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Abstract 
In this work, we make a representation of non-relativistic quantum theory 
based on foundations of paraconsistent annotated logic (PAL), a propositional 
and evidential logic with an associated lattice FOUR. We use the PAL version 
with annotation of two values (PAL2v), named paraquantum logic (PQL), 
where the evidence signals are normalized values and the intensities of the 
inconsistencies are represented by degrees of contradiction. Quantum me-
chanics is represented through mapping on the interlaced bilattices where this 
logical formalization allows annotation of two values in the format of degrees 
of evidence of probability. The Bernoulli probability distribution is used to 
establish probabilistic logical states that identify the superposition of states 
and quantum entanglement with the equations and determine the state vec-
tors located inside the interlaced Bilattice. In the proposed logical probabilistic 
paraquantum logic model (pPQL Model), we introduce the operation of logi-
cal conflation into interlaced bilattice. We verify that in the pPQL Model, the 
operation of logical conflation is responsible for providing a suitable model 
for various phenomena of quantum mechanics, mainly the quantum entan-
glement. The results obtained from the entanglement equations demonstrate 
the formalization and completeness of paraquantum logic that allows for in-
terpretations of similar phenomena of quantum mechanics, including EPR 
paradox and the wave-particle theory. 
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1. Introduction 

Studying the effects of undulatory theory of light, researchers found that expe-
riments in modern physics dealing with quantum mechanics lead to results that 
are incompatible with classical physics. This contradiction between classical 
theory and modern experimental research requires a fundamental modification 
of basic physical concepts and laws so that they can apply to atomic phenomena 
[1] [2] [3] [4]. From these observations, investigations have been conducted to 
find the foundations of a new logic more suitable for creating equations and 
models for quantum mechanics [5].  

The formalization of quantum logic has been studied in various ways; the best 
known of these was first presented in 1936 by John von Neumann and Garret 
Birkhoff [5], in which the authors discussed a new form of logic which, due to 
the quantum phenomena observed, would be incompatible with classical logic  
[5] [6]. Other authors studied formalization of a quantum logic able to support 
logical models that could answer the questions relating to quantum phenomena 
[7]-[15]. Among these works, we highlight those [13] [14] [15] where the au-
thors use non-classical logics such as fuzzy and paraconsistent logic to create the 
formalization of a quantum logic.  

The probabilistic logical model presented in this work uses all the established 
concepts of quantum mechanics with foundations of the non-classical logic such 
as paraconsistent annotated logic (PAL) with the annotation of two values 
(PAL2v) [16]-[23], the interlaced bilattices [6] [24] [25] [26] [27], Bernoulli dis-
tribution, and probability theory [28] [29]. 

This paper is organized as follows: in section 2, we present some of the key 
concepts of quantum mechanics, probability theory, and Bernoulli distribution. 
In section 3, we present some concepts of non-classical paraconsistent logics and 
some representations by lattices, highlighting the main concepts of PAL. In sec-
tion 4, we present the bilattices theory and the algebra of interlaced lattices. In 
section 5, we present the paraquantum logic (PQL) equations of the evidence 
and degrees of certainty and those of the contradiction represented in Belnap’s 
bilattices. At the end of this section, we combine PQL with the theory of Ber-
noulli trials and the probability calculations, variance, and standard deviation. In 
Section 6, we present the results obtained by interpretations of the probabilistic 
paraquantum model and discuss their fundamentals and concepts. At the end of 
this section, we discuss the EPR paradox with the interpretation of the probabil-
istic paraquantum model and an application example. In section 7, we present 
our conclusions.  

2. Concepts of Quantum Mechanics (QM)  

QM, a branch of physics, studies the fundamental theory of nature at the small 
scales and energy levels of atoms and subatomic particles. In the mathematical 
formulation of QM, the state of a system at any given time is described by a com-
plex wave function, also referred to as a state vector in a complex vector space [3] 
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[11]. This abstract mathematical object enables the calculation of probabilities for 
the outcomes of actual experiments [1] [3] [4] [7] [9] [11] [13] [14] [15]. 

In contrast to classical mechanics, in quantum mechanics, any unit vector, 
which is a linear combination of pure states, gives rise to a new pure state. Be-
cause two pure states ψ1 and ψ2 are orthogonal and assuming that a pure state ψ 
is a linear combination of ψ1 and ψ2, we can write as follows [2] [5] [12]: 

1 1 2 2c cψ ψ ψ= +                         (1) 

where 2 2
1 2 1c c+ =  

For a quantum system in state ψ, those events (and experimental propositions) 
that are certain for state ψ1 but not for ψ2 are verified with probability 2

1c  and 
those events (and experimental propositions) that are certain for state ψ2 but not 
for ψ1 are verified with probability 2

2c  [2] [5] [30].  

2.1. Superposition and Hilbert Space 

Superposition appears in the study of classical physics as well as in quantum phys-
ics. The superposition principle in the current formulation of quantum theory is 
given precise mathematical meaning through the Hilbert space formalism. The 
principle of superposition of states affirms that the complex linear superpositions 
of Equation (1) also represent the quantum states of the system [1] [7] [9].  

2.2. Quantum Logic and Hilbert Space 

Quantum logic is defined as the logic of Orthomodular lattices (OMLs) [5,6] and 
is conceptually very similar to the inherent properties of Hilbert space. The OML 
was introduced in 1936 by Birkhoff and von Neumann as an algebraic account of 
the logic of quantum mechanics [5] [6] [9]-[15].  

2.3. Entanglement in Quantum Mechanics 

One of the main phenomena of QM is the entanglement, considered to be the 
most non-classical manifestation of quantum formalism. The quantum entan-
glement is a quantum mechanical property that allows two or more objects to be 
related in such a way that it is not possible to describe one of them completely 
without relating it to the other(s). Entanglement can be studied from the initial 
condition that a pure quantum state can be represented by a vector in a complex 
Hilbert space with unit length. Thus, for each pure state ψ  and any basis 
{ }1 , , nu u , the state ψ  can be extended to 1 1 n nψ α ψ α ψ= + + , 
where 2

1 1n
ii α

=
=∑ . A pure state 1, 2, ,A A Anψ



 with m subsystems is completely 
separable into parts only if it can be written as 1, 2, , 1 2A A An A A nψ ψ ψ ψ=



 . 
If it cannot be written in this way, then the state is said to be entangled [7] [10] 
[11]. 

2.4. Observables and Measurement in Quantum Mechanics 

In a general way, in Physics, an observable A is considered a dynamic variable 
that can be measured. For example, the position and momentum of a particle are 
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considered observables [7] [10] [11]. In quantum physics, the interpretation is 
different, and an observable A is an operator or a gauge, where the property of 
the system state can be determined by some sequence of physical operations that 
may involve submitting the system to various electromagnetic fields and obtain-
ing a value [8] [10]. Physically meaningful observables must also satisfy trans-
formation laws that relate to observations made by different observers in differ-
ent frames of reference.  

2.5. Probability in Quantum Mechanics 

The principles of QM that define the probability p of an event occurring is given 
by the square of the norm of a complex number α (where α is called probability 
amplitude or magnitude) [2] [3] [4] [5] [7] [12] [30] [31]. 

2p α=                            (2) 

The probability amplitude α is an event that will be denoted by 

final state initial stateα =  

As can be seen in [15] and [16] [31], there are difficulties with a rigorous defi-
nition of probability for finding a better understanding of applications in QM. 
For assigns to an event X, probability = 1 (0, respectively) if and only if assigns 
to the orthocomplement of X probability = 0 (1, respectively). Consequently, we 
are dealing with an operation that inverts the two extreme probability values, 
which naturally correspond to the truth-values truth and falsity (as in the clas-
sical truth table of negation) [2] [5] [7] [8]. 

2.6. Bernoulli Trial Process 

The process of Bernoulli trials, named after Jacob Bernoulli, is one of the 
simplest random processes in probability, but very important in QM. Due to the 
probabilistic nature of QM, the Bernoulli trial process is useful for studying 
statistical quantum phenomena [28] [29] [32]. Basically, the Bernoulli trial 
process is the mathematical abstraction of coin–tossing, and because of its wide 
applicability, it is usually stated in terms of a sequence of generic trials. A 
sequence of Bernoulli trials must satisfy the following assumptions: 

1) Each trial has two possible outcomes called success (k = 1) and failure (k = 0). 
2) The trials are independent; the outcome of one trial has no influence over 

the outcome of another trial. 
3) In each trial, the probability of success is p and the probability of failure is 1 

− p, where [ ]0,1p∈  is the success parameter of the process. 

2.7. Probability Mass Function (pmf) in the Bernoulli Trial Process 

Let p be the probability of success in a Bernoulli trial, and q be the probability of 
failure, then the probability of success and the probability of failure sum to unity 
(one). Since these are complementary events, success (p) and failure (q) are mu-
tually exclusive and exhaustive [28] [32].  
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The probability measure p is a function that relays an event’s probability. We 
can consider that impossible events have a probability zero, and the probability 
is one if the event is certain to happen. Thus, p is a function p: F → [0, 1]. The 
probability measuring function must satisfy the simple requirement that the 
probability of a countable union of mutually exclusive events is equal to the 
countable sum of the probabilities of each of these events [32].  

The probability mass function (pmf) of this distribution, over possible out-
comes k, is 

( ) ( ) { }1; 1 for 0,1kkf k p p p k−= − ∈                 (3) 

2.8. Expectation Value in the Bernoulli Trial Process 

The Bernoulli trial process for a distributed random variable X is ( )Pr 1X p= =  
and ( )Pr 0X q= = . The expectation value is  
( ) ( ) ( )Pr 1 1 Pr 0 0E X X X= = × + = ×   

( ) 1 0E X p q= × + ×  

( )E X p=                           (4) 

2.9. Variance (Var(X) = σ2) and Standard Deviation (σ)  
in the Bernoulli Trial Process 

The variance of X, written as Var(X) or indicated by the symbol σ2, is a measure 
of how much the value of X varies from the expectation E(X) [32]. Var(X) has a 
central role in statistics and is defined as the expectation of the squared deviation 
of a random variable from its mean. In the Bernoulli distribution, this is defined 
as follows: 

Let X be a discrete random variable with the Bernoulli distribution and prob-
ability parameter p. Since the variance is the weighted sum of the squared dis-
tances from the mean it involves the probability for which we get 0 and the 
probability for which we get 1. The variance of X is then given by [32]  

( ) ( )( ) ( )2 22 2 1 0 1Var X p p p pσ σ    = → = − − + −     

( )( ) ( )22 21 1 2p p p p pσ→ = − + − +  

( )( )22 2 31 2p p p p pσ→ = − + +  
2 2 3 2 32p p p p pσ→ = − + − +  
2 2p pσ→ = −                              (5) 

The standard deviation of a probability distribution is given by symbol σ and 
is defined as the square root of the variance σ2: 

2σ σ=                            (6) 

2.10. EPR Paradox 

In 1935 the paper [33] brought a text originally proposed to exhibit internal 
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contradictions in the new quantum physics. The text is a paradox and it was re-
sulted of thought experiment proposed by Albert Einstein, Boris Podolsky, and 
Nathan Rosen. Known today as the EPR paradox the authors hoped to show that 
quantum theory could not describe certain intuitive “elements of reality” and 
thus was either incomplete or demonstrably incorrect. 

