
Modern Mechanical Engineering, 2017, 7, 73-90 
http://www.scirp.org/journal/mme 

ISSN Online: 2164-0181 
ISSN Print: 2164-0165 

 

DOI: 10.4236/mme.2017.73006  Aug. 31, 2017 73 Modern Mechanical Engineering 
 

 
 
 

Structural Design via Genetic Optimization 

David Webb1, Wissam Alobaidi2*, Eric Sandgren2* 

1Axalta Coating Systems, Front Royal, USA 
2Systems Engineering Department, Donaghey College of Engineering & Information Technology, University of Arkansas at Little 
Rock, Little Rock, USA 

 
 
 

Abstract 
Structural designs (i.e. truss structures) are derived by the use of a three phase 
genetic optimization approach, where the minimization of volume is the ob-
jective of each truss structure considered. A genetic algorithm is employed 
which controls the three phase optimization technique. The first phase utilizes 
the conventional functionality of the genetic algorithm from an evolutionary 
perspective, however designer interaction by the use of constant rules is pro-
vided to ensure an effective evolutionary search outcome. The second phase 
enhances the best design constructed from phase one by the use of domain 
specific knowledge in the form of design rules. Phase three improves the final 
design assembled within phase two by the reduction of truss element areas. 
This refinement process ensures that the design constraints provided are ac-
tive, indicating an optimal search solution. All phases operate from a global 
perspective; however the phase two optimization methodology operates from 
a more radical approach which encompasses the concept of designing from a 
“blank sheet of paper” point of view. Results are provided upon the conclu-
sion of each truss example considered which includes the outcomes of each 
phase for comparison purposes. 
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1. Introduction 

Truss optimization has been approached using a wide variety of optimization 
techniques to optimize a realm of diverse truss structures which encompass vast 
applications. These techniques involve cross sectional and geometry optimiza-
tion through sequential quadratic programming demonstrated by Smith, Hod-
gins, Oppenheim, and Witkin [1] which include roof trusses and the Eiffel 

How to cite this paper: Webb, D., Alobai-
di, W. and Sandgren, E. (2017) Structural 
Design via Genetic Optimization. Modern 
Mechanical Engineering, 7, 73-90. 
https://doi.org/10.4236/mme.2017.73006  
 
Received: August 12, 2017 
Accepted: August 28, 2017 
Published: August 31, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/mme
https://doi.org/10.4236/mme.2017.73006
http://www.scirp.org
https://doi.org/10.4236/mme.2017.73006
http://creativecommons.org/licenses/by/4.0/


D. Webb et al. 
 

 

DOI: 10.4236/mme.2017.73006 74 Modern Mechanical Engineering 
 

Tower. Comparison studies between genetic algorithms and a “Modified Reac-
tive Taboo Search” have been established through N-shaped roof trusses by 
Hamza, Mahmoud, and Saitou [2]. Additionally the robust character of a con-
ventional ten bar truss has been investigated through cross sectional, geometric, 
and topological design changes via a genetic algorithm evolutionary search pro-
vided by Sandgren and Cameron [3]. Furthermore, the Michell Truss has been 
investigated by Kepler [4], where the fundamental principles which define the 
uniqueness of the truss can be found within a human thighbone on a micro-
scopic level. Kepler [4] also explores the trellis truss among a variety of practical 
applications from early Eskimo kayaks, rally-cars, transmission towers, and mo-
torcycle frame design. A more advanced application involving robotic move-
ment among truss members which support a space solar power satellite trans-
mitter array is provided by Leger [5]. 

Many truss optimization techniques may be captured within the structure of a 
conventional genetic algorithm where a global and effective search can be uti-
lized. However, a conventional genetic algorithm operation has many limitations 
including: 

1) Genetic input parameters are application specific 
2) The initial population, which is randomly generated, has a significant im-

pact on all offspring created 
3) Mutation must be relied upon in order to achieve a global solution 
4) Problems of increased complexity require extensive computational time for 

an adequate global solution 
5) Global search solutions generally require user modification before the solu-

tion is located which satisfies the general purpose of the intended application 
These hurdles are primarily attributed to the encoding or chromosome string 

of a conventional genetic algorithm. This chromosome string is a representation 
of the design where each value within the string correlates to a specific characte-
ristic or trait associated with the investigated design. 

The conventional genetic algorithm begins by generating an initial random 
population of chromosome strings. Each chromosome string value is applied to 
each truss element and the newly generated design is solved by a finite element 
routine where local parameters are calculated. Objective function and predeter-
mined constraints based upon calculated local parameters and overall volume 
reduction are employed to reveal which strings are best suited to become parent 
strings. Subsequent to objective and constraint function evaluation, the fitness 
value of a string is assigned exclusively by the objective function, if and only if 
the individual string fails to violate any constraints. Design strings which possess 
failing constraint values are assigned fitness values determined by a penalty 
function. The overall value of the design is determined by the penalty function 
introduced by Equation (1). 

( ) ( ) ( ){ }2
– i iP x f x R g x= Σ                    (1) 

for 
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i = 1,∙∙∙, number of constraints 
where 

( ){ } 0ig x = ; for ( ) 0ig x ≥  
( ){ } ( )i ig x g x= ; for ( ) 0ig x <  

The value f(x) or the objective function is incorporated to further reward or 
penalize the design by the total amount of what is to be maximized or mini-
mized. The purpose of the penalty function R is to penalize designs analyzed 
which fail to meet important design limits where the initial value of R presented 
is 10. This penalty factor is user specified and increases by a constant numeric 
value once a specified number of generations have been produced which consists 
of a numerical value of 2. The inclusion of the number of the constraint function 
gi(x) is necessary to provide numerically how much the design has failed to meet 
the set of individual constraints. The overall fitness value is a reflection of the 
design, and due to the formulation of the penalty function, poor designs are 
eventually removed from the genetic process. The best strings are gathered into a 
“mating pool” where the genetic algorithm randomly selects chromosome 
strings to mate with one another. Chromosome characteristics are exchanged 
within each parent design string and offspring chromosome strings are pro-
duced. Special operators such as mutation are introduced to inject alternative 
designs to further enhance the evolutionary optimization process especially 
when utilizing a relatively small population size. For this study, the probability 
of mutation factor was set at 0.01. Ultimately the genetic algorithm relies on the 
randomness present in the initial gene pool, but quickly exploits information 
gathered in order to produce an efficient optimization. Goldberg [6] and Davis 
[7] discuss genetic algorithms in further detail. This genetic optimization pro-
cedure stimulates the need to improve the global nature of the search where a 
novel second phase approach is introduced by providing designer knowledge in 
the form of decision based rules. This second phase alters the fundamental 
chromosome string to a series of rule sequences to be executed based upon do-
main specific knowledge which either eliminates or significantly reduces the 
problems