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Abstract 

Bacillus subtilis was investigated as production of biosurfactant using a 
combination based on waste of candy industry and glycerol from biodiesel 
production process as only substrate. The experimental design chosen for 
optimization by response surface methodology was a central composite ro-
tatable design (CCRD) and dry weight (DW) and crude biosurfactant (CB) 
concentrations were selected as responses in analysis. Two techniques were 
implemented response surface methodology (RSM) and artificial neural 
network (ANN). First challenge of study was to assess the effects of the in-
teractions between variables and reach optimum values. With the CCRD 
results, RSM and ANN models were developed, optimizing the production 
of biosurfactant. The correlation coefficients (R2) of RSM models explained 
88% for DW and 73% for CB of the interactions among substrate concentra-
tions, while ANN models explained 99% for DW and 98% for CB, demon-
strating that developed ANN models were more accurate and consistent in 
predicting optimized conditions than RSM model. The maximum DW and 
CB produced in the optimum conditions were 25.60 ± 5.0 g/L and 668 ± 40 
mg/L, respectively. The crude biosurfactant also showed applications in cas-
es of oil spreading in water due to clear zone produced in Petri dishes as-
says. 
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1. Introduction 

Biosurfactants are amphiphilic compounds produced mainly by aerobic micro-
organisms, such as bacteria, yeasts and filamentous fungi [1], with wide use in 
detergents, laundry formulations, household cleaning products, cosmetics, her-
bicides, or pesticides, besides in food, pharmaceutical, textile, paper and petro-
leum industries, among others [2] [3]. Bacillus species produce a broad spectrum 
of lipopeptide biosurfactants. Among them, surfactin, a lipoheptapeptide pro-
duced by Bacillus subtilis strains, is one of the most effective biosurfactants 
known [4]. 

Biosurfactants were becoming the focus of extensive researches and applica-
tions [5], because it present many advantages, such as high environmental com-
patibility, biodegradability and produced from renewable raw materials, besides, 
they have specific activity at extreme temperature, pH, salinity, and the ability to 
synthesize them from renewable food stocks [1] [6]. These advantages have 
made the biosurfactants focus of many research and industrial applications 
[7].  

The use of biosurfactant is not widely encouraged yet, because of the cost in-
volved in production and purification [8] [9] [10]. The biotechnological 
processes underlying microbial surfactants production should be based on the 
supplementation in culture broth with cheap substrates, such as waste or by-
products from the agro-industry, making commercialization possible [10] [11]. 
Thus, in order to reduce the production costs, biosurfactant produced by Bacil-
lus strains has been studied using different substrates, such as molasses [12], ca-
shew apple juice [13], residual glycerol [14], residue from processing of pineap-
ple [15] or agro-industrial by-product corn steep liquor [4]. However, although 
several kinds of agro-industrial waste have been evaluated as substrates for the 
biosurfactants production, the waste from candy industry was not evaluated 
yet.  

The waste from candy of industry consists mainly of sugars (glucose, sucrose 
and fructose), natural colorings, flavorings and anti-wetting agent. Thus, for 
there to be proper disposal, waste must pass through the primary and secondary 
treatments. The primary consists of a physical-chemical treatment which are 
part of the static and settling tank sieve. The secondary is a biological treatment 
and are part of the anaerobic stabilization ponds, activated sludge reactor and 
the settler. These treatments are costly and cumbersome due to the high invest-
ments in equipment for this purpose. The use of this waste as raw material in 
biosurfactant production is encouraged since adds value to the residue with 
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lower production costs, since it is not necessary to heat treatment process. 
Therefore, it is very interesting from an economic point of view and environ-
mental preservation to use the industrial waste bullets for biosurfactant production. 

Response surface methodology (RSM) is a classical method to develop models 
through regression coefficients and its significance is established due to analysis 
of variance. This statistical approach is largely implemented as seen [16] [17] 
[18]. RSM is a modeling taken into account relationship between factors in ex-
perimental domain described by least squares. This implies, in most of cases, in 
sensitive models to variation in experimental errors, estimating no well experi-
mental data, appropriately. Alternatively, artificial neural network can be used to 
improve the predictions of steady behavior and have several advantages over sta-
tistical methods. ANN has been successfully, comparing with statistical model, 
implemented in modeling optimization process, such as [19] [20] [21] [22]. 