3. Non-Classical Paraconsistent Annotated Logic 

A formal system based on logic binary principles that differs in a significant way 
from classic logical systems is considered a non-classic logical system.  

There are several types of non-classical logics and the aim of this formaliza-
tion is to construct different models of logical consequence and logical truth [15] 
[17] [25]. A paraconsistent logic is a non-classical logic whose main foundation 
is its tolerance to contradiction without trivialization [14] [15].  

3.1. Paraconsistent Logic and Many-Valued Logic 

Many-valued logic is a non-classical logic because it rejects bivalence, allowing 
for truth values other than true and false and can be represented by lattices [25] 
[27]. With these fundamentals, the many-valued logics present characteristics of 
the paraconsistent logics family. 

3.2. Paraconsistent Four-Valued Logic 

Belnap [5] [24] provides a semantic characterization of a complex four-valued 
logic that aims to formalize the internal states of a computer.  

An appropriate non-classical axiomatization is defined that captures the se-
mantic where there are four states: (t), (f), (N), and (B), where (N) and (B) are 
abbreviations of (None) and (Both), respectively.  

Based on these four states recognized as input, a computer can determine the 
suitable outputs [24] [26]. Belnap’s four-valued logic is paraconsistent logic and 
can model both incomplete (N) and inconsistent (B) information [5] [24].  

In propositional logic concepts, we have the following: 
(t) the proposition is true 
(f) the proposition is false 
(N) the proposition is neither true nor false 
(B) the proposition is both true and false 
From this, (N) corresponds to incompleteness and (B) inconsistency. 
Four-valued logic has logical symbols ∼, ∧, ∨ and is based on the approxima-

tion lattice with a different ordering.  
In Belnap’s work [5] [24], semantics for the language of four-valued logic with 

the logical symbols are presented.  

3.3. Paraconsistent Annotated Logic (PAL) 

PAL [19] [20] [21] is an extension of paraconsistent logic and it can be presented 
with the annotation of two values (PAL2v).  
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In the PAL2v representation, an atomic proposition of logic language PAL can 
be presented by [ ],p µ λ , where p denotes a proposition or propositional varia-
ble; the truth value (or annotation with two values) [ ] [ ] [ ], set 0,1 0,1µ λ ∈ × ; and 
the values ,µ λ  are elements in a closed interval [ ]0,1  of a set of real numbers 
[17] [18] [19] [20] [21].  

An order relation is defined on [ ]20,1 : [ ] [ ]1 1 2 2 1 2, ,µ λ µ λ µ µ≤ ⇔ ≤  and 

1 2λ λ≤ , constituting a lattice that will be symbolized by τ . The operator 
: τ τ¬ →  defined the logical negation in the lattice, as 

[ ] [ ], ,µ λ λ µ¬ =                         (7) 

where [ ], 1,0µ λ∈ ⊂ℜ  
We note that τ  is a complete lattice under ≤ . The bottom element of the 

lattice τ  is [ ]0,0 , the paracompleteness state, whose symbol is ⊥ , and the 
top element is the inconsistent state [ ]1,1 , whose symbol is T . Therefore, the 
PAL has an associated lattice τ (lattice FOUR), as shown in Figure 1, in which 
the connotation of logical states can be assigned to its vertices [18] [20] [21]. 

4. Theory of Bilattices 

Bilattices are algebraic structures introduced in 1988 by Ginsberg [34] as a uni-
form framework for inference and logical analysis in the field of artificial intelli-
gence. These bilattice structures were presented in order to formalize hypotheti-
cal and uncertain reasoning and were extensively studied by Ginsberg and others 
involved in programming logic and truth theory [20] [34].  

4.1. Bilattice Representation 

In general, a bilattice representation has two kinds of ordering, a truth ordering 

t≤  and a knowledge ordering k≤ . Therefore, a bilattice is a structure 

t, , ,kB = Β ≤ ≤ ¬ , where B denotes a non-empty set and t≤  and k≤  are par-
tial orderings on B [20] [25] [34].  

The ordering k≤  is described as ranking the “degree of information (or 
knowledge)”.  

The bottom in k≤  is denoted by ⊥ -Paracomplete and the top by T -In- 
 

 
Figure 1. Paraconsistent annotated logic with annotation of two values (PAL2v) and 
associated lattice FOUR with annotations and logical conotation in its vertices.  
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consistent.  
The ordering t≤  is describing as ranking the “degree of truth”.  
The bottom in t≤  is denoted by f—false and the top by t—true. 
A bilattice B is defined by Ginsberg [34] as a sextuple , , , , ,B = Β ∧ ∨ ⊗ ⊕ ¬  

such that: 
1) The t-Lattice ( )t, , ,Β ≤ ∨ ∧  and the k-Lattice ( ), , ,kΒ ≤ ⊗ ⊕  are both com-

plete lattices. 
2) : B B¬ →  is an involution (¬¬  is the identity) mapping such that ¬  

is lattice homomorphism from ( ), ,Β ∨ ∧  to ( ), ,Β ∧ ∨  and ( ), ,Β ⊗ ⊕  to itself 
[20] [34]. 

The two operations corresponding to this ordering (t-Lattice) are the meet 
(greatest lower bound) ∧  and the join (least upper bound) ∨ . The operations 
⊗  and ⊕  correspond to the greatest lower bound and the least upper bound, 
respectively, in the knowledge ordering (k-Lattice). 

The minimum and maximum elements of the lattice , ,Β ∧ ∨ , if they exist, 
will be denoted, respectively, by f and t [20] [25] [34]. 

4.2. Interlaced Bilattice 

An interlaced bilattice is a structure t, , kB = Β ≤ ≤ , where 
1) both t≤  and k≤  give B the structure of a lattice and  
2) the meet and join operations for each partial ordering are monotone with 

respect to the other ordering: ttx y x z y z≤ → ⊕ ≤ ⊕  and tx z y z⊗ ≤ ⊗  

tkx y x z y z≤ → ∨ ≤ ∨  and tx z y z∧ ≤ ∧  

Bilattices are required to be complete, and they have tops and bottoms. Inter-
laced bilattices, as defined above, do not have a completeness requirement, but it 
is assumed that all such structures have tops and bottoms with respect to both 
orderings [20] [25] [34]. In an interlaced bilattice, an operation associated with 
one of the lattice orderings is required to be monotonic with respect to the other 
lattice ordering. Note that this condition is a different kind of connection be-
tween the two orderings considered via negation.  

In general, the interlaced bilattice properties can be defined as follows: 
Definition 1 - Let 1 1L , ≤  and 2 2L , ≤  be lattices.  
By 1 2L L , we mean the structure 1 2 tL L , , ,k× ≤ ≤ ¬ , where 
1) 1 2 t 1 2, ,x x y y≤  provides 1 1 1x y≤  and 2 2 2y x≤  and 
2) 1 2 1 2, ,kx x y y≤  provides 1 1 1x y≤  and 2 2 2x y≤ .  
If 1L  and 2L  are lattices (with tops and bottoms), 1 2L L  is an interlaced 

bilattice. 
Furthermore, if 1 2L L= , then the operation given by , ,x y y x¬ =  satis-

fies the negation conditions of definition 1of bilattices.  
Finally, if both 1L  and 2L  are complete lattices, 1 2L L  satisfies the com-

pleteness condition for bilattices. 
By intuition, we consider that if ( ) 1 2; L Lx y ∈ × , then x represents the infor-

mation for some assertion, and y is the information against it.  
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Other properties that permit logical operation of 1 2L L  are given below. 
- Let L be a complete lattice with a join L∪  and a meet L∩ . Then 1 2L L  

is a bilattice with the following basic operations: 

( ) ( ) ( )1 1 2 2 1 L 2 1 L 2, , ,x y x y x x y y∨ = ∪ ∩               (8a) 

( ) ( ) ( )1 1 2 2 1 L 2 1 L 2, , ,x y x y x x y y∧ = ∩ ∪               (8b) 

( ) ( ) ( )1 1 2 2 1 L 2 1 L 2, , ,x y x y x x y y⊕ = ∪ ∪               (8c) 

( ) ( ) ( )1 1 2 2 1 L 2 1 L 2, , ,x y x y x x y y⊗ = ∩ ∩               (8d) 

( ) ( )1 1 1 1, ,x y y x¬ =                       (8e) 

 ( ) ( )2 2 2 2, ,x y y x¬ =                       (8f) 

In an interlaced bilattice, we take a conflation ( )−  of T  to be ⊥ , and 
conversely, negation ( )¬  of true t and false f to be themselves again. Then 
lemma: 

For logical negation, 

( )1 1 1 1x y x y¬ ∧ = ¬ ∨¬ , ( )1 1 1 1x y x y¬ ∨ = ¬ ∧¬  

( )1 1 1 1x y x y¬ ⊗ = ¬ ⊗¬ , ( )1 1 1 1x y x y¬ ⊕ = ¬ ⊕¬  

f t¬ =                            (9a) 

t f¬ =                           (9b) 

¬ =T T                           (9c) 
¬⊥ = ⊥                           (9d) 

For logical conflation,  

( )1 1 1 1x y x y− ∧ = − ∧ − , ( )1 1 1 1x y x y− ∨ = − ∨ −   

( )1 1 1 1x y x y− ⊗ = − ⊕ −  , ( )1 1 1 1x y x y− ⊕ = − ⊗−    

f f− =                          (10a) 

t t− =                          (10b) 
− = ⊥T                          (10c) 

− ⊥ = T                         (10d) 

If B is interlaced, then 
f⊥ ∧ =T                         (11a) 

t⊥ ∨ =T                          (11b) 

f t⊗ = ⊥                          (11c) 

f t⊕ = T                         (11d) 

The four basic elements of 1 2L L  are the following [20] [25] [34]: 
( ) ( )( )L L inf , infL L⊥ =



, ( ) ( )( )L L sup ,supL L=


T , ( ) ( )( )L L sup ,inft L L=


, 
and ( ) ( )( )L L inf ,supf L L=



. 

5. Material and Methods 

In this work, our objective is to use concepts of PAL2v to find a logical model 
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that is able to simulate phenomena found in quantum mechanics. PAL2v is 
based on fundamentals that allow some quantum mechanical phenomena to be 
modeled and so it is a quantum logic, named paraquantum logic (PQL). There-
fore, for the construction of a probabilistic paraquantum model (pPQL-Model) 
we will associate PQL with the interlaced bilattice FOUR (Belnap’s bilattice) and 
involve probability theory through the Bernoulli distribution.  

5.1. pPQL-Model Associated at Interlaced Bilattice FOUR 

For the construction of a pPQL-Model, we start by associating PQL with the in-
terlaced bilattice FOUR (Belnap’s bilattice).  

5.1.1. PQL and Interlaced Bilattice FOUR (Belnap’s Bilattice) 
The properties of the interlaced Belnap’s bilattice suggest that we can compare 
outcomes not only from the classical viewpoint, as either being true or false, but 
also others that may be contradictory.  

As was seen in section 4.2, an interlaced bilattice is defined as a bilattice satis-
fying the condition that the meet and join operations for each partial ordering 
must be monotonic with respect to the other ordering.  

