operational factors to cause the degraded performance.
Then, we will conclude in the last section.

2. Related Works

As this research can be regarded as an integration consisting of multiple discip-
lines, the related works should be identified across many fields. Furthermore,
there are some difficulties in evaluating this study only with the novelty against
various approaches in the existing works, because the main points of the evalua-
tion derive from comparison of the implementations between our two internal
methods. Thus, we will limit our explanation about the storages for sensor data
as our major area after touching on the general trends.

As for the general trends, there is a symbolic study about comparing IoT plat-

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 124 Advances in Internet of Things

form architectures [2]. In their survey, an essential IoT reference Architecture
model is defined in order to evaluate various existing reference architectures
such as that by Cisco [3] for instance. Based on their model, the comparison
among OpenMTC [4], FIWARE [5], Site Where [6] and Amazon Web Service
IoT [7] was done. However, a storage for sensor data is regarded as an applica-
tion and is not given fair consideration in [2]. One of the central roles in their
survey is the part named as “IoT Integration MiddleWare”. This serves as a sup-
plier function of the overlay structure to handle the various devices when im-
plementing them into the system. Whereas, Azure IoT Reference Architecture is
a more particular instance of the IoT platform architecture including storages
for sensor data explicitly [8]. In their explanation, the data model is mentioned
positively as taking a largely neutral stance, however the concrete definition is
not touched on anymore.

As for the area of the storages for sensor data, it could be roughly categorized
into the following two generations, although the area itself is currently being
updated. The first generation was to develop the functionality of persistence to
store the stream data, and corresponds to the studies such as [9] and [10] in this
generation. On the other hand, the second generation might be the set of studies
related to Cloud Computing and Big Data. They have been related to developing
the frameworks about the life cycle management of sensor data which includes
generating mass data, storing them and reusing them for analysis. And this also
means the context about how to deal with sensor data during the taking shape of
the conceptual Big Data. In this context, the storages are regarded as more ab-
stracted components. And one of the main topics here is how to embed the da-
tabase management system such as SQL, and NoSQL. [11] [12] and [13] are
examples in this generation. Our study should be identified as one of the second
generation from the point of view of loose coupling and service oriented. How-
ever, [11] and [13] remain at the studies around the storages only, whereas our
focus is just on the upper layer of the storages. Therefore, there is a difference of
viewpoints between both.

Our study might have the same stance with web service benchmark such as
[14]. However, our study does not remain at a discussion of performance mere-
ly, because our architectural design has certain dependency of how to combine
the independent elemental functionalities and the result of the final design will
influence the operational conditions. In this sense, our study also has another
aspect of a new issue in regard to architectural synthesis. We have predicted that
this new technical issue would arise more in future, as the concrete implementa-
tion in IoT matures.

3. Overview of the Basic Architecture

Figure 1 depicts the overview of the basic architecture of our IoT infrastructure.
“Communication HUB towards the Internet” drawn at the center of the Figure is
the information Hub charged as an important role for defining the double over-
lay structure. This has the functionality of a gateway connecting between the

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 125 Advances in Internet of Things

Figure 1. Overview of the entire architecture of our IoT infrastructure.

internal domains and the Internet with a firewall, and that of the messaging
router. This corresponds to the previous “IoT Integration MiddleWare” in [2].
This applies the publisher/subscriber on JMS (Java Messaging Service) in order
to bear the high traffic conditions. However, JMS is a typical difference from
other major architectures such as AWS IoT [7], that tend to apply MQTT (Mes-
sage Queuing Telemetry Transport) as the first priority. The reasons why we use
JMS were due to the several given constraints from actual projects. “Communi-
cation Agent” on the left of the Figure is literally an agent of various sensor net-
works and applications to connect to the Communication HUB, and embedded
into the environment with using JMS library. This substantially corresponds to
“Gateway” in [2]. There are many kinds of standards such as IEEE-1451 in sen-
sors area and sensor networks [15]. Furthermore, there are various legacy im-
plementations using RS-232-C serial interfaces, various protocols and interfaces.
These Communication Agents treat these differences among the above variation
within a single approach, and have roles as one layer in the double overlay
structure in response to the previous [BAR-1] and [BAR-2].