In this context, this study aims to identify maximum biosurfactant production 
through fermentation by Bacillus subtilis using alternative substrates, i.e., glyce-
rol from biodiesel production process combined with waste from candy indus-
try. The waste concentrations interactions were assessed by experimental design 
strategies. RSM and ANN analysis of optimum points were carried out and 
models were developed to predict dry weight and crude biosurfactant concentra-
tions. The crude biosurfactant produced was used in oil spreading to reveal ap-
plications on remediation. 

2. Material and Methods 
2.1. Inoculum Preparation and Standardization 

Bacillus subtilis CBMAI 369 (ATCC) was obtained from the Brazilian Collection 
of Environmental and Industrial Microorganisms at Research Center for Che-
mistry, Biology and Agriculture-CPQBA/State University of Campinas, São 
Paulo, Brazil. The culture was maintained in Nutrient Broth (Difco) and initially 
a pre-inoculum was prepared in 15 mL Nutrient Broth in 50 mL Erlenmeyer 
flask, and incubation in an orbital shaker for 6 h at 37˚C and 100 rpm. Then, the 
inoculum (100 mL of sterile nutrient broth in a 250-mL Erlenmeyer flask) re-
ceived the pre-inoculum culture (10 mL) and it was incubated for 16 h at same 
conditions.  

2.2. Biomass and Crude Biosurfactant Production 

At the end of the assays, a sample of 30 mL from the culture broth was centri-
fuged (10,000 rpm, 10 min, 4˚C). The biomass obtained was dried at 50˚C for 24 
h and the weight evaluated.  

The biosurfactant produced was precipitated from cell-free supernatant by 
acidification until pH 2.0 using 6N HCl and it was held at 7˚C overnight. Next, it 
was centrifuged (10,000 rpm, 10 min, 4˚C). The supernatant was then discarded 
and the precipitate was washed with acidified water and saved. All assays were 
performed in duplicate. 
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2.3. Application of Crude Biosurfactant in Oil Spreading 

According to described by [16] oil spreading was evaluated by adding 20 mL dis-
tilled water on a Petri dish followed by addition of 50 µL of oil to its surface. 
Then, 40 µL of cell-free culture broth was dropped on the crude oil surface and 
the diameter of clear zone produced on the oil surface was assessed and com-
pared to a negative control (culture medium). 

2.4. Response Surface Methodology (RSM)  

The biosurfactant production was investigated using the following waste sub-
strates: waste of candy industry (X1) and glycerol from biodiesel production (X2). 
An experimental design tool was used in order to find optimal conditions for the 
biosurfactant production. All designs were developed and analyzed by  
STATISTICA 7 software based on Shapiro-Wilk, Kolmogorov-Smirnov, p-value 
and analysis of variance. The desired response was the dry weight (g/L) and 
crude biosurfactant (mg/L). To evaluate the combined effect of two different 
medium components, a central composite rotatable design of 22 plus 3 center 
points plus 4 axial points totaling 11 runs, according to Table 1. 

The experiments were performed 100 mL fermentation medium in 250 mL 
Erlenmeyer flasks in an orbital shaker, at 100 rpm, 37˚C, for 96 h. The values of 
the dependent response (dry weight and crude biosurfactant) were the mean of 
two replications. 

2.5. RSM Models 

A second-order polynomial regression (Equation (1)) was used in this study for 
the estimation of all main and joint effects while central and axial points were for 
providing replication and curvature terms in the model. 

2
0 j j j ij i j jj ji j jy x x x x eβ β β β

<
= + + + +∑ ∑ ∑             (1) 

where 1x  and 2x  are the input variables which are known to affect the re-
sponse y  and 0β , jβ , ijβ , jjβ , are the relevant constants of the effects. 
Analysis of variance (ANOVA) was evaluated to validate the RSM model. 

The ANOVA tables were built from the second-order polynomial coefficients 
and a probability value of <0.1 was used as criterion for statistical significance. 