Belnap’s four-valued bilattice is an example of a nontrivial interlaced bilattice 
and it is denoted by { }, , ,B t f= ⊥T , where t1t =  is true, t0f =  is false, 

1k=T  is inconsistent (both true and false) or possible, and 0k⊥ =  is para-
complete (neither true nor false ) or unknown. These values can be given two 
natural orders, truth order t≤  and knowledge order k≤ , such that t tf t≤ ≤T , 

t tf t≤ ⊥ ≤ , and k kf⊥ ≤ ≤ T , k kt⊥ ≤ ≤ T . 
Meet and join operators under t≤  are denoted as ∧ and ∨; they are natural 

generalizations of the usual conjunction and disjunction notions, so f∧ ⊥ =T  
and t∨ ⊥ =T . 

Meet and join operators under k≤  are denoted ⊗  (consensus, because it 
produces the most information that two truth values can agree on) and ⊕  
(gullibility, because it accepts anything it is told), so f t⊗ = ⊥  and f t⊕ = T .  

There is a natural notion of truth negation, denoted as ¬ (reverses the t≤  
ordering, while preserving the k≤  ordering), switching f and t, leaving ⊥  and 
T ; the corresponding knowledge negation (conflation), denoted as   (re-
verses the k≤  ordering, while preserving the t≤  ordering), switching ⊥  and 
T , leaving f and t. In logical analysis, this term “conflation” is used when the 
identities of two or more distinct objects (individuals, concepts, or logical states) 
sharing some characteristics of one another appear to be a single identity and the 
differences appear to become lost.  

The fusion of distinct concepts about objects sharing some characteristics 
tends to obscure analysis of relationships that are emphasized by contrasts.  

5.1.2. Mapping between USCP-Lattice k (USCP: Unit Square in the  
Cartesian Plane) and Interlaced Bilattice FOUR 

A mapping (T) from a complete lattice L to another L is strict iff ( )T ⊥ = ⊥  
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where ⊥  is the least element of L. As L is a complete lattice, such an element is 
guaranteed to exist. Mapping T over complete lattices under a specified ordering 
(such as Belnap’s bilattice FOUR) of truth values and where ¬ is an injective and 
strict function from L to L presumes that L contains all elements of L. 

The mappings between complete bilattices can produce equations that help to 
find quotients of similarity for analyses of mathematical and efficient data 
processing [17] [20]. Following these procedures, we will perform a mapping of 
a complete USCP-lattice k (USCP: unit square in the cartesian plane) to the 
complete bilattice FOUR (Belnap’s bilattice).  

As seen in Figure 2, through this mapping, paraconsistent transformations 
(PT) and logic truth-values represented in bilattice FOUR that can be obtained 
from USCP-lattice k are produced.  

In the mapping USCP-lattice k → Belnap’s bilattice, three stages are required 
with actions on the USCP-lattice k to obtain paraconsistent transformations: a) 
scale expansion, b) rotation by 45˚, and c) translation in the y axis [18] [22] [23]. 

a) Scale expansion: In paraconsistent transformations, the scale is increased 
in USCP-lattice k as follows: consider point P(x, y) and P’(X, Y) as point coor-
dinates after scaling. Scaling entails multiplying each point Pi of an object by 
both a horizontal (Sx) and a vertical (Sy) scale factor. Function T is defined as 
( ) ( ), ,T Xp Yp xp Sx yp Sy= ⋅ ⋅ .  
If 2Sx =  and 2Sy =  and xp µ=  and  yp λ= , then the scale increase 

of USCP-lattice k is given by the first transformation:  

( ) ( )1 1 1, 2, 2T X Y µ λ=                     (12) 

b) Rotation by 45˚: For paraconsistent transformation, 45˚ rotation is made 
in the USCP-lattice κ from its origin; therefore,  

( ) ( )2 2 2 1 1 1 1, cos sin , sin cosT X Y X Y X Yθ θ θ θ= ⋅ − ⋅ ⋅ + . For a 45˚ rotation,  
 

 
Figure 2. Mapping between a USCP-lattice k to the complete bilattice FOUR. 
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( )2 2 2 1 1 1 1
1 1 1 1, ,
2 2 2 2

T X Y X Y X Y = ⋅ − ⋅ ⋅ + 
 

          (13) 

From Equation (12), we have 1T ; 1 2X µ=  and 1 2Y λ= . 

( )2
1 12 2
2 2

X µ λ µ λ = − = − 
 

 and  

( )2
1 12 2
2 2

Y µ λ µ λ = + = + 
 

 

( ) ( )2 2 2, ,T X Y µ λ µ λ= − + ; therefore, 2X µ λ= −  and 2Y λ µ= + .  
c) Translation in the y axis: Consider ( ) ( ), ,T Xp Yp xp dx yp dy= + + , where 

the total amounts are dx and dy. For paraconsistent transformations, a transla-
tion in USCP-lattice κ is made on its y axis as follows: let  

( ) ( )2 2 2, ,T X Y µ λ µ λ= − + ; thus, xp µ λ= −  and yp µ λ= + . With 0dx =  
and 1dy = − , the final transformation is 

( ) ( )3 3 3, , 1T X Y µ λ µ λ= − + −                   (14) 

Therefore, 3X µ λ= −  and 3 1Y µ λ= + − .  

5.2. Equations of Certainty and Contradiction Degree in the  
Interlaced Bilattice FOUR  

The representation of degrees of evidence in the interlaced bilattice FOUR (Bel-
nap’s bilattice) is made considering the certainty degree (Dc) from Equation (14) 
as X3 and the contradiction degree (Dct) as Y3 [18] [22] [23]. 

3X Dc=  → Certainty degree 

Dc µ λ= −                          (15) 

3Y Dct=  → Contradiction degree  

1Dct µ λ= + −                        (16) 

With this mapping on the interlaced bilattice FOUR, the equations are in-
serted in a set of complex numbers C, where the values of the certainty degree 
Dc will be exposed on the x-horizontal axis (real) and the values of the contra-
diction degree Dct exposed on the y-vertical axis (imaginary). Figure 3 shows 
the mapping of the USCP-lattice k, where the degrees of favorable (μ) and unfa-
vorable (λ) evidence are exposed, to the complete bilattice FOUR (Belnap’s bilat-
tice), where the certainty degree Dc (horizontal real axis) and contradiction de-
gree Dct (vertical imaginary axis) are exposed [18] [22] [23].  

A paraconsistent logical state ψ is considered as the point of intersection be-
tween the certainty degree Dc and the contradiction degree Dct located in the 
interlaced bilattice FOUR. Therefore, the representation of a paraconsistent log-
ical state ψ, will be [22] [23]:  

( ),Dc Dctψ =                         (17) 

5.3. Action of Logical Negation in the Interlaced Bilattice FOUR 

We consider that [ ],µ λ  is the annotation that belongs to the set B of interlaced  
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Figure 3. Mapping between a USCP-lattice k to the complete bilattice FOUR. 

 
bilattice FOUR, such that [ ] { }, set , ,B t fµ λ ∈ = ⊥T, . 

As the evidence degrees [ ], 1,0µ λ∈ ⊂ℜ , then for each operation of logical 
negation (Equation (7)) the certainty degree (Equation (15)) changes the sign 
and the contradiction degree (Equation (16)) remains. Therefore, in the action 
of logical negation operation [ ] [ ], ,µ λ λ µ¬ = , we have the following:  

For Dct+ , 
if Dc+ , then it changes to Dc−  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = + +  changes to ( ),Dc Dctψ¬ = − + ; 
if Dc− , then it changes to +Dc  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = − +  changes to ( ),Dc Dctψ¬ = + + .  
For Dct− , 
if Dc+ , then it changes to Dc−  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = + −  changes to ( ),Dc Dctψ¬ = − − ; 
if Dc− , then it changes to Dc+  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = − −  changes to ( ),Dc Dctψ¬ = + − .  

5.4. Action of Logical Conflation in the Interlaced Bilattice FOUR 

The logical conflation is a logical operation that the interlaced Belnap’s bilattice 
admits. 

We consider that ( );x y  is the truth values, where ( );x y  belong to the set B 
of interlaced bilattice FOUR.  

The conflation operation   is represented by ( ) ( ), 1 ,1x y y x= − − , and 
for PQL and the interlaced Belnap’s Bilattice FOUR associated with it, we have  

[ ] [ ], 1 ,1µ λ λ µ= − −                     (18) 

where [ ],µ λ  is the annotation (truth values), such that  
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[ ] { }, set , ,B t fµ λ ∈ = ⊥T,  of interlaced bilattice FOUR.  
As the evidence degrees [ ], 1,0µ λ∈ ⊂ℜ , for each logical conflation opera-

tion of Equation (18) the contradiction degree (Equation (16)) changes the sign 
and the certainty degree (Equation (15)) remains. Therefore, for the action of 
logical conflation operation [ ] [ ], 1 ,1µ λ µ λ= − − , we have the following:  

For Dc+ ,  
if Dct+ , then it changes to Dct−  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = + +  changes to ( ),Dc Dctψ− = + − ; 
if Dct− , then it changes to Dct+  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = + −  changes to ( ),Dc Dctψ− = + + .  
For Dc− , 
if Dct+ , then it changes to Dct−  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = + −  changes to ( ),Dc Dctψ = − − ; 
if Dct− , then it changes to Dct+  and, from Equation (17), the logical state 

that was ( ),Dc Dctψ = − −  changes to ( ),Dc Dctψ = − + .  

5.5. Representation of the Probabilistic Paraquantum Logical  
Model (pPQL-Model) 

The representation of the pPQL-Model is built from modeling the USCP-lattice 
k with the probability values of the Bernoulli distribution. In this way, the 
USCP-lattice k mapping will apply the probabilistic values on the interlaced bi-
lattice FOUR (Belnap’s bilattice). In the pPQL-Model, the probability p is an 
outcome that generates the degrees of evidence for the analysis of a proposition 
P for affirmation (true) or refutation (false). For example, we can relate the 
proposition P with a probability mass function (pmf) of the Bernoulli distribu-
tion (Equation (3)) with the k = 1 success (result H-heads) and k = 0 failure (re-
sult T-tails).  

The results in linear variation and relationship determined by the variance σ2 
with Equation (5) can be seen in Figure 4.  

As in PQL theory, an annotation is composed of the two values of degrees of 
evidence at probability p; then for application of degrees of evidence in the 
pPQL-Model, we have the following: 

With k = 0, the pmf generates the values for the unfavorable evidence degree 
at probability p. 

With k =1 the pmf generates the values for the favorable evidence degree at 
probability p. 

The degrees of evidence (μ and λ) that will form the annotation are extracted 
from the pmf obeying the Bernoulli distribution for a single Bernoulli trial 
(launch of a coin) or for two Bernoulli trials (launch of two coins) simulta-
neously. 