Set of “Storage” plus several services “IEEE1888 Registry” on the right of the
Figure is a backward service to be designed for storing data from the Communi-
cation Agents in distributed deployment. They also are virtualized by using Web
service to realize the previous [BAR-1] and [BAR-3]. SOAP Messaging defined
in IEEE1888 can handle these variations [16]. The reason why we adopted
IEEE1888 was also due to considering several constraints from actual running
projects. Due to the virtualization through the double overlay structure, indi-
vidual actual use case should be implemented as a composite service. Accor-
dingly, IEEE1888GW and Application Agent as a set of subscribers are deployed
at the middle of the structure, and Communication HUB will handle the various
messages as input events to these subscribers. Furthermore, Repository CORE
which manages the information model of the abstract sensors and provides a
part of message routing functionality, is also deployed at the same position. They
correspond to “Application” in [2], and the Repository CORE deals with the

:Initiator + JNDI
<<JNDI>>

<<SOAP>>

: Maintenance
Client

: Communication
Agent

: Communication
Agent

: Storage
(Current)

: IEEE1888
Registry

+
Repository CORE

<<JMS>>
<<JDBC>>

: Storage (Next)

<<SOAP/
JSON>>

<<SOAP>>

<<JDBC>>

<<HTTP>>

Sensor

Application

<<JMS>>

: IEEE1888GW
<<SOAP>><<JMS>>

: Application Agent
<<SOAP>><<JMS>>

: Repository CORE
<<JMS>>

: Certification
Authority
：LDAP

<<SOAP/
LDAP>>

: Communication
HUB towards
the Internet

: Backward
ApplicationAgent

<<JMS>>
DBMS

Adapter
For R

: Axis Server

(Apache Server)

Struts

<<LDAP>>

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 126 Advances in Internet of Things

matter of the previous [BAR-4]. Our IoT infrastructure has also a function of
Complex Event Processing (CEP) for executing a stream processing and a me-
diator to transform messages; however, a detailed explanation of them is omitted
here due to constraints of space.

Figure 2 shows the flow of procedures in a data flow diagram expressing
another aspect from that in previous Figure 1. In order to deal with the various
demands of sensors, there are two implemented methods to store the sensor da-
ta. Respectively, one corresponds to the part of “Data Conversion” at the up-
per-left of the Figure, and another corresponds to the part of “XML Message” at
the lower-left. There are three types of data management as a characteristic of
this IoT infrastructure as follows;

1) RawData(x) (x:1~n): This manages a set of the raw data from the sensors.
These data sent from Communication Agents wrapping various sensors and
sensor networks, are regarded as events with timestamps. And they are stored
into the storages or processed as CEP events. In the case of storing, the certain
data will be only inserted without any updates and deletions due to their own
temporality. Accordingly, there is a demand to implement vast capability of
these storages. It is substantially impossible to provide them only by local im-
plementation, and it may also be halfway mandatory to apply the services of sto-
rages. The management systems are not always RDBMS and in many cases
NoSQL or Cloud storage services applying secret sharing are also available.
Thus, a Data Access Component (DAC), especially as the abstract functionality
to maintain the connection resources to the data persistence, is implemented to
fulfill the above requirements. For instance, in the case of using storages ma-
naged locally, a serialized object of the connection to these storages will be
created through accessing Java Naming and Directory Interface (JNDI) when
being demanded. This is essentially different from the Connection Pooling in
order to improve the performance, and sacrifices the requirement of the perfor-
mance first. On the other hand, in the case of accessing by Web services such as

Figure 2. Overview of the entire architecture expressed in a data flow diagram.

Repository CORE, IEEE1888Registry (Postgresql-9.3)

Distributed Storage
(Postgresql-9.3, or NoSQL)

Publisher Process
(Communication Agent)

Extract Process For Status
Track

(Backward Application Agent)

Meta Data
(Repository CORE, JNDI,

IEEE1888Registry)

Raw Data(1)
(Storage)

Raw Data(n)
(Storage)

Extracted Fact Data
(Repository CORE)

Backward Application

Application Specific Data

XML Message Instance
(Local expression)

XMLorJSONtoDB Mapping
(IEEE1888GW)

Extract Process For Statistics
(Backward Application Agent)

･･･

Other Applications’ Tables /
IEEE1888FIAP Local Table

Data Conversion
(Backward Application Agent)

Abnormal Detection Evaluator on CEP
(Application Agent) Alert Message Instance

Backward Application

Maintenance
Client + Shell

Monitor

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 127 Advances in Internet of Things

stateless RESTful, the above instantiating process can be skipped. Furthermore,
as the data will be stored over multiple storages spread and deployed widely due
to their features of temporality with the growth of themselves, a part of the in-
formation for routing in querying are managed in the Repository CORE. When
a demand of query arises, this routing information will be utilized.

2) Extracted Fact Data: This manages the extracted data of features of struc-
tures embedding sensors through aggregating the raw data with timestamps
which are yielded by the sensors and stored in the above RawData (x). In order
to extract these fact data, it is strongly demanded to access the Repository CORE
frequently. As previously mentioned, the Repository CORE manages the infor-
mation model about the abstract sensors and Ontology on them. Currently, it is
implemented on RDBMS with allocating the specialized processors titled as two
“Extract Processes” inside of the Repository CORE.