2.6. Modeling with Artificial Neural Network (ANN) 

ANN was used to obtain the relationship between media components (X1 and 
X2) and dependent variables (dry weight and crude biosurfactant) through  
 
Table 1. Values used in central composite rotatable design (CCRD). 

Variables 
Experimental domain (% v/v) 

−1.41 −1 0 +1 +1.41 

X1 0 3.65 12.5 21.5 25 

X2 0 2.2 7.5 13 15 
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steady model. The experimental data were divided into three sets: training 
(60%), test (20%) and validation (20%) to avoid over-parameterization. The val-
ues of input and output data were normalized between −1 and 1 to avoid any 
numerical overflow. The hyperbolic, logistic and linear functions were used as 
activation functions in hidden and output layers.  

When a network is able to perform as well on validation set inputs as on set 
training set inputs, the goal was reached. The training by ANN consists to better 
adjusting weights to minimize the error between the observed and predicted 
outputs. The training process was done by specific algorithms, such as: trainlm 
that updates weight and bias according to Levenberg-Marquardt optimization; 
traingdx that updates weight and bias values according to gradient descent mo-
mentum and an adaptive learning rate; trainbr that updates the weight and bias 
values according Levenberg-Marquardt optimization and minimizes a combina-
tions of squared errors and weights, the process is called Bayesian regularization; 
traincgb that updates weight and bias values according to conjugate gradient 
backpropagation with Powell-Beale restarts; and trainoss that updates weight 
and bias values according to the one-step secant method. 

The number of neurons in the hidden layer was defined based on amount of 
neurons in input layer without variation to avoid increasing the number of ef-
fective parameters.  

The performance of models was evaluated by coefficient of determination (R2) 
and the analysis of statistical indices curves were through mean squared error 
(MSE) defined according to Equation (2): 

( )2
1

1 N
i iiMSE t a

N =
= −∑                     (2) 

where N represents the total number of patterns in corresponding set (training), 

it  represents the ith neural network target (observed data) and ia  represents 
the ith neural network response (predicted data). 

3. Results and Discussion 
3.1. Biosurfactant Production Investigation 

In present work, it was determined the best culture broth for biosurfactant pro-
duction through the relationship between dry weight and crude biosurfactant 
(responses). For that purpose, and due to the fermentation, experimental central 
composite rotatable design (CCRD) was used to investigate the dry weight and 
crude biosurfactant to determine the significance of process parameters and 
their interactions. Thus, the scenario of possibilities among the variables in the 
CCRD 22 was used in addition to three central points and 4 axial points, totaling 
11 runs. This methodology consists in to evaluate the most assays through ma-
trix of experimental design, showed in Table 2. The complex nature of biological 
process, especially when using waste substrates, can be seen in the assays 3 and 5 
through standard deviation from crude biosurfactant. 
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Table 2. CCRD combinations of factors and the response variables. 

Assays Factors Response 

Run X1 v/v (%) X2 v/v (%) DW (g/L) CB (mg/L) 

1 3.65 (−1) 2.2 (−1) 0.0 0.0 

2 21.5 (+1) 2.2 (−1) 0.0 0.0 

3 3.65 (−1) 13 (+1) 1.42 ± 0.3 410 ± 150 

4 21.5 (+1) 13 (+1) 0.0 0.0 

5 0 (−1.41) 7.5 (0) 0.86 ± 0.0 365 ± 105 

6 25 (+1.41) 7.5 (0) 0.0 0.0 

7 12.5 (0) 0 (−1.41) 0.0 0.0 

8 12.5 (0) 15 (+1.41) 0.0 0.0 

9 12.5 (0) 7.5 (0) 0.0 0.0 

10 12.5 (0) 7.5 (0) 0.0 0.0 

11 12.5 (0) 7.5 (0) 0.0 0.0 

 
The results of the table indicated there was biosurfactant production in the 

conditions 3 and 5. It is suggested the composition of culture broth affected the 
growth microbial by presence of any element in combined assays. When the 
waste of candy industry concentration increased, the results showed responses 
zero, indicating that the excess of the glucose concentration affected negatively 
the biosurfactant production. [23] examined different concentrations of glucose 
and concluded that 40 g/L was the best concentration and with higher glucose 
concentrations, biosurfactants production was significantly decreased. 