5.5.1 Representation at Bilattice FOUR of a Single Bernoulli Trial 
For a single Bernoulli trial (launch of one coin), the representation can be made 
considering that the variance σ2 has values obtained by Equation (5), where a  
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Figure 4. Results of the application of the probability mass function (pmf) of the 
Bernoulli distribution and variance for k = 1 and k = 0.  

 
maximum value 0.25 for a function of p ∈ [0, 1] resulted in a parabola curve (as 
shown in Figure 4). For the initial modeling, we can consider that a greater va-
riance value means that a conclusion on the logical state that results in True (t) 
or in False (f) will be made with a higher degree of uncertainty. This situation is 
represented by the PQL through the certainty degree (Dc) equal to zero (Equa-
tion (15)). Otherwise, a minor variance value leads to a conclusion on the logical 
state that results in True (t) with the certainty degree (Dc) equal to 1 or results in 
False (f) with the certainty degree (Dc) equal to −1.  

It can be assumed that the increase in the variance value reduces the value of 
the certainty degree (Dc) in both logical states, True (t) and False (f). In this way, 
the value of the variance, when related to the pPQL-Model, will be compared to 
the values of the degrees of unfavorable evidence at probability p. As changes in 
probability p are represented by two straight lines generated by the pmf (Equa-
tion (3)), the relationship with the favorable degree of evidence at probability p 
is represented by the complementary value.  

In the Bernoulli distribution, the standard deviation σ (Equation (6)) and the 
variance σ2 (Equation (5)) have the same characteristics related at evidence ei-
ther favorable or unfavorable to probability p. Then, for a better representation 
in the bilattice FOUR, we use the standard deviation σ in the equations.  

Under these conditions, the degrees of evidence will be represented in the 
pPQL-Model by the following equations.  

The degree of unfavorable evidence at probability p is to the True logical state 
(t): ( ) ( )2

p t p pλ = − .  
The degree of favorable evidence at probability p is the complement: 
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( ) ( )21p t p pµ = − − .  
The maximum value for the standard deviation σ will be for probability p = 

0.5. Then, it will be 2 0.5σ = , which leads to the degrees of evidence at a range 
variation from 0 to 0.5. Therefore, a constant value of 0.5 will be added so that 
the degrees of evidence can reach a complete unitary value. With these assump-
tions, the extraction mode of evidence degrees results in the following: 

In relation to the True logical state (t), the favorable degree of evidence at 
probability p is  

( ) ( )21
2p t p pµ = + −                      (19) 

and the unfavorable degree of evidence at probability p is  

 ( ) ( )21
2p t p pλ = − −

                    
 (20) 

In relation to the False logical state (f), the favorable degree of evidence at 
probability p is  

( ) ( )21
2p f p pµ = − −                      (21) 

and the unfavorable degree of evidence at probability p is  

( ) ( )21
2p f p pλ = + −                      (22) 

Then, for the separate analysis, we have the following:  
a) For the True logical state (t), the degree of favorable evidence (µ) at proba-

bility p (Equation (19)) and the degree of unfavorable evidence (λ) at probability 
p (Equation (20)):  

From Equation (15), the certainty degree is a function of p and it is 
represented by 

( ) ( ) ( )p t p t p tDc µ λ= − , where ( )0 1p tDc≤ ≤ + . 

From Equation (16), as ( ) ( ) 1p t p tµ λ+ =  for any value of p, the contradiction 
degree will always be null. The paraquantum logical state is a function of p and it 
is represented from Equation (17) by 

( ) ( ) ( )( ) ( ) ( )( ), ,0p t p t p t p t p tDc Dct Dcψ ψ= → = + , where ( )0 1p tDc≤ ≤ + .  

Figure 5 shows the extraction mode of degrees of evidence through the pmf of 
the Bernoulli distribution. 

For example, the computed values of evidence degrees at probability p = 0.5 

are ( )
2 21 1 0.5 0.5 1

2 2p t p pµ = + − = + − =  and  

( )
2 21 1 0.5 0.5 0

2 2p t p pλ = − − = − − =   

The annotation [ ]1,0  → ( ) 1p tDc =  and ( ) 0p tDct =  → ( ) ( )1,0p tψ = + . 
The computed values of evidence degrees at probability p = 1 and p = 0 are 

( )
1
2p tµ =  a n d  ( )

1
2p tλ = .  T h e  a n n o t a t i o n  [ ]0.5,0.5  → ( ) 0p tDc =  a n d  
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Figure 5. Extraction mode of degrees of evidence through the probability mass function 
(pmf) of the Bernoulli distribution.  

 

( ) 0p tDct =  → ( ) ( )0,0p tψ = . 

b) For the False logical state (f) the degree of favorable evidence (μ) at proba-
bility p (Equation (21)) and the degree of unfavorable evidence (λ) at probability 
p (Equation (22)):  

The certainty degree is a function of p and it is represented from Equation (15) 
by 

( ) ( ) ( )p f p f p fDc µ λ= − , where ( )1 0p fDc− ≤ ≤ . 

From equation (16), as ( ) ( ) 1p f p fµ λ+ = , the contradiction degree will always 
be null. The paraquantum logical state is a function of p and it is represented 
from equation (17) by  

( ) ( ) ( )( ),p f p f p fDc Dctψ =  → ( ) ( )( ),0p f p fDcψ = , where ( )1 0p fDc− ≤ ≤ . 

For example, the computed values of evidence degrees at probability p = 0.5 
are  

( )
2 21 1 0.5 0.5 0

2 2p f p pµ = − − = − − =  and 

( )
2 21 1 0.5 0.5 1

2 2p f p pλ = + − = + − =  

The annotation [ ]1,0  → ( ) 1p fDc = −  and ( ) 0p fDct =  ( ) ( )0, 1p fψ = − . 
The computed values of evidence degrees at probability p = 1 and p = 0 are 

( )
1
2p fµ =  and ( )

1
2p fλ = . The annotation [ ]0.5,0.5  → ( ) 0p tDc =  and 

( ) 0p tDct =  → ( ) ( )0,0p tψ = . 
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For a single Bernoulli trial (launch of one coin), there are two paraquantum 
logical states in the function of p. The probabilistic paraquantum state of the 
True logical State (t) is represented only by ( )p tDc  and the probabilistic para-
quantum state of the False logical state (f) is represented only by ( )p fDc . For the 
maximum and minimum variations of the pmf of the Bernoulli distribution, the 
contradiction degree (Dct) will always be zero with ( )0 1p tDc≤ ≤ +  and 

( )1 0p fDc− ≤ ≤ . 
The representation for the probability values ranging from 0 to 1 are generat-

ed by the pmf of the Bernoulli distribution. For a better analysis, we consider 
that the variation of the probability begins with an initial value p = 0.5; then for 
each probability value (p) that decreases, the corresponding complementary 
value (q = 1 − p) will increase.  

The variation of the probability values occurs along with changes in the values 
of the variance σ2 and standard deviation σ. With the reduction in variance, both 
degrees of certainty (DC(p)f and DC(p)t) increase simultaneously toward the True 
logical state (t) and the False logical state (f). Similarly, with the increase in va-
riance, both degrees of certainty (DC(p)f and DC(p)t) approach the undefined logi-
cal state (I) located at the point equidistant from the vertices of the bilattice 
FOUR. At the point of the undefined logical state (I) is the maximum variance 
with both degrees of favorable and unfavorable evidence equal to 0.5, which re-
sults in both degrees of certainty with zero values ((DC(p)f = DC(p)t = 0).  

Figure 6 shows the representation of the single Bernoulli trial on paraquan-
tum analysis using interlaced bilattice FOUR. 

5.6. Indistinguishability between Paraquantum Logical States 

In the Paraquantum analysis, before the logical state is set between True (t) and  
 

 

Figure 6. Representation of the single Bernoulli trial using interlaced bilattice FOUR.  
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False (f), the variance σ2 causes indistinguishability between the two. 
This indistinguishability between the True logical state (t) and the False logi-

cal state (f) is represented by the exchange of position between the degrees of 
favorable (µ) and unfavorable (λ) evidence; this effect is due to the logical nega-
tion represented in Equation (7) and the logical conflation represented in Equa-
tion (18). In this condition, the two logical states, True (t) and False (f), are in 
superposition and in a state of entanglement. 

5.6.1. Action of Logical Negation for the Single Bernoulli Trial on the  
Interlaced Bilattice FOUR 

The actions of operation of logical negation are described as follows: 
For the True logical state (t), the operation of logical negation from Equation 

(7) with evidence degrees of Equations ((19), (20)) are:  

( ) ( ) ( ) ( ), ,p t p t p t p tµ λ λ µ   ¬ =      

( ) ( ) ( ) ( )2 2 2 21 1 1 1, ,
2 2 2 2

p p p p p p p p   ¬ + − − − = − − + −        
 (23a) 

( )( ) ( )( ) ( )( ) ( )( )0.5 1.0 , 0.0 0.5 0.0 0.5 , 0.5 1.0p t p t p t p tµ λ λ µ   ¬ ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤   
 

For the logical False state (f), the operation of logical negation from Equation 
(7) with evidence degrees of Equations ((22), (23)) are:  

( ) ( ) ( ) ( ), ,p f p f p f p fµ λ λ µ   ¬ =      

( ) ( ) ( ) ( )2 2 2 21 1 1 1, ,
2 2 2 2

p p p p p p p p   ¬ − − + − = + − − −      
 (23b) 

( )( ) ( )( ) ( )( ) ( )( )0.0 0.5 , 0.5 1.0 0.5 1.0 , 0.0 0.5p t p t p t p tµ λ λ µ   ¬ ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤   
 

Therefore, variations in degrees of evidence happen in a complementary 
manner with the logical negation operation.  

5.6.2. Action of Logical Conflation for the Single Bernoulli Trial on the  
Interlaced Bilattice FOUR 

The actions of the operation of logical conflation are described as follows: 
For the True logical state (t), the operation of logical conflation from Equation 

(18) with evidence degrees of Equations ((19), (20)) are:  

( ) ( ) ( ) ( ), 1 ,1p t p t p t p tµ λ µ λ   = − −      

( ) ( ) ( ) ( )2 2 2 21 1 1 1, 1 ,1
2 2 2 2

p p p p p p p p      + − − − = − − − − + −           
  (24a) 

( )( ) ( )( ) ( )( ) ( )( )0.5 1.0 , 0.0 0.5 0.5 1.0 , 0.0 0.5p t p t p t p tµ λ µ λ   ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤     

For the False logical state (f), the operation of logical conflation from Equa-
tion (18) with evidence degrees of Equations ((21), (22)) are:  

( ) ( ) ( ) ( ), 1 ,1p f p f p f p fµ λ µ λ   = − −      

( ) ( ) ( ) ( )2 2 2 21 1 1 1, 1 ,1
2 2 2 2

p p p p p p p p      − − + − = − + − − − −           
 (24b) 
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( )( ) ( )( ) ( )( ) ( )( )0.0 0.5 , 0.5 1.0 0.0 0.5 , 0.5 1.0p t p t p t p tµ λ µ λ   ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤     

Therefore, in the single Bernoulli trial, there is no difference in the variation 
of the degrees of evidence with the operation of the logical conflation. This 
means that the operation of the conflation has no logical action because there is 
no contradiction in this situation. 

For a single Bernoulli trial that does not have any inconsistencies, the super-
position state can be calculated using the degree of contradiction (Dct) (Equation 
(16)), and the value remains null. The uncertainty could also be estimated by the 
degree of certainty (DC) (Equation (15)); however, the double values of degrees 
of evidence that continuously change position induce indistinguishability and 
produce the uncertainty value corresponding to the zero degree of certainty. 