3) MetaData: This corresponds to meta data such as the information model
about the abstract sensors and the Ontology. This is managed inside of the Re-
pository CORE. Due to complicity of the model itself, these data are imple-
mented by using RDBMS.

Figure 3 depicts the architectural configuration of the aforementioned two
methods to store the sensor data. Method #1 in Figure 3 is the standardized way
depicted in previous Figure 1 and corresponds to the part of “XML Message” at
the lower-left in Figure 2. In this method, Communication HUB applying with
JMS corresponds to the mid area between the Communication Agent and the
IEEE1888GW. In order to realize the maximum level of loose coupling, a query
process to extract the metadata such as data type and attributes of sensors from
the Repository CORE, is included in this method. Conversely, method #2 cor-
responds to the part of “Data Conversion” at the upper-left in Figure 2. This
method serves as fulfilling the demands for processing a data stream with sacri-
ficing the strong demands on the loose coupling. In this way, another library of
IEEE1888 processing are applied which is simplified more in spite of titling the
same IEEE1888. So that, advanced capability to become executable with rela-
tively higher performance is realized. That library is the FIAP storage developed

Figure 3. Architectural configuration of two methods.

Non-std-XML
On JMS

Sensor
Node Conversion Communication

Agent

IEEE1888GW
DAC

P
os

tg
re

sq
lt

ab
le

(ra

w
_d

at
a_

fro
m

_s
en

so
r)

Sensor
Node Gateway

P
os

tg
re

sq
lt

ab
le

 fo
r I

/F
(p

oi
nt

va
lu

e
of

 F
IA

P
 li

br
ar

y)

Gateway
Adapter

C
om

m
un

ic
at

io
n

H
U

B

to
w

ar
ds

 th
e

In
te

rn
et

CSV
IEEE1888 Write

On SOAP SQL on JDBC

CSV On JMS IEEE1888 Write
On SOAP

(FIAP Library) SQL on
JDBC

SQL on
JDBC

CSV On JMS

Method.#1

Method.#2

P
os

tg
re

sq
lt

ab
le

 fo
r A

P
P

S
(p

oi
nt

va
lu

e
of

 F
IA

P
 li

br
ar

y)

Cache

Predefinition

Repository
CORE

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 128 Advances in Internet of Things

by the Green University of Tokyo project [17]. The raw data yielded by sensors
are once stored into the specified tables of that FIAP storage. Then, these data
are transported and stored into RawData(x) in Figure 2 by using a JDBC driver
that is not regarded as loose coupling. This method #2 has certain constraints in
realizing the maximum level of loose coupling in [BAR-1]. This is because of
prioritizing the demands for processing a data stream. Therefore, it becomes
more difficult to handle the various types of sensors, when the number of sensor
types increases more as a mandate.

IEEE1888GW as a subscriber depicted in Figure 1 has the embedded sub-
functionalities of flow control and caching as its features shown in Figure 4. In
the usual case, IEEE1888GW executes the set of normal procedures titled as step.
1, 2 and 3 in order. However, once there is a shortage of connection resources
due to any reasons, for instance, high loads by other independent tasks or wast-
ing heap areas inside of the providing Axis server are detected; an error of Out
Of Memory is handled. Then, an exceptional procedure will run accordingly. In
this case, the simplified handling of the error without any following up will cause
another error soon in the same way, when the following other requests as step.1
arise. Therefore, the request for a temporal suppression is invoked in order to
wait for release of the consumed and dominated resources by garbage collectors.
In this case, when detecting a shortage of connection resources at storages, an
error in IEEE1888 XML format will be informed, then the temporal suppression
will be carried out at IEEE1888GW. In detail, the temporal pause in getting new
requests delivered over Communication HUB will be taken by IEEE1888GW for
easing storages under high loads. This execution at IEEE1888GW is due to low
risks about data losing, because the handled data over Communication HUB can
be temporally stored inside of internal spool at the HUB, whenever a failure in
getting requests at a subscriber occurs. Therefore, it is naturally possible to make
a delay in subscribing the requests. The functionality of caching inside of
IEEE1888GW manages the results of queries, which are extracted from the
Repository CORE with the mentioned information model about the abstract

Figure 4. Outline of procedure of method #1 with flow control.