The assay 5 was the only with absence of waste of candy industry that pro-
duced biosurfactant. This, probably, is due to glycerol (from biodiesel produced 
by soybean oil) used as carbon and mineral (calcium, phosphorus, magnesium 
and sodium) sources. 

The waste of candy negatively affects the biosurfactant production (Table 2) 
for the two studied variables. The negative influence may be explained by over 
glucose concentration (in waste of candy) present in the culture broth, which in-
hibited the microorganism growth. [24] confirmed the enhancing glucose con-
centration negatively affects biosurfactant production. On other hand, raw gly-
cerol demonstrated positive effects for dry weight and crude biosurfactant, 
which indicate enhancing its concentration. The interactions between the va-
riables (1Lby2L) in the two responses have positive effect, proving that the com-
bination of them is important, waste of candy to lowest level (−1.41 to −1) while 
raw glycerol to highest level (+1 to +1.41), reaching the best responses.  

Based on these results, the matrix was evaluated, enabling the calculation of 
regression coefficient with p-value limit 0.10. The behavior of dry weight and 
crude biosurfactant was assessed, for practical purposes, two models were ad-
justed through re-parameterization, to make it as simple as possible, with the 
fewest possible parameters, without losing its accuracy (Equations (3) and (4)): 

( ) 2
1 1 2 1 2Dry weight g L 0.033 0.33 0.24 0.18 0.355X X X X X= − + + −     (3) 
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( )
2

1 1 2 1 2

Crude biosurfactant mg L

2.5 115.93 93.72 51.40 102.50X X X X X= − + + −
         (4) 

The analysis of variance (ANOVA) was performed to ensure confidence of the 
generated model to dry weigh and crude biosurfactant (Table 3). 

ANOVA shows that the model is valid and highly significant, as is evident 
from the fisher F test, explaining 86.72% for dry weigh and 90.81% for crude 
biosurfactant of the behavior of the variables and Fcal is three and almost five 
times larger than Ftab, respectively. The models were acceptable and similar to 
the model developed in this study.  

The graph of the response surface represented the optimization domain of the 
statistical model. The Figure 1 shows the graph of the response surface, devel-
oped in this study, for the dry weight and crude biosurfactant, besides graph of 
the contour curves. 
 

 
(a) 

 
(b) 

Figure 1. Response surface and contour curves graphs: (a) dry weight predictions; (b) 
crude biosurfactant predictions. 
 
Table 3. Analysis of variance (ANOVA) for the dry weight and crude biosurfactant. 

Source of  
variation 

d.f. SS MS Fcal 

DW CB DW CB DW CB DW CB 

Regression 4 4 1.9758 224057.5 0.493 56014.38 9.8 
14.83 

Residual 6 6 0.3024 22665.2 0.050 3777.5  

Total 10 10 8199.2 246722.7     

DW: F4; 6; 0.10 = 3.18; Correlation Coefficient: R2 = 86.72%. CB: F4; 6; 0.10 = 3.18; Correlation Coefficient: 
R2 = 90.81%. 
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Even the models with good agreement, the investigations about the optimal 
point were carried out via conditions determined first matrix (Table 2), waste of 
candy was conducted from 0% to 3.6% v/v while raw glycerol was conducted 
from 15% to 25% v/v. Thus, another experimental domain was evaluated, ac-
cording to Table 4. 

The matrix with new scenario of investigation can be seen in Table 5. 
The changes made in experimental domain were able to reach response dif-

ferent of zero (seen previously). From new CCRD results, the assay 2 showed 
highest value of crude biosurfactant (around 670 mg/L) and assay 6 showed 
highest value of dry weight (around 43.21 g/L). 

Based on matrix, the calculation of regression coefficient with p-value limit 
0.10 allowed evaluating polynomial models. The behavior of dry weight and 
crude biosurfactant was assessed, for practical purposes, two models were ad-
justed through re-parameterization (as previously), to make it as simple as poss-
ible, with the fewest possible parameters, without losing its accuracy (Equations 
(5) and (6)): 

( ) 2 2
1 1 2 2 1 2Dry Weight g L 30.76 0.92 1.74 1.36 0.44 1.15X X X X X X= + + + − −  (5) 

( ) 1 2Crude Biosurfactant mg L 645.05 67.50X X= −          (6) 

 
Table 4. Values used in central composite rotatable design (CCRD). 