5.7. Representation of Two Bernoulli Trials in Simultaneous  
Mode at Interlaced Bilattice FOUR 

In the representation, in an interlaced bilattice FOUR (Belnap’s bilattice) for two 
Bernoulli trials in simultaneous mode (launch of two coins), two variances are 
considered based on the following theorem [32]: 

If X and Y are independent random variables, then 

( ) ( ) ( )Var X Y Var X Var Y+ = +                  (25) 

This proof relies on ( ) ( ) ( )E X Y E X E Y+ =  when X and Y are indepen-
dent.  

Therefore, with two Bernoulli trials and Equation (35), one can consider the 
double variance as ( ) ( )2 2 2

,X Y X X Y Yp p p pσ = − + − , where the double standard 
deviation will be  

2
, ,X Y X Yσ σ=  or ( ) ( )2 2

,X Y X X Y Yp p p pσ = − + − . 

Considering the probability values X Yp p p= = ,  

2
, 2X Yσ σ=                         (26) 

Equation (26) can be rewritten as 2
, 2X Yσ σ= ,or, from Equation (6), con-

sidering the single standard deviation σ  

, 2X Yσ σ=                          (27) 

Matching (26) and (27), we have 
22 2σ σ=                         (28) 

Multiplying by 2 on both sides of the equation, we can make an adjustment to 
the value of the probability p (the area under the parabolic curve in Figure 6) 
obtained by the pmf of the Bernoulli distribution: 22 2 2 2σ σ= . The last ex-
pression also can be rewritten (taking into consideration the single standard  

deviation σ  from Equation (27)) as ( )22 2 2
2

σ σ=  or 
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( )( ) ( )2 21 2
2

p p p p− = −                  (29) 

Equation (29) relates the values of the function of the probability p and 
represents the area under the parabolic curve in Figure 6. Therefore, for defines 

( )pµ , we can make the following analysis: 
- when 0.5p =  the Variance value is 2 0.25σ =  → 0.5σ = . Result 

( ) 2 1pµ σ= =  
- when 1.0p =  the Variance value is 2 0.0σ =  → 0.0σ =  Result 

( ) 2 0pµ σ= =   
- when 0.0p =  the Variance value is 2 0.0σ =  → 0.0σ =  Result 

( ) 2 0pµ σ= =   
For 2 0.0625σ =  → 0.067p ≅  and 1 0.933p− ≅   

0.25σ =  → 2 0.5σ =  → 0.5σ = . We define ( ) 2pµ σ= , and for repre-
sentation of ( )pλ , we chosen a value that is 0.5 in this same condition. Therefore, 
the equations that adapt in this condition are ( )

22 2p p pµ σ= − =  and 

( )
2

p p pλ σ= − = .  
Figure 7 shows the graphs of ( )pλ  and ( )pµ  as a function of p ∈ [0,1] that 

results in its two different curves.  
The largest value occurs when p = 0.5 and the smallest value is 0 when p = 0 

and/or p = 1. There are two encounter points in probability p = 0.067 and p = 
0.933 that mark the start and final for valid analyses in PQL. 

We can consider Equation (29) as a generator of favorable and unfavorable 
degrees of evidence at probability p. In this condition, the two degrees μ and λ 
are generated in simultaneous mode for the two logical states, True (t) and False 
(f). This means that for two Bernoulli trials for the True logical state (t), two de-
grees of unfavorable evidence at probability p (λpt) and two degrees of favorable 
evidence at probability p (μpt) are generated. 

( ) 1 2p tµ σ=
                        

 (30) 

( ) 2p tλ σ=                          (31) 

 

 
Figure 7. The graphs of ( )pλ  and ( )pµ  as a function of p ∈ [0,1].  
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( ) 2 1p tµ σ= −                         (32) 

( ) 1 1 2p tλ σ= −
                       

 (33) 

For the False logical state (f), two degrees of favorable evidence at probability 
p (µpf) and two degrees of unfavorable evidence at probability p (λpf) are gener-
ated. 

( ) 1 2p fλ σ=                          (34) 

( ) 2p fµ σ=                         (35) 

( ) 1 1 2p fµ σ= −
                      

 (36) 

( ) 2 1p fλ σ= −                       (37) 

In the mapping, these values originating at probability p are represented on 
the horizontal (x) and vertical (y) axes of the USCP-lattice k in the formatting of 
the degrees of favorable evidence (µ) and unfavorable evidence (λ), respectively. 
With the two corresponding degrees of evidence (favorable and unfavorable at 
probability p), the paraquantum logical states ψ in the interlaced bilattice FOUR 
on superposition states are obtained. This mapping is made through paraconsis-
tent transformations and results in the interlaced bilattice FOUR with represen-
tations of superposed paraquantum logical states (ψsup) in the interior.  

The application of mapping results in four paraquantum logical states ψsup 
formed with values of degrees of certainty (Dc) from Equation (15) and degrees 
of contradiction (Dct) from Equation (16). The set of states in this configuration 
that undergo the changes in Dc(p) and Dct(p) values vary their internal positions 
in the interlaced bilattice FOUR. This set of superposed logical states ψsup is ob-
tained as follows: 

With Equations ((30) and (31)), from Equation (15), we have the probabilistic 
certainty degree  

 ( ) ( ) ( )1 1 2p t p t p tDc µ λ= −                      (38) 

and from Equation (16), we have the probabilistic contradiction degree  

 ( ) ( ) ( )1 1 2 1p t p t p tDct µ λ= + −                    (39) 

These two values form a pair at a single point in the bilattice FOUR—a single 
superposed paraquantum logical state—as represented in Equation (17): 

 ( ) ( ) ( )( )1 1 1,PQ p t p tDc Dctψ =                     (40) 

With Equations ((32) and (33)), from Equation (15), we have the probabilistic 
certainty degree ( ) ( ) ( )2 2 1p t p t p tDc µ λ= −  and from Equation (16), we have the 
probabilistic contradiction degree  

( ) ( ) ( )2 2 1 1p t p t p tDct µ λ= + −                    (41) 

These two values form a pair at a single point in the bilattice FOUR—a single 
superposed Paraquantum logical state—as represented in Equation (17): 
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( ) ( ) ( )( )2 2 2,PQ p t p tDc Dctψ =                    (42) 

With Equations ((34) and (35)), from Equation (15), we have the probabilistic 
certainty degree 

( ) ( ) ( )1 1 2p f p f p fDc µ λ= −
                   

 (43) 

and from Equation (16), we have the probabilistic contradiction degree  

( ) ( ) ( )1 1 2 1p f p f p fDct µ λ= + −                    (44) 

These two values form a pair at a single point in the bilattice FOUR—a single 
superposed paraquantum logical state—as represented in Equation (17): 

( ) ( ) ( )( )3 1 1,PQ p f p fDc Dctψ =                    (45) 

With Equations ((36) and (37)), from Equation (15), we have the probabilistic 
certainty degree  

( ) ( ) ( )2 2 1p f p f p fDc µ λ= −                     (46) 

and from Equation (16), we have the probabilistic contradiction degree  

( ) ( ) ( )2 2 1 1p f p f p fDct µ λ= + −                    (47) 

These two values form a pair at a single point in the bilattice FOUR—a single 
superposed Paraquantum logical state—as represented in Equation (17): 

( ) ( ) ( )( )4 2 2,PQ p f p fDc Dctψ =                    (48) 

The set of superposed paraquantum logical states is 

( ) ( ) ( ) ( ) ( ){ }sup sup 1 sup 2 sup 3 sup 4, , ,p PQ PQ PQ PQψ ψ ψ ψ ψ=            (49) 

A vector of state P(ψ) in the interlaced bilattice FOUR originates in one of the 
two vertices, True (t) or False (f), which compose the certainty degree horizontal 
axis. With its origin in one of the vertices of the bilattice FOUR, the vector of 
state P(ψ) has at its end a point formed by the pair ( ( ) ( ),C ctPQ D Dψ =  indicated 
by the paraquantum logical state (Equation (17)). Paraquantum logical states ψ 
in the trajectory indicated by the vertex of state vector P(ψ) of unitary module 
are defined as superposed paraquantum logical states supψ . In the interlaced bi-
lattice FOUR, each superposed paraquantum logical state has variations estab-
lished by four state vectors of unitary module. For this one-dimensional space 
study, we divided the bilattice FOUR into four quadrants. For example, in the 
quadrant I of bilattice FOUR, the state vector P(ψ) will always be the sum of its 
two component vectors:  

Vector CX , with the same direction of the certainty degree axis (horizontal), 
whose module equals the intensity complement of the certainty degree: 

( ) 11C p tX Dc= −   
Vector ctY , with the same direction of the contradiction degree axis (vertic-

al), whose module equals the intensity of the contradiction degree: ( ) 2ct p tY Dct=  
Therefore, given any single superposed paraquantum logical state (ψcur) as de-
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fined in the set presented in Equation (49), we can calculate the module of vector 
of state P(ψ) according to the equation:  

( ) ( )( ) ( )

2
2MP 1 p pDc Dctψ = − +                 (50) 

where ( )pDc  = probabilistic certainty degree calculated by (15), 

( )pDct  = probabilistic contradiction degree calculated by (16)  

and ( )( ) ( )

2
21 1p pDc Dct− + = . 

The angle formed by the module of the vector of state P(ψ) and the certainty 
degree axis x is denominated by the inclination angle of the vector of state αψ.  

The representation in the interlaced bilattice FOUR of the four superposed 
paraquantum logical states can be made through the set of complex numbers C, 
as shown below: 

 ( ) ( ) ( )1 1 1PQ p t p tDc Dct iψ = +                    (51) 

 ( ) ( ) ( )2 2 2PQ p t p tDc Dct iψ = − −                    (52) 

 ( ) ( ) ( )3 1 1PQ p f p fDc Dct iψ = − +                   (53) 

 ( ) ( ) ( )4 2 2PQ p f p fDc Dct iψ = − −                   (54) 

From Equation (1), we can also represent ( )( )1 pDc α− =  and ( )pDct β= , 
then the four corresponding state vectors P(ψ) are 

( ) ( )( ) ( )1 1 11 10 11PQ p t p tDc Dctψ = − +
             

 (55) 

where ( )( ) ( )

2
2

1 11 1p t p tDc Dct− + =  

 ( ) ( )( ) ( )2 2 21 10 00PQ p t p tDc Dctψ = − −
            

 (56) 

where ( )( ) ( )

2
2

2 21 1p t p tDc Dct− + =  

 ( ) ( )( ) ( )3 1 11 01 11PQ p f p fDc Dctψ¬ = − +             (57) 

where ( )( ) ( )

2
2

1 11 1p f p fDc Dct− + =  

( ) ( )( ) ( )4 2 21 01 00PQ p f p fDc Dctψ¬ = − −             (58) 

where ( )( ) ( )

2
2

2 21 1p f p fDc Dct− + =  

5.7.1. Action of Logical Negation and of Logical Conflation for the Two  
Bernoulli Trials in the Interlaced Bilattice FOUR 

Descriptions of the actions of the operation of logical negation and the operation 
of logical conflation for two Bernoulli trials in simultaneous mode at interlaced 
bilattice FOUR are as follows. For the superposed paraquantum logical states 
from Equations (51) to (54), we have the following: 

For ( ) ( ) ( )( )) 1 1 1,PQ p t p tDc Dctψ = , the annotation is ( ) ( )1 2,p t p tµ λ 
   or from Equ-

ations ((30) and (31)) is 2 ,σ σ 
  . 