:Initiator + JNDI
<<JNDI>>

<<SOAP>>

: Maintenance
Client

: Communication
Agent

: Communication
Agent

: Storage
(Current)

: IEEE1888
Registry

+
Repository CORE

<<JMS>>
<<JDBC>>

: Storage (Next)

<<SOAP/
JSON>>

<<SOAP>>

<<JDBC>>

<<HTTP>>

Sensor

Application

<<JMS>>

: IEEE1888GW
<<SOAP>><<JMS>>

: Application Agent
<<SOAP>><<JMS>>

: Repository CORE
<<JMS>>

: Certification
Authority
：LDAP

<<SOAP/
LDAP>>

: Communication
HUB towards
the Internet

: Backward
ApplicationAgent

<<JMS>>
DBMS

Adapter
For R

: Axis Server

(Apache Server)

Struts

<<LDAP>>

Normal Procedure Step.1

Normal Procedure Step.2

Normal Procedure Step.3

Lack of
Connection
Resource

Forward the request Wait
Request for suppression

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 129 Advances in Internet of Things

sensors and Ontology on them by doing the normal procedures in step.2.
Whenever the cache results are under management after querying, the normal
procedures in step.2 will be omitted with a part of step.1, as far as there are no
new demands.

4. Defining Equivalent System Models
4.1. Method #1

Figure 5 shows the equivalent system model of method #1. Due to asynchronous
data handling, in the equivalent system models, several parasitic queues should
be expressed according to their natures. In the method #1, two natural parasitic
queues arise and a substantial equivalent parasitic queue is assumed. The first
natural parasitic queue takes place at the procedure where raw data from mul-
tiple sensor nodes are gathered and mapped into Communication Agent, be-
cause of making synchronicity in the procedure. The second queue arises at
Communication HUB using JMS because of asynchronous data transporting
with temporal storing. On the other hand, the communicational procedure in
IEEE1888GW to Repository CORE and others is the SOAP messaging to Axis
Servers. Therefore, a receiver thread is invoked soon without any queuing,
whenever a SOAP message reaches. However, we regard this point as one with
the substantial equivalent parasitic queue because of assuming hidden exclusive
locking inside of the procedures. IEEE1888GW is invoked as a single thread ac-
cording to “Singleton” pattern in order to simplify its internal structure and
procedure. And the functionality of caching works inside it.

4.2. Method #2

Figure 6 depicts the equivalent system model of method #2. In method #2, three
natural parasitic queues arise. In this case, any natural parasitic queue is not
modeled at the procedure where raw data from multiple sensor nodes are
mapped into Communication Agent, because the multiple sensor nodes send
their own raw data independently without synchronicity. However, a natural
parasitic queue arises between scope #1 and scope #2 in the Figure, because

Figure 5. Equivalent system model of method #1.

Communication
Agent(Singleton)

IEEE1888GW
(Singleton)

Sensor Node

Sensor Node

Sensor Node

Apach/Axis2/
JDBC (DAC)

(Multiple)

Apach/Axis2/
JDBC (DAC)

(Multiple)

Apach/Axis2/
JDBC (DAC)

(Multiple)

Apach/Axis2/
JDBC (DAC)

(Multiple) D
is

tri
bu

te
d

D
at

a
S

to
ra

ge
(P

os
tg

re
sq

l)
R

ep
os

ito
ry

 C
O

R
E

S

to
ra

ge
(P

os
tg

re
sq

l)

Only once invoked in the case of Cache-On.

・・・・・

・・・・・

・・・・・

Parasitic Queue:
(Due to synchronization)

Cache

Scope#1 Scope#2

z
zzz

Virtual Parasitic Queue

Communication
HUB

Virtual Parasitic Queue

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 130 Advances in Internet of Things

Figure 6. Equivalent system model of method #2.

FIAP Storage works as a temporal data store. Adapter is also invoked as a single
thread according to “Singleton” pattern, because of retaining it as a simplified
architecture from complicity caused by concurrency control. The part of the
scope #2 including this adapter is executed periodically. The interval time for
this invocation is specified by a parameter titled as “Wait_Period”, and this will
be specified explicitly in the following section. A predefined ontology expressed
in XML form is preloaded at the adapter before its execution. There are some
similarities between the previous caching in method #1 and this predefined on-
tology on the point of view of putting them on memory for excluding the need-
less messaging. However, this predefined ontology has an obvious weakness in
regard to the maximum level of loose coupling, as it is impossible to change the
contents dynamically during its running, conversely the caching can flexibly re-
spond on demands.

5. Results of Performance Measurement

In this section, despite depicting the results, we will omit the detailed specifica-
tion of the machinery environment because of space constraints for listing the
set of multiple machines. In any case, we already carried out an evaluation and
measurement of both methods by using almost the same or equivalent machi-
nery environment. Our major concern here is how the performance would be
influenced by variations of combination with common system components.
Therefore, even a relative comparison between them without a detailed list of the
machinery environment could be sufficiently capable as our evaluation.