Variables 
Experimental domain (% v/v) 

−1.41 −1 0 +1 +1.41 

X1 0 0.5 1.8 3.0 3.6 

X2 15 16.5 20 23.5 25 

 
Table 5. CCRD combinations of factors and the response variable. 

Assays Factors Response 

Run X1 v/v (%) X2 v/v (%) DW (g/L) CB (mg/L) 

1 0.5 (−1) 16.5 (−1) 22.7 ± 0.5 480 ± 50 

2 3.0 (+1) 16.5 (−1) 23.35 ± 1.5 670 ± 20 

3 0.5 (−1) 23.5 (+1) 32.77 ± 10 630 ± 0.0 

4 3.0 (+1) 23.5 (+1) 28.82 ± 1.5 550 ± 15 

5 0.0 (−1.41) 20.0 (0) 35.63 ± 5.7 615 ± 0.0 

6 3.6 (+1.41) 20.0 (0) 43.21 ± 1.0 575 ± 5.0 

7 1.8 (0) 15.0 (−1.41) 36.72 ± 2.2 635 ± 99 

8 1.8 (0) 25.0 (+1.41) 33.40 ± 4.1 525 ± 4.0 

9 1.8 (0) 20.0 (0) 31.51 ± 4.8 635 ± 50 

10 1.8 (0) 20.0 (0) 30.97 ± 1.4 615 ± 12 

11 1.8 (0) 20.0 (0) 29.68 ± 8.1 685 ± 22 
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Therefore, the results of the polynomial model in the form of analysis 
ANOVA was analyzed in these new scenarios. Table 6 shows the calculated val-
ues. 

The ANOVA of the models (dry weight and crude biosurfactant) showed that 
F-test were 0.17 and 4.12, not suitable for the models. These results indicated 
that the regression model was insignificant, because the lack of fit showed higher 
values. The fit of the model was evaluated by the determination of coefficient R2 
values, 0.88 and 0.73, confirming no good agreement of models. Although these 
results are not promising, the model can indicate through surface response 
where the optimal point is, Figure 2. 

The CCRD can validate with other models, for this purpose it was developed 
strategies of the use of artificial neural network (ANN) as predictor model. 
 
Table 6. Analysis of variance (ANOVA) for the crude biosurfactant and reduction ratio 
of surface tension. 

Source  
of variation 

d.f. SS MS Fcal 

DW CB DW CB DW CB DW CB 

Regression 5 4 49.608 28633,74 9.921 7158.43 0.17 
4.12 

Residual 5 6 291.21 10420.81 58.24 1736.80  

Total 10 10 340.82 39054.55     

DW: F5; 5; 0.10 = 3.45; Correlation Coefficient: R2 = 88.41%. CB: F4; 6; 0.10 = 3.18; Correlation Coefficient: 
R2 = 73.31%. 

 

 
(a) 

 
(b) 

Figure 2. Response surface and contour curves graphs: (a) dry weight predictions; (b) 
crude biosurfactant predictions. 
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3.2. ANN-Based Modeling 

The experiments used as input data for developing an ANN based model is given 
in Table 5 through CRRD combinations. The experiments were conducted in 
duplicate thus, the total data set of 33 points divided into a training set of 25 and 
a test set of 8 data points. The outputs for each model were given by dry weight 
and crude biosurfactant (seen in Table 5), which demonstrate the functional re-
lationship between media component (waste of candy and glycerol) and biosur-
factant production. The number of neurons in hidden layer was fixed on 4 for 
every situation in modeling to ensure that number of effective parameters were 
not higher than number of vector in input layer, discarding the appearance of 
overfitting. All of topologies of ANN model were 2-4-1. It was implemented dif-
ferent training algorithms, as seen in Figures 3-12 (expressed by dispersion and 
regression graph). The Figures 3-6 represent all the conditions of model-prediction 
of dry weight (g/L) using logsig as activation function. 