For ( ) ( ) ( )( )2 2 2,PQ p t p tDc Dctψ = , the annotation is ( ) ( )2 1,p t p tµ λ 
   or from Equ-
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ations ((32) and (33)) is 1 ,1 2σ σ − −  . 

For ( ) ( ) ( )( )3 1 1,PQ p f p fDc Dctψ = , the annotation is ( ) ( )1 2,p f p fµ λ 
   or from 

Equations ((34) and (35)) is , 2σ σ 
  . 

For ( ) ( ) ( )( )4 2 2,PQ p f p fDc Dctψ = , the annotation is ( ) ( )2 1,p f p fµ λ 
   or from 

Equations ((36) and (37)) is 1 2 ,1σ σ − −  . 

From Equation (7), 2 2p pσ σ= = − ; therefore, the variation of standard 
deviation σ  is 0.0 0.5σ≤ ≤ , resulting in evidence degree  

11 2 1.0
2

σ − ≤ ≤ 
 

 and evidence degree 
10.0
2

σ≤ ≤ . Since the logical 

negation operation from Equation (7) is ( ) ( ) ( ) ( ), ,p p p t pµ λ λ µ   ¬ =    ,  

( ) ( )1 3PQ PQψ ψ= ¬                       (59a) 

and  

( ) ( )3 1PQ PQψ ψ= ¬
                     

 (59b) 

( ) ( )2 4PQ PQψ ψ= ¬                       (60a) 

and  

 ( ) ( )4 2PQ PQψ ψ= ¬                       (60b) 

Since the operation of logical conflation from Equation (18) is  

( ) ( ) ( ) ( ), 1 ,1p p p t pµ λ λ µ   = − −    ,  

( ) ( )1 2PQ PQψ ψ=
                     

 (61a) 

and  

( ) ( )2 1PQ PQψ ψ=                      (61b) 

( ) ( )3 4PQ PQψ ψ=                      (62a) 

and  

( ) ( )4 3PQ PQψ ψ=                      (62b) 

Figure 8 shows the pPQL-Model associated at interlaced bilattice FOUR 
(represented by evidence degrees at probability p obtained by Equations (30) to 
(33)) with four superposed paraquantum logical states ψsup and four state vectors 
P(ψ) of unitary module with inclination angle π 4ψα = .  

6. Essays with pPQL-Model Associated at Interlaced Bilattice 
FOUR 

With the pPQL-Model associated at interlaced bilattice FOUR, a representation 
was built that enables good visualization of the superposed paraquantum logical 
states behavior.  

The probability-valued trials show results that can be represented both 
numerically and graphically. 
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Figure 8. pPQL-Model associated at interlaced bilattice FOUR with four state vectors P(ψ) 
of unitary module and superposed paraquantum logical states ψsup.  

6.1. Results of Application of Probability Mass Function 

Application of the pmf of the Bernoulli distribution causes changes in values of 
the degrees of evidence; the appearance of trajectory of the superposed para-
quantum logical states located at the arrowheads at the ends of the state vectors.  

For example, Figure 9 shows the results for the application of evidence de-
grees at probability 0.067p ≅  to 0.933p ≅  of the module of state vector P(ψ) 
in interlaced bilattice FOUR. The error in establishing the unitary module for 
the state vector P(ψ) is small (maximum 6.3%).  

When 0.067p ≅  and 0.933p ≅ , all paraquantum logical states are concen-
trated on the equidistant point of vertices of bilattice FOUR (Undefined logical 
state I). In this condition, the same features of a single trial Bernoulli with 50% 
probability appear and we have the following values: 

The annotation of paraquantum logical state ( )1PQψ  is  

( ) ( )1 2
1 1, ,
2 2p t p tµ λ    =     

 and, from Equation (51), the representation of para-

quantum logical state in C is ( )1 1 0PQ iψ = +
 

and, from Equation (55), the para-

quantum logical state is ( )1 10PQψ = . 

The annotation of paraquantum logical state ( )2PQψ  is 
( ) 2 ( ) 1

1 1, ,
2 2
   =     

p t p tµ λ   

and, from Equation (52), the representation of paraquantum logical state in C is 

( )2 1 0PQ iψ = −  and, from Equation (56), the paraquantum logical state is 

( )2 10PQψ = . 
The annotation of paraquantum logical state ( )3PQψ  is  
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Figure 9. Results for evidence degrees at p = 0.067 to p = 0.933 of the module of state 
vector P(ψ) and error.  

 

( ) ( )1 2
1 1, ,
2 2p f p fµ λ    =     

 and, from Equation (53), the representation of para-

quantum logical state in C is ( )3 1 0PQ iψ = − +  and, from Equation (57), the pa-

raquantum logical state is ( )3 01PQψ = . 

The annotation of paraquantum logical state ( )4PQψ  is  

( ) ( )2 1
1 1, ,
2 2p f p fµ λ    =     

 and, from Equation (54), the representation of para-

quantum logical state in C is ( )4 1 0PQ iψ = − −  and, from Equation (58), the pa-

raquantum logical state is ( )4 01PQψ = .  

From the analysis in this condition, only two logical states remained, 

( ) ( )1 2 10PQ PQψ ψ= =  and ( ) ( )3 4 01PQ PQψ ψ= = . 

6.2. Results for Entangled Bell States 

With the pPQL-Model associated at interlaced bilattice FOUR, we can obtain 
values for entangled Bell states [30] [34]. The entangled Bell states are confi-
gured at p = 0.5 with the following values: 

The annotation of paraquantum logical state ( )1PQψ  is  

( ) ( )1 2
1, 1,
2p t p tµ λ    =     

 and, from Equation (51), the representation of para-

quantum logical state in C is ( )1
1 11  
2 2PQ iψ  = − + 

 
 and, from Equation (55), 

the paraquantum logical state is ( )1
1 110 11
2 2PQψ  = + 

 
. 

The annotation of paraquantum logical state ( )2PQψ  is  

( ) ( )2 1
1, 1 ,0
2p t p tµ λ

    = −      
 and, from Equation (52), the representation of 

https://doi.org/10.4236/jqis.2017.73009


J. I. Da Silva Filho   
 

 

DOI: 10.4236/jqis.2017.73009 116 Journal of Quantum Information Science 
 

paraquantum logical state in C is ( )2
1 11
2 2PQ iψ  = − − 

 
 and, from Equation 

(56), the paraquantum logical state is ( )2
1 110 00
2 2PQψ  = − 

 
. 

The annotation of paraquantum logical state ( )3PQψ  is  

( ) ( )1 2
1, ,1
2p f p fµ λ    =     

 and, from Equation (53), the representation of para-

quantum logical state in C is ( )3
1 11
2 2PQ iψ  = − − + 

 
 and, from Equation 

(57), the paraquantum logical state is ( )3
1 101 11
2 2PQψ  = + 

 
. 

The annotation of paraquantum logical state ( )4PQψ  is  

( ) ( )2 1
10, 1
2p f p fµ λ

   − = −      
 and, from Equation (54), the representation of 

paraquantum logical state in C is ( )4
1 11
2 2PQ iψ  = − − − 

 
 and, from Equa-

tion (58), the paraquantum logical state is ( )4
1 101 00
2 2PQψ  = − 

 
. 

The range of variation that takes the superposed paraquantum states from the 
Bell logical state to uncertainty is 0.933 0.067 0.866p∆ = − = . Figure 10 shows 
the results of the variation in the degree of contradiction and the complement of 
the degrees of certainty over a range of probability variations in simultaneous 
mode: in one direction to the False logical state 0.5 0.067pf∆ = ↔  and in the  

 

 
Figure 10. Results of the variation in the degree of contradiction and the complement of 
the degrees of certainty over a range of probability variations in simultaneous mode from 

0.5 0.067pf∆ = ↔  and 0.5 0.933.pt∆ = ↔  
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other direction to the True logical state 0.5 0.933pt∆ = ↔ . 

6.3. Application of Cumulative Distribution Function (CDF) 

The cumulative distribution function (CDF) can be used to establish stationary 
logic states represented in the interlaced bilattice FOUR. In this mode of repre-
sentation, the stationary logical states will be located at points where the error is 
minimal. For example, we can choose the two states where the error is zero and 
in the discrete analysis a quantum leap would occur.  

For continuum analysis between the two intervals, the pmf of the Bernoulli 
distribution would be used. 

Figure 11 shows the application of CDF in the intervals:  
p = 0 → p = 0.067 and p = 0.933 → p = 1.0; here the collapse of the wave func-

tion occurs; p = 0.067 → p = 0.45 and p = 0.55 → p = 0.933; here the steady state 
of Bell occurs; p = 0.433 → p = 0.567, which is the undefinite logical state; in this 
interval, the state is governed by pmf.  

The result is the vector state module of practically unitary, MP(ψ) = 1. 

6.4. Comments and Discussion 

In this work, the pPQL-Model associated at interlaced bilattice FOUR was pre-
sented in two ways.  

 The first mode was for the single Bernoulli trials process [28] [32] [35], 
where the experiment consists of just one flip of a coin. In this case, the outcome 
is either heads (H) or tails (T), and the sample space is represented by Ω = {H T}. 
This means that after the final measurement, the result can only point to a logi-
cal state represented by {H} or {T}. 

The second mode was for the two Bernoulli trials process, where the experi-
ment consists of the flipping of two coins simultaneously: on launch the 
σ-algebra F = 2Ω contains 22 = 4 events, namely, {H H} heads, heads; {T T}tails,  

 

 
Figure 11. Application of cumulative distribution function (CDF) in the probability mass function (pmf) of the Bernoulli 
distribution; (a) CDF and complementary cumulative distribution function (CCDF); (b) graphic results for the module of state 
vector P(ψ) and error. 

https://doi.org/10.4236/jqis.2017.73009


J. I. Da Silva Filho   
 

 

DOI: 10.4236/jqis.2017.73009 118 Journal of Quantum Information Science 
 

 
Figure 12. Two ways of PQL analysis, logical states and quantum effects. (a) Single Bernoulli Trial on the interlaced bilattice 
FOUR. (b) Two Bernoulli trials in simultaneous mode at interlaced bilattice FOUR. 
 

tails; {H T} heads, tails; and {T H} tails, heads. This means that after the final 
measurement, the result will only point out a logical state represented by {H H} 
or {T T} or {H T} or {T H}. 

Figure 12 shows the two analyses in PQL, the logical states, the consequences 
and equations of quantum effects.  

For the paraconsistent logic with annotation of two-values, PAL2v, the result-
ing logical state for both modes after the final measurement will depend on the 
proposition used in the analysis. 

6.4.1. Before Final Measurement 
Before final measurement the Bernoulli trials process is modelled by the 
pPQL-Model associated at interlaced Bilattice FOUR. As seen in this study, in 
the pPQL-Model, the logical conflation was null when in the single Bernoulli tri-
al study; however, it appears and produces the indistinguishability in case of two 
Bernoulli trials in simultaneous mode. For this second mode, before measuring 
the pmf of the Bernoulli distribution, it produces the probability variations p and 
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causes variations in degrees of favorable evidence µ(p) and unfavorable evidence 
λ(p). Due to these variations, the state vectors P(ψ) in the interlaced bilattice 
FOUR move and make the trajectory of the superposed paraquantum logical 
states ψsup.  