5.1. Method #1

Figure 7 and Figure 8 shows the typical behaviors of the average throughput to
respond to the dynamic state changes to confirm the effects of the flow control
and the caching. In this case the average throughput is measured by counting the
increase of rows of the elemental table inside RawData(x) per a second. There-
fore, the targeted scope of this average throughput corresponds to the whole of
the equivalent system model in Figure 5 regardless of sites with suppression.
Under the initial state without a precision tuning of the whole system, the aver-
age throughput remains at 10 rows per second as maximum. The caching condi-
tion of Figure 7 is available and IEEE1888GW must query to get the necessary
meta data from the Repository CORE, whenever a new type of sensor appears at
the initial stage. In this case, the value of the average throughput increases more,

Gateway On
IEEE1888
(Singleton)

Sensor Node

Sensor Node

Sensor Node JDBC (Adapter)
(Singleton)

Apach/Axis2/
JDBC (Client)

(Multiple)

Scope#2

・・・・・
・・・・・

No Queue:
(Due to quick response)

Apach/Axis2/
JDBC (Client)

(Multiple) D
is

tri
bu

te
d

D
at

a
S

to
ra

ge
(P

os
tg

re
sq

l)

Predefinition

Virtual Parasitic Queue
Communication

HUB

Scope#1

Queue:
(FIAP Storage on Postgresql)

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 131 Advances in Internet of Things

Figure 7. Average throughput in method #1 when detecting overloads at Storages.

Figure 8. Average throughput in method #1 when detecting overloads at Repository
CORE.

as the number of query decreases due to the caching effect. However, once an
over consumption of connection resources against the constraint takes place, the
request for a temporal suppression is invoked and the state is accordingly
changed into waiting for the release of the resources. Thus, the average
throughput temporally falls down as a degradation. After passing sufficiently
beyond the occurrence of releasing the resources, a temporal pausing is broken
and the average throughput regains the original performance. However, we can
observe a different behavior when the procedure for a temporal suppression is
applied to Repository CORE instead of the storages shown in Figure 7. As de-
picted in Figure 8, the inactive state continues and the average throughput also
remains in low values, if starting its procedure under suppression at Repository
CORE.

However, once the pausing state due to the suppression is broken, the defined
procedures are carried out at a stretch, and the average throughput can recover
the loss in performance. Then, the caching literally works as what it was in-
tended for. The average throughput is maintained with its original performance
because there are almost no queries to Repository CORE even under a shortage
of connection resources at Repository CORE.

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 132 Advances in Internet of Things

Figure 9 shows the result of the average staying period in systems against the
number of rows inside RawData(x). This value can be captured by taking differ-
ences between following two timestamps on the stored raw data; the first one is
the timestamp recorded at a sensor node and the second is the timestamp cap-
tured at the storages of RawData(x), when the raw data is inserted as a row. Both
of them have the equivalent degree of precision that Network Time Protocol
(NTP) can accommodate. By calculating the difference between them, we can
grasp the staying period in systems from the yielding point to the end regardless
of the intermediate routes. Therefore, this value should be maintained in small
as much as possible. Under the initial state without a precision tuning of the
whole system, this value remains around 15 seconds. Thus, there is certain room
to improve the capability of the reaction of the systems. The analysis about the
causes of this poor performance is mentioned in Section 6.

5.2. Method #2

Figure 10 depicts the average throughput against the number of rows inside
RawData(x). And there are almost no influences from increasing rows in the
shown scope, and remains at the constant level. The sudden spike of the average
throughput shown around 4M rows is caused by restarting its procedures with
mass messages in the spool which were stored after the tentative stopping due to
an internal error of the adapter. This means that the adapter proves its sufficient
capability to clear the mass requests. So, it is surely predictable that the shown
constant value of the Figure might be derived from insufficient number of the
raw data yielded by sensor nodes, rather than the capability of the hosting serv-
ers in performance. Therefore, the actual limitation in performance could be
much higher than the observed results in this Figure. In fact, the usual average
rate of CPU usage at the server, on which the adapter is deployed, remained un-
der less than 3% and enough capability is still prepared with freed resources.

Figure 9. Staying period in systems of method #1.

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 133 Advances in Internet of Things

Figure 10. Average throughput of method #2.