Although the most of situation of modeling has shown good values of correla-
tion coefficient, the situation of Figure 3 was chosen, R2 of 0.998, besides of MSE 
0.1579. The MSE was considered small and comparable magnitudes of the aver-
age prediction error (seen all dry weight predictions), which suggest that the 
model possesses good approximation and generalization characteristics. 
 

 
Figure 3. Predicted data and regression graph of test ANN using 2 × 4 × 1 topology and 
trainlm algorithm. 
 

 
Figure 4. Predicted data and regression graph of test ANN using 2 × 4 × 1 topology and 
traingdx algorithm. 
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Figure 5. Predicted data and regression graph of test ANN using 2 × 4 × 1 topology and 
trainbr algorithm. 
 

 
Figure 6. Predicted data and regression graph of test ANN using 2 × 4 × 1 topology and 
traincgb algorithm. 
 

 
Figure 7. Predicted data and regression graph of test ANN using 2 × 4 × 1 topology and 
trainoss algorithm. 
 

 
Figure 8. Dispersion and regression graph of test ANN using 2 × 4 × 1 topology and 
trainlm algorithm. 
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Figure 9. Dispersion and regression graph of test ANN using 2 × 4 × 1 topology and 
traingdx algorithm. 
 

 
Figure 10. Dispersion and regression graph of test ANN using 2 × 4 × 1 topology and 
traingdx algorithm. 
 

 
Figure 11. Dispersion and regression graph of test ANN using 2 × 4 × 1 topology and 
traincgb algorithm. 
 

 
Figure 12. Dispersion and regression graph of test ANN using 2 × 4 × 1 topology and 
trainoss algorithm. 
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The Figures 8-12 represent all the conditions of model-prediction of crude 
biosurfactant using tansig as activation function. 

To de second model was chosen as previously, by the best values of correlation 
coefficient and MSE. The situation plotted in Figure 9, ANN using 2 × 4 × 1 to-
pology and traingdx algorithm, was considered to form model with R2 of 0.982 
and MSE 0.067. 

The performance of both of ANN-models was consistent as it resulted in sim-
ilar values of predicted and observed data. The results obtained are very impor-
tant, because they very clearly reveal the sufficiency and representativeness of 
waste of candy and glycerol concentrations v/v as relevant input variables for 
prediction. To prove the steady prediction performance, it was shown ANN and 
RSM predictions (Table 7). 

The predictions performance of the ANN models for the experimental design 
data set confirms theirs superior generalization capacity when comparing RSM 
models. Analysis of the results demonstrated that the neural modeling approach 
is a useful tool for accurate modeling of two dependent variables and has shown 
a sum of errors of 2.30 and 88.48 for de dry weight and crude predictions while 
for RSM model sum of errors were 43.40 and 560.50, respectively. 

[22] developed a similar strategy to investigate bioethanol production. It was 
used RSM and ANN models for bioethanol yield and volume fraction. The re-
sults showed that ANN was better than RSM in data fitting with correlation 
coefficient of 1 and 0.98 and absolute average deviation of 0.09% and 1.67%, re-
spectively. 
 
Table 7. Experimental values and model-predicted values of dry weight (DW) and crude 
biosurfactant (CB). 

Assays Experimental values RSM-predicted ANN-predicted 

Run DW (g/L) CB (mg/L) DW (g/L) CB (mg/L) DW (g/L) CB (mg/L) 

1 22.7 ± 0.5 480 ± 50 28.63 577.55 22.29 479.79 

2 23.35 ± 1.5 670 ± 20 32.77 712.55 23.34 669.99 

3 32.77 ± 10 630 ± 0.0 33.65 712.55 32.76 629.99 

4 28.82 ± 1.5 550 ± 15 33.19 577.55 28.81 549.99 

5 35.63 ± 5.7 615 ± 0.0 32.92 645.05 35.62 614.99 

6 43.21 ± 1.0 575 ± 5.0 35.52 645.05 43.20 577.49 

7 36.72 ± 2.2 635 ± 99 27.97 645.05 36.71 634.99 

8 33.40 ± 4.1 525 ± 4.0 31.80 645.05 33.40 524.98 

9 31.51 ± 4.8 635 ± 50 30.76 645.05 30.57 650.71 

10 30.97 ± 1.4 615 ± 12 30.76 645.05 30.57 650.71 

11 29.68 ± 8.1 685 ± 22 30.76 645.05 30.57 650.71 
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3.3. Validation in Optimal Points 