The logical conflation and logical negation in the interlaced bilattice FOUR 
produce the entanglement and superposition in both states. The superposition 
happens horizontally between False (f) and True (t), and in simultaneous mode, 
the superposition happens vertically with the exchange of vectors of states P(ψ) 
through the complex conjugate of the paraquantum logical states ψpql.  

With this reasoning, we can say that in the interlaced bilattice FOUR, the un-
definition by superposition of horizontal states is represented by logical negation 
(Equation (7)). In contrast, the change of the state vectors, through complex 
conjugate of the logical state causes undefinition, represented in the interlaced 
bilattice FOUR by knowledge negation (conflation) (Equation (18)). Therefore, 
the logical operations conflation and negation are responsible for the effects of 
the quantum phenomena (entanglement and superposition) that are observed in 
the bilattice FOUR. 

6.4.2. Final Result after Measurement 
The final result after measuring identifies the consequences of superposition and 
entanglement of logical states in the interlaced bilattice FOUR.  

Entanglement occurs due to ordering of the interlaced bilattice FOUR and to 
satisfy one of two classic logical states (True or False).  

The knowledge negation (conflation) and logical negation mean that before 
measurement, we cannot distinguish the coins and the logical state of each of 
them. After the final measurement, the state vectors P(ψ) and the wave function 
collapse and the result will be one of the four logical states represented at the 
vertices of interlaced bilattice FOUR obeying the ordering of knowledge k≤  
and truth t≤  of the bilattice. Meet (∧) and join (∨) operators under t≤  are 
then used such that  

For final results, False f  or Paracomplete ⊥ , as t tf t≤ ⊥ ≤ , then the meet 
operator (∧) is applied: 
o Case results in False f , then the final result will be False f  
o Case results in Paracomplete ⊥ , then the final result will be false f  

For final results True t  or Inconsistent T , as t tf t≤ ≤T , then the Join 
operator (∨) is applied: 
o Case results in True t , then the final result will be True t  
o Case results in Inconsistent T , then the final result will be True t  

Finally, from the Equation (11c) f t⊗ = ⊥  and (11a) f⊥ ∧ =T , the appli-
cation of the meet operator (∧) will result in the final outcome False (f) for [0 0] 
and [0 1]:  

[ ] [ ] [ ] [ ] [ ]0,0 0,1 0,0 T,T T, H f∧ = → ∧ =  

From the Equation (11d), f t⊕ = T , and (11b), t⊥ ∨ =T , the application of 
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the join operator (∨) will result in the final outcome true (t) for [1 1] or [1 0]:  

[ ] [ ] [ ] [ ] [ ]1,1 1,0 1,1 H,H H,T t∨ = → ∨ =  

6.4.3. Example: Before and after Measurement 
Before measurement, the analyses on interlaced bilattice FOUR have a proposi-
tion P, which can be formed, for example, by launching two coins simulta-
neously:  

P1: There is the probability p of the occurrence of two H. 
On representation of the bilattice FOUR the result of two H is the Inconsistent 

Logical State T . 
In this condition, the evidence degrees of the annotation ( ) ( ),p pµ λ 

   are 
transformed in maximum (1) or minimum (0) values  

( ) ( ) ( ) ( )max min max min,p p p pµ µ λ λ ∨ ∨  :  
The True logical state (t) after the measurement is [1 1] symbolized in the bi-

lattice FOUR for T . 
The Inconsistent logical state ( )T  after the measurement is [1 0] symbolized 

in the bilattice FOUR for t. 
The Paracomplete logical state ( )⊥  after the measurement is [0 1] symbo-

lized in the bilattice FOUR for f. 
The False logical state (f) after the measurement is [0 0] symbolized in the bi-

lattice FOUR for ⊥ . 
P2: There is the probability p of the occurrence of two T.  
On representation of the bilattice FOUR, the result of two T is the Paracom-

plete logical state ⊥ . In this condition, we have the following:  
The True logical state (t) after the measurement is [0 0] symbolized in the bi-

lattice FOUR for ⊥ . 
The Inconsistent logical state ( )T  after the measurement is [1 0] symbolized 

in the bilattice FOUR for t. 
The Paracomplete logical state ( )⊥  after the measurement is [0 1] symbo-

lized in the bilattice FOUR for f. 
The False logical state (f) after the measurement is [1 1] symbolized in the bi-

lattice FOUR for T . 
P3: There is the probability p of the occurrence of one H and one T.  
On representation of the bilattice FOUR, the result of one H and one T is the 

logical state True t. In this condition, we have the following: 
The True logical state (t) after the measurement is [1 0] symbolized in the bi-

lattice FOUR for t. 
The Inconsistent logical state ( )T  after the measurement is [1 1] symbolized 

in the bilattice FOUR for T . 
The Paracomplete logical state ( )⊥  after the measurement is [0 0] symbo-

lized in the FOUR bilattice for ⊥ . 
The False logical state (f) after the measurement is [0 1] symbolized in the bi-

lattice FOUR for f. 
P4: There is the probability p of the occurrence of one T and one H. 
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On representation of the bilattice FOUR, the result of one T and one H is the 
False logical state f. In this condition, we have the following: 

The True logical state (t) after the measurement is [0 1] symbolized in the bi-
lattice FOUR for f. 

The Inconsistent logical state ( )T  after the measurement is [1 1] symbolized 
in the bilattice FOUR for T . 

The Paracomplete logical state ( )⊥  after the measurement is [0 0] symbo-
lized in the bilattice FOUR for ⊥ . 

The False logical state (f) after the measurement is [1 0] symbolized in the bi-
lattice FOUR for t. 

6.4.4. Correlation with EPR Paradox 
With the pPQL-Model associated at interlaced bilattice FOUR, we can study 
certain concepts of correlation that are similar to the EPR paradox. 

As it was seen, the mapping of degrees of probabilistic evidence (p) in the in-
terlaced bilattice FOUR resulted in each of its four vertices represented by an 
annotation, or a pair of degrees of probabilistic evidence with their extreme val-
ues, where 

( ) 1pµ =  and ( ) 1pλ =   Inconsistent logical state [ ]1,1 = T  

( ) 1pµ =  and ( ) 0pλ =   True logical state [ ]1,0 t=  

( ) 0pµ =  and ( ) 0pλ =   Paracomplete logical state [ ]0,0 = ⊥  

( ) 0pµ =  and ( ) 1pλ =   False logical state [ ]0,1 f=   
We can consider that, in the Bernoulli experiment of launching two coins si-

multaneously, after entanglement, agent A (Alice) chooses one of them at ran-
dom. Then, leaving the other coin with agent B (Bob), agent A travels to a dis-
tant region. 

The proposition previously chosen is P1: There is the probability p of the oc-
currence HH. When distant from each other, if agent A (or agent B) does a 
measurement, then only the individual state 0 (T) or 1 (H) for one coin will be 
known.  

The final logical state of the probabilistic paraquantum model, represented at 
the vertices of bilattice FOUR by two extreme values of the pair [µ, λ] will be 
known only by agents A and B when the measurements of logical states of the 
two coins are made. However, irrespective of the distance, when we consider 
that agent A (or B) is in the position of the µ-degree of favorable evidence prob-
abilistic, when s/he does the measurement of the coin, s/he will instantly know 
the resultant final state. For example, considering that the pair [μ, λ] = [A, B]:  

If agent A does the measurement and it results in H, the pair of extreme values 
will be [1 B]. In this condition, if agent B does a measurement and it results in T, 
the pair of extreme values will be [1 0], resulting in the final logical state true (t). 
However, if agent B does a measurement resulting in H, the pair of extreme val-
ues will be [1 1]; that is, an Inconsistent logical state T  and the connective ∨  
of bilattice FOUR (join operator ∨ ) is applied and the final logical state will be 
true (t).  
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If agent A does the measurement and it results in T, then the pair of extreme 
values will be [0 B]. In this condition, if agent B does a measurement and it re-
sults in H, the pair of extreme values will be [0 1], resulting in the final logical 
state false (f). However, if agent B does a measurement resulting in T, the pair of 
extreme values will be [0 0]; that is, a Paracomplete logical state ⊥  and the 
connective ∧  of bilattice FOUR (meet operator ∧) is applied and the final log-
ical state will be false (f).  

The position of agent B as λ, degree of unfavorable evidence probabilistic, 
does not allow that he knows the result of the final logical state when he does the 
coin measurement. Therefore, in communication systems using the paraquan-
tum logical model, we must establish which of the agents is initially positioned 
as the µ-probabilistic degree of favorable evidence. Another way is that the 
choice can be random, where the two agents know that there is a mark in one of 
the two coins.  

The coin with the mark has the condition to position itself as µ-probabilistic 
degree of favorable evidence. Due the indistinguishability of the coins in the in-
terlacing of the bilattice FOUR when the separation of the entangled coins is 
made, none of the agents know if your chosen coin is the one that has the mark. 
This condition will only be known when the agent does the measurement. 

7. Conclusion Remarks 

In this paper, we presented a logical model that combines non-relativistic quan-
tum mechanics with probabilistic theory of the Bernoulli distribution, bilattices 
theory, and foundations of paraconsistent logic. With the union of these theo-
ries, it was possible to build a logical and probabilistic model that works through 
the foundations of paraconsistent annotated logic with the ability to simulate 
phenomena found in quantum physics. With the inclusion of paraconsistent 
logic in physical science, this model was named the probabilistic paraquantum 
logical model (pPQL-Model). In this work, the pPQL-Model proved to be inno-
vative because it uses projections in an interlaced bilattice FOUR, which has 
properties that enhance studies in quantum mathematics and the visualization of 
quantum phenomena. In this model, the operation of logical conflation was in-
troduced as a new and important concept to the appropriateness of quantum 
logic with the interlaced bilattice FOUR. In the PQL logic, the logical conflation 
has fundamental importance due to its property of indistinguishability, which is 
characteristic of the entangled logical States. Using the concepts of PQL, we can 
verify that the operation of logical conflation is responsible for providing suita-
ble modeling at various phenomena of QM. The equations used in the model are 
of medium complexity and are ideal for creating algorithmic structures consi-
dered essential for efficient quantum computing with low computational cost. 
The results in this work indicate that the pPQL-Model, based in non-classical 
paraconsistent logic and the theory of interlaced bilattices, ushers in a new field 
of research. For research in quantum physics, the algorithmic computational 

https://doi.org/10.4236/jqis.2017.73009


J. I. Da Silva Filho 
 

 

DOI: 10.4236/jqis.2017.73009 123 Journal of Quantum Information Science 
 

structure of the pPQL-Model will serve for the construction of new quantum 
logic gates, quantum algorithms, and efficient circuits applied in quantum anal-
ysis systems. 

References 
[1] Landau, L.D. and Lifshitz, E.M. (2003) Quantum Mechanics (Non-Relativistic 

Theory). Butterworth Heinemann. Chapter 1.  