Based on the current results, that is 100 to 150 rows per second under a usual
case. So that, we could estimate the actual performance of this method #2 might
reach 2K to 3K rows per second, if we can use the CPU of the server with 60% as
a rate of the average usage of CPU. This means that method #2 could have its
performance capability beyond 100 times of that of method #1 shown in Figure
7. The pursued causes in our analysis will be explained in the following Section
6. Figure 11 shows the result of the average staying period in systems against the
number of rows inside RawData(x). Individual series corresponds to the condi-
tion about Commitment Unit of a transaction. For instance, the case titled with
“100 rows” means that a commitment is executed for every set of 100 rows in-
serted into the database. And this condition does not affect the staying periods.
According to this Figure, the values of the average staying period become worse
as the number of the rows increases, however they remain within several
seconds. This suggests more potential performance in this method.

6. Consideration in Regards to the Factors of the
Performance Gaps

As mentioned previously, the double overlay structure, the virtualization of sen-
sors, the composite services as federation using publisher/subscriber are adopted
as common elements, but there is a difference in how to compose and utilize
them. In the actual performances, we have significant gaps between both me-
thods due to some other factors, such as the operational conditions rather than
just the ways in combining the above common elements. Figure 12 individually
shows the sequences of the procedures of both methods with specifying the as-
signed components of the individual procedure. Grayed procedures in this Fig-
ure are commonly invoked regardless of the methods. One of the primary cha-
racters of method #1 is to query to the Repository CORE at first to extract the
required metadata and Ontology. However, once they are extracted and the
cache manages the query results, those procedures are skipped, as far as there are
no new demands. Therefore, the minimum set of the overhead in the procedures

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 134 Advances in Internet of Things

Figure 11. Staying period in systems of method #2.

Figure 12. Steps of procedures in both methods.

are mainly identified as “seeking the data on the cache at IEEE1888GW” and
“adding and verifying the XML signature” to identify the sensor nodes as
whether they are permitted. Furthermore “executing the flow control” that is not
explicitly described, is also included. Conversely, method #2 has twice the pro-
cedures of storing data into the storages in scope #1 and #2. In the case of ap-
plying the meta data in the cache instead of querying in method #1, the number
of common procedures between both methods relatively increases. According to
this, it is probably difficult to regard that minimum set of the above overhead in
the procedures as a crucial factor to make both previous metrics worse.

Of course, there are other unidentified items only in comparison with Figure
12. For example, they could be a network latency of the Internet, or a possibility
that a part of the facilities becomes a bottleneck. Further instance could be the
simplicity of the XML formats in the communication. However, through anoth-
er analysis we have already identified the most dominant factor. That is to ampl-
ify the negative effects derived from each independent elemental micro solution
which is adopted for implementing the maximum level of loose coupling,
through combining them. This could be identifiable as the issue in designing

Capturing
data at a

sensor node

Gathering data
without

synchronization

Writing them
into CSV
format

Transporting
by JMS

Transporting
by JMS

Storing
tentatively at the

internal buffer

Transforming
from CSV to
FIAP-XML

Transporting
by SOAP

Mapping from
FIAP-XML to

SQL

Composing WRITE-Set
and executing SQL for

updating

Transporting
replica of

READ-Set

Seeking on
the preloading

dictionary

Executing SQL for a
query and composing

READ-Set

Composing WRITE-Set
and executing SQL for

updating

Storing
READ-Set
tentatively

At a sensor node At the communication HUB At the Scope#1

At the Scope#2

Capturing
data at a

sensor node

Gathering data
with

synchronization

Writing them
into CSV
format

Transporting
by JMS

Transporting
by JMS

Storing
tentatively at the

internal buffer

Transforming
from CSV to
Non-std-XML

Adding XML
Signature

Verifying XML
Signature

Parsing the
Non-std-XML

Seeking on
the Cache

Generating
Non-std-XML

Transporting
by SOAP

Mapping from
Non-std-XML

to SQL

Executing SQL for a
query and composing

READ-Set

Transforming
Non-std-XML

Transporting
by SOAP

Parsing the
Non-std-XML

Updating
the Cache

Transforming from
Non-std-XML to

FIAP-XML

Generating
FIAP-XML

Transporting
by SOAP

Mapping from
FIAP-XML to

SQL

Composing WRITE-Set
and executing SQL for

updating

At a sensor node At the communication HUB At an IEEE1888GW

At the IEEE1888GW At the IEEE1888GWAt the Repository CORE

At the Scope#2

Method.#1

Method.#2

Common Step
Method Dependent Step

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 135 Advances in Internet of Things

solutions. In this sense, we should realize the importance of balanced design
among these solutions, whenever there are multiple applicable architectural ele-
ments.