The optimum values were found to be 3.2% (v/v) for waste of candy and 16% 
(v/v) raw glycerol concentrations. The maximum dry weight and crude biosur-
factant in these optimum conditions was 25.60 ± 5.0 g/L and 668 ± 40 mg/L, re-
spectively. The models were used to compare with the observed data. To RSM 
models were reached 33.36 g/L of dry weight and 731.24 mg/L of crude biosur-
factant and to ANN models were 27.45 g/l and 671.56 mg/L, respectively. The 
validation experiments confirm that ANN models are powerful approach to pre-
dict steady behavior of biosurfactant production, because their predictions are 
within of experimental errors. 

Fermentation process are very complex, especially when using waste sub-
strates, it is believed that the performance of RSM models had not good statistical 
significance due to the great variation of experimental errors, high non-linearity. 
ANNs are known by the accuracy, the generalization ability and the robustness 
of the models, in these types of study theirs use is more appropriate. 

It is important to highlight, in this study, that production of biosurfactant us-
ing only alternative sources (waste of candy and glycerol from biodiesel process) 
presented similar results to other researches that used synthetic culture broth, 
such as [25]. The authors evaluated biosurfactant production by Bacillus subtilis 
through response surface methodology, using as factors glucose, K2HPO4 and 
urea. The results showed a maximum predicted biosurfactant concentration of 
2.93 g/L and experimental result was 3.1 g/L. Several works treat of biosurfactant 
production incorporating waste in the culture broth synthetic. [26] produced 
biosurfactant using by Bacillus subtilis LAMI005, using residual glycerol from 
biodiesel production as a carbon source. The culture medium was (in g/L): 
(NH4)2SO4 (1.0); Na2HPO4∙7H2O (7.2); KH2PO4 (3.0); NaCl (2.7); MgSO4∙7H2O 
(0.6); glycerol (20.0).  

3.4. Application of Crude Biosurfactant in Oil Spreading 

In order to confirm the presence of biosurfactant by using the optimum condi-
tion, experiments were conducted (Figure 13) simulating the recovery oil 
spreading in water. 

The results revealed applications for produced biosurfactant. There is a little 
information about oil displacement areas brought about by biosurfactants pro-
duced by Bacillus subtilis in the literature. Nevertheless, it is noticed larger clear 
zone, compared with negative control, when added biosurfactant. [27] tested 
produced biosurfactant by Bacillus subtilis in application of the oil spreading. 
[28] also checked oil displacement area formed when added produced biosur-
factant by Cunninghamella echinulata. 

4. Conclusion 

In order to identify biosurfactant production, the experimental central compo-
site rotatable design (CCRD) was performed, evaluating interactions between  
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(a)                                       (b) 

   
(c)                                      (d) 

Figure 13. Oil spreading test: (a) sample without negative control; (b) sample with nega-
tive control; (c) sample without crude biosurfactant; (d) sample with crude biosurfactant. 
 
two alternative residues (waste of candy industry and glycerol from biodiesel 
process) without supplementations and the responses were dry weight (g/L) and 
crude biosurfactant (mg/L) in 96 h of fermentation. RSM and ANN models were 
employed to predict the mentioned responses of experimental matrix. ANN 
provided more accurate predictions than RSM seen by higher R2 and lower sum 
of errors from predicted values. Validation of optimum points were similar to 
predicted values by ANN models. To our knowledge, this is first study to report 
on use of combinations among two substrates based on waste of candy and gly-
cerol from biodiesel for the purpose of biosurfactant production, besides, to de-
velop a multiple criteria analysis based on statistical and intelligence modeling. 
An application in remediation of oil spreading was simulated and crude biosur-
factant was able to produce a clear zone. Additionally, all the results indicated 
success to use waste, showing good agreement with environment. But there are 
lots of researches about this theme to be elucidated, such as: scale up assay, using 
the best conditions; to add others waste; to study the oxygen influence and ki-
netics parameters; and others.  
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