[2] Feynman, R.P. (1965) The Feynman Lectures on Physics. Volume III, Chapter 1. 
Volume I, Chapters 30 and 38.  

[3] Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Me-
chanics. Reviews of Modern Physics, 20, 367.  
https://doi.org/10.1103/RevModPhys.20.367 

[4] Feynman, R.P. and Hibbs, R.H. (1965) Quantum Mechanics and Path Integrals. 
McGraw-Hill.  

[5] Birkhoff, G. and von Neumann, J. (1936) The Logic of Quantum Mechanics. Annals 
of Mathematics, 37, 823-843. https://doi.org/10.2307/1968621 

[6] Birkhoff, G. (1967) Lattice Theory. American Mathematical Society, Providence. 

[7] Piron, C. (1976) Foundations of Quantum Physics. W.A. Benjamin, Inc.  
https://doi.org/10.1007/978-94-010-1440-3_7 

[8] Machey, G.M. (1963) The Mathematical Foundations of Quantum Mechanics. W. 
A. Bejamin, New York. 

[9] Engesser, K., Gabbay, D.M. and Lehmann, D.A. (2007) New Approach to Quantum 
Logic (Studies in Logic Book 8). College Publications, 200 p. 

[10] Ekert, D.A. and Lupacchini, R. (2000) Machines, Logic and Quantum Physics. Bul-
letin of Symbolic Logic, 3, 265-283. 

[11] Dishkant, H. (1972) Semantics of the Minimal Logic of Quantum Mechanics. Studia 
Logica, 30, 17-29. https://doi.org/10.1007/BF02120818 

[12] Redei, M. (1998) Quantum Logic in Algebraic Approach. Kluwer Academic Pub-
lishers. https://doi.org/10.1007/978-94-015-9026-6 

[13] Dalla Chiara, M.L. and Giuntini, R. (1989) Paraconsistent Quantum Logics. Foun-
dations of Physics, 19, 891-904. https://doi.org/10.1007/BF01889304 

[14] Dalla Chiara, M.L. and Giuntini, R. (1994) Unsharp Quantum Logics. Foundations 
of Physics, 24, 1161-1177. https://doi.org/10.1007/BF02057862 

[15] Dalla Chiara, M., Giuntini, R. and Greechie, R. (2004) Reasoning in Quantum 
Theory. Kluwer Academic Publishers, Dordrecht.  
https://doi.org/10.1007/978-94-017-0526-4 

[16] Abe, J.M., Nakamatsu, K., Akama, S. and Da Silva Filho, J.I. (2018) The Importance 
of Paraconsistency and Paracompleteness in Intelligent Systems. In: Czarnowski, I., 
Howlett, R. and Jain, L., Eds., Intelligent Decision Technologies 2017. IDT 2017. 
Smart Innovation, Systems and Technologies, Vol. 73. Springer, Cham.  
https://doi.org/10.1007/978-3-319-59424-8_18 

[17] Da Costa, N.C.A. and de Ronde, C. (2013) The Paraconsistent Logic of Quantum 
Superpositions. Foundations of Physics, 43, 845.   
https://doi.org/10.1007/s10701-013-9721-9 

[18] Da Silva Filho, J.I., Nunes, V.C., Garcia, D.V.N., Mario, M.C., Giordano, F., Abe, 
J.M. Pacheco, M.T.T. and Silveira Jr., L. (2016) Paraconsistent Analysis Network 
Applied in the Treatment of Raman Spectroscopy Data to Support Medical Diagno-

https://doi.org/10.4236/jqis.2017.73009
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.2307/1968621
https://doi.org/10.1007/978-94-010-1440-3_7
https://doi.org/10.1007/BF02120818
https://doi.org/10.1007/978-94-015-9026-6
https://doi.org/10.1007/BF01889304
https://doi.org/10.1007/BF02057862
https://doi.org/10.1007/978-94-017-0526-4
https://doi.org/10.1007/978-3-319-59424-8_18
https://doi.org/10.1007/s10701-013-9721-9


J. I. Da Silva Filho   
 

 

DOI: 10.4236/jqis.2017.73009 124 Journal of Quantum Information Science 
 

sis of Skin Cancer. Reviews of Modern Physics, 54, 1-15.  
https://doi.org/10.1007/s11517-016-1471-3 

[19] Da Costa, N.C.A. and Marconi, D. (1989) An Overview of Paraconsistent Logic in 
the 80’s. The Journal of Non-Classical Logic, 6, 5-31. 

[20] Subrahmanian, V.S. (1987) On the Semantics of Quantitative Logic Programs. Proc. 
4th. IEEE Symposium on Logic Programming, Computer Society Press, Washing-
ton DC. 

[21] Da Silva Fiho, J.I., Lambert-Torres, G. and Abe, J.M. (2010) Uncertainty Treatment 
Using Paraconsistent Logic—Introducing Paraconsistent Artificial Neural Net-
works. In: Volume 211—Frontiers in Artificial Intelligence and Applications, IOS 
Press, Amsterdam, 328 p. 

[22] Da Silva Filho, J.I. (2016) Undulatory Theory with Paraconsistent Logic (Part I): 
Quantum Logical Model with Two Wave Functions. Journal of Quantum Informa-
tion Science, 6, 143-180. https://doi.org/10.4236/jqis.2016.63012 

[23] Da Silva Filho, J.I. (2016) Undulatory Theory with Paraconsistent Logic (Part II): 
Schrödinger Equation and Probability Representation. Journal of Quantum Infor-
mation Science, 6, 181-213. https://doi.org/10.4236/jqis.2016.63013 

[24] Belnap, N. (1977) How a Computer Should Think. In: Ryle, G., Ed., Contemporary 
Aspects of Philosophy. Oriel Press, Stocksfield, 30-55. 

[25] Belnap, N. (1977) A Useful Four-Valued Logic. In: Dunn, J.M. and Epstein, G., Eds., 
Modern Uses of Multiple-Valued Logic, Reidel, Dordrecht, 8-37.  
https://doi.org/10.1007/978-94-010-1161-7_2 

[26] Davey, B.A. and Priestley, H.A. (2005) Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge. 

[27] Wille, R. (1992) Concept Lattices and Conceptual Knowledge Systems. Computers 
& Mathematics with Applications, 23, 493-515.  
https://doi.org/10.1016/0898-1221(92)90120-7 

[28] Nedelman, J. and Wallenius, T. (1986) Bernoulli Trials, Poison Trials, Surprising 
Variances, and Jensens’s Inequality. The American Statistician, 40, 286-289. 

[29] Samuels, S.M. (1965) On the Number of Successes in Independent Trials. The An-
nals of Mathematical Statistics, 36, 1272-1278.  
https://doi.org/10.1214/aoms/1177699998 

[30] Nielsen M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum In-
formation. Cambridge University Press. 

[31] Rédei, M. (1989) Quantum Conditional Probabilities Are Not Probabilities of 
Quantum Conditional. Physics Letters A, 139, 287-290.  
https://doi.org/10.1016/0375-9601(89)90454-4 

[32] Grinstead, C.M. and Snell, J.L. (1997) Introduction to Probability. Providence, RI, 
American Mathematical Society. 

[33] Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum Mechanical Descrip-
tion of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.  
https://doi.org/10.1103/PhysRev.47.777 

[34] Ginsberg, M.L. (1988) Multivalued Logics: A Uniform Approach to Inference in Ar-
tificial Intelligence. Computational Intelligence, 4, 265-316.  
https://doi.org/10.1111/j.1467-8640.1988.tb00280.x 

[35] Horodecki, M.P. and Horodecki, R. (2001) Mixed-State Entanglement and Quan-
tum Communication. Quantum Information, Springer Tracts in Modern Physics, 
173, 151-195. https://doi.org/10.1007/3-540-44678-8_5 

https://doi.org/10.4236/jqis.2017.73009
https://doi.org/10.1007/s11517-016-1471-3
https://doi.org/10.4236/jqis.2016.63012
https://doi.org/10.4236/jqis.2016.63013
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1016/0898-1221(92)90120-7
https://doi.org/10.1214/aoms/1177699998
https://doi.org/10.1016/0375-9601(89)90454-4
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1111/j.1467-8640.1988.tb00280.x
https://doi.org/10.1007/3-540-44678-8_5


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jqis@scirp.org                                                                                     

http://papersubmission.scirp.org/
mailto:jqis@scirp.org

	A Probabilistic Paraconsistent Logical Model for Non-Relativistic Quantum Mechanics Using Interlaced Bilattices with Conflation and Bernoulli Distribution
	Abstract
	Keywords
	1. Introduction
	2. Concepts of Quantum Mechanics (QM) 
	2.1. Superposition and Hilbert Space
	2.2. Quantum Logic and Hilbert Space
	2.3. Entanglement in Quantum Mechanics
	2.4. Observables and Measurement in Quantum Mechanics
	2.5. Probability in Quantum Mechanics
	2.6. Bernoulli Trial Process
	2.7. Probability Mass Function (pmf) in the Bernoulli Trial Process
	2.8. Expectation Value in the Bernoulli Trial Process
	2.9. Variance (Var(X) = σ2) and Standard Deviation (σ) in the Bernoulli Trial Process
	2.10. EPR Paradox

	3. Non-Classical Paraconsistent Annotated Logic
	3.1. Paraconsistent Logic and Many-Valued Logic
	3.2. Paraconsistent Four-Valued Logic
	3.3. Paraconsistent Annotated Logic (PAL)

	4. Theory of Bilattices
	4.1. Bilattice Representation
	4.2. Interlaced Bilattice

	5. Material and Methods
	5.1. pPQL-Model Associated at Interlaced Bilattice FOUR
	5.1.1. PQL and Interlaced Bilattice FOUR (Belnap’s Bilattice)
	5.1.2. Mapping between USCP-Lattice k (USCP: Unit Square in the Cartesian Plane) and Interlaced Bilattice FOUR

	5.2. Equations of Certainty and Contradiction Degree in the Interlaced Bilattice FOUR 
	5.3. Action of Logical Negation in the Interlaced Bilattice FOUR
	5.4. Action of Logical Conflation in the Interlaced Bilattice FOUR
	5.5. Representation of the Probabilistic Paraquantum Logical Model (pPQL-Model)
	5.5.1 Representation at Bilattice FOUR of a Single Bernoulli Trial

	5.6. Indistinguishability between Paraquantum Logical States
	5.6.1. Action of Logical Negation for the Single Bernoulli Trial on the Interlaced Bilattice FOUR
	5.6.2. Action of Logical Conflation for the Single Bernoulli Trial on the Interlaced Bilattice FOUR

	5.7. Representation of Two Bernoulli Trials in Simultaneous Mode at Interlaced Bilattice FOUR
	5.7.1. Action of Logical Negation and of Logical Conflation for the Two Bernoulli Trials in the Interlaced Bilattice FOUR


	6. Essays with pPQL-Model Associated at Interlaced Bilattice FOUR
	6.1. Results of Application of Probability Mass Function
	6.2. Results for Entangled Bell States
	6.3. Application of Cumulative Distribution Function (CDF)
	6.4. Comments and Discussion
	6.4.1. Before Final Measurement
	6.4.2. Final Result after Measurement
	6.4.3. Example: Before and after Measurement
	6.4.4. Correlation with EPR Paradox


	7. Conclusion Remarks
	References