Method #1 includes several negative factors. The first factor is to increase the
frequency of querying the metadata. In this method, the raw data from multiple
sensor nodes are gathered, mapped their CSV forms into the XML format at
Communication Agent with synchronizing, then sent to IEEE1888GW. Accor-
dingly, IEEE1888GW would receive the set of multiple raw data from the mul-
tiple sensor nodes every time. However, the IEEE1888GW is actually imple-
mented on the assumption that there is no preliminary information about these
sensor nodes, for instance, sensor type and frequency of uploading. Thus, the
query to extract these meta data is carried out every time. In this case, each
query is executed for individual sensor due to prioritizing the requirement of the
loose coupling in which every required access should be initialized and invoked
at the demanded time. This policy invites the increase of frequency in querying.
The second factor is to create a connection resource through accessing JNDI in
order to make an advanced adoption of the loose coupling. However, the nega-
tive side effects by applying the loose couple are not limited only to the above.
The constraints of querying individually for each sensor can dominate the fol-
lowing procedure to maintain the consistency. This can become another con-
straint about the unit of execution in data storing. As a result of these con-
straints, the serialization in storing the data from the sensor nodes may be
caused as the third factor in spite of receiving multiple data at a time at
IEEE1888GW. In particular, when the previous “Singleton” pattern is applied
there, a negative influence could be given to the performance more. However, if
applying the simplified multi-threads without sufficient verification in their im-
plementation, an issue in regard to isolation at the service level could take a
shape because of no transactional management at the service level. Due to com-
bining the above three factors each other, performance degradation could be in-
vited.

On the other hand, this issue about amplifying the negative effect by the in-
dependent elemental micro solutions, does not arise in method #2. As men-
tioned previously, in this method #2, the predefined ontology implemented in
XML form is preloaded at the adapter before its running. In order to support
this, the following is assumed; sacrificing the priority of the maximum level of
loose coupling could be accepted because any sensor node is identifiable before
running. Furthermore, it is not required to synchronize occurrences of raw data
over multiple sensor nodes prior to storing them into the FIAP storage in the
scope #1 as the front side. The following data transportation into RawData(x) in
scope #2 is just less influenced. This is because there are completed correspon-
dences between data instances at the FIAP storage of scope #1 and those at the
RawData(x) of scope #2, and no room to implement any specialized procedures
to map them according to data semantics. These procedures generally tend to
bring a negative side effect to the operational conditions. Additionally, as a ge-

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 136 Advances in Internet of Things

neralized batch program, it is possible to execute the commitment over the huge
amount of multiple worked instances at a time. Consequently, amplifying the
negative effect by the independent elemental micro solutions, does not take place
anymore.

Accordingly, there should be naturally some attentions in the designing phase,
for instance, performance estimation and tuning in the design, and making a de-
licate balance and a tradeoff among the several solutions when applying the
multiple elements. It is further desired to establish these as a concrete metho-
dology for synthesizing the multiple architectural elements. However, method #1
should not be regarded in a negative sense. In the actual operations with receiv-
ing data from a huge amount of sensor nodes, the uploaded data could be irre-
gularly received and regarded as receiving from substantially unidentifiable sen-
sor nodes preliminarily anytime for the backward processes, even though these
nodes would be identifiable. Therefore, it is definitely required to adopt certain
solutions to realize the maximum level of loose coupling as seen in the method
#1. As one of our conclusions, both methods #1 and #2 should be selectable
based on the features of the individual applied cases. For instance, partitioning
under the shared nothing by individual unit of the sensor node, and scale out
seem to be reasonable, as the method #1 is obviously difficult to be tuned any
more than the its reasonable level.

7. Conclusion

We presented the outline of our IoT infrastructure having two implemented
methods to store the sensor data, those methods majorly have common archi-
tectural elements in spite of the differences in how to compose and utilize them.
Then, we analyzed the factors causing the differences in their achieved perfor-
mance of the actual implementations. Furthermore, we pointed out that these
differences are derived from the policy; whether the maximum level of loose
coupling was fully pursued, or was defused with a sacrifice for maintaining per-
formance. In particular, we also mentioned the negative side effect that is to am-
plify the effects negatively due to the independent elemental micro solutions
which are adopted for the maximum level of loose coupling, through combining
them. Primarily, these combinations should be evaluated and verified during the
basic design phase. However, the variation of how to synthesize them tends to be
a blind spot when adopting the multiple independent architectural elements
commonly. As a practical suggestion from this case, the emphasized importance
in carrying out a new synthetization with multiple architectures is to make a
balance naturally among architectural elements, or solutions based on them, and
there is a certain demand to establish a methodology for architectural syntheti-
zation, including verification. It is obvious that there is certain dependency on
the use cases in identifying advantages and disadvantages of various architectur-
al synthetization. However, with the above methodology for architectural syn-
thetization including verification, the differences in measured performance shown

https://doi.org/10.4236/ait.2017.74009

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 137 Advances in Internet of Things

in this paper might be more avoidable.

References
[1] Kikuchi, S., Nakamura, A. and Yoshino, D. (2016) Evaluation on Information Mod-

el about Sensors Featured by Relationships to Measured Structural Objects. Ad-
vances in Internet of Things, 6, 31-53.

[2] Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F. and Reinfurt, L. (2016)
Comparison of IoT Platform Architectures: A Field Study Based on a Reference
Architecture. Proceedings in 2016 Cloudification of the Internet of Things (CIoT).

[3] Cisco (2014) The Internet of Things Reference Model.
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_20
14.pdf

[4] Fraunhofer FOKUS (2016) OpenMTC Platform Architecture.
http://www.open-mtc.org/index.html#MainFeatures

[5] FIWARE (2016) FIWARE Wiki.
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main_Page

[6] SiteWhere LLC (2016) SiteWhere System Architecture.
http://documentation.sitewhere.org/architecture.html

[7] Amazon Web Services (2016) AWS IoT Documentation.
https://aws.amazon.com/de/documentation/iot/

[8] MicroSoft (2016) Microsoft Azure IoT Reference Architecture.
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-8
7D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf

[9] Nakamura, T., Kashiwagi, K., Arakawa, Y. and Nakamura, M. (2011) Design and
Implementation of New uTupleSpace Enabling Storage and Retrieval of Large
Amount of Schema-Less Sensor Data. Proceedings of 2011 IEEE/IPSJ International
Symposium on Applications and the Internet.

[10] Botan, I., Alonso, G., Fischer, P.M., Kossmann, D. and Tatbul, N. (2009) Flexible
and Scalable Storage Management for Data-Intensive Stream Processing. Proceed-
ings of 12th International Conference on Extending Database Technology.
https://doi.org/10.1145/1516360.1516467

[11] Van der Veen, J.S., van der Waaij, B. and Meijer, R.J. (2012) Sensor Data Storage
Performance: SQL or NoSQL, Physical or Virtual. Proceedings of 2012 IEEE 5th
International Conference on Cloud Computing, 24-29 June 2012.
https://doi.org/10.1109/CLOUD.2012.18

[12] Song, X., Wang, C. and Chen, Y. (2013) An Integrated Framework for Managing
Massive and Heterogeneous Sensor Data using Cloud Computing. Proceedings of
2013 International Conference on Mechatronic Sciences, Electric Engineering and
Computer, 20-22 December 2013. https://doi.org/10.1109/MEC.2013.6885113

[13] Aydin, G., Hallac, I.R. and Karakus, B. (2015) Architecture and Implementation of a
Scalable Sensor Data Storage and Analysis System using Cloud Computing and Big
Data Technologies. Journal of Sensors, 2015, Article ID: 834217.
https://doi.org/10.1155/2015/834217

[14] Juse, K.S., Kounev, S. and Buchmann, A. (2003) PetStore-WS: Measuring the Per-
formance Implications of Web Services. 29th International Conference of the
Computer Measurement Group (CMG) on Resource Management and Perfor-
mance Evaluation of Enterprise Computing Systems.

[15] Mark, J. and Hufnagel, P. What Is 1451.4, What Are Its Uses and How Does It

https://doi.org/10.4236/ait.2017.74009
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://www.open-mtc.org/index.html%23MainFeatures
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Main_Page
http://documentation.sitewhere.org/architecture.html
https://aws.amazon.com/de/documentation/iot/
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://doi.org/10.1145/1516360.1516467
https://doi.org/10.1109/CLOUD.2012.18
https://doi.org/10.1109/MEC.2013.6885113
https://doi.org/10.1155/2015/834217

S. Kikuchi et al.

DOI: 10.4236/ait.2017.74009 138 Advances in Internet of Things

Work? http://standards.ieee.org/develop/regauth/tut/1451d4.pdf

[16] IEEE Standard (2014) IEEE Standard for Ubiquitous Green Community Control
Network Protocol (IEEE Std 1888-2014).

[17] Green University of Tokyo project. http://www.gutp.jp/index.html

https://doi.org/10.4236/ait.2017.74009
http://standards.ieee.org/develop/regauth/tut/1451d4.pdf
http://www.gutp.jp/index.html

	Analysis of Impactful Factors on Performance in Combining Architectural Elements of IoT
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Overview of the Basic Architecture
	4. Defining Equivalent System Models
	4.1. Method #1
	4.2. Method #2

	5. Results of Performance Measurement
	5.1. Method #1
	5.2. Method #2

	6. Consideration in Regards to the Factors of the Performance Gaps
	7. Conclusion
	References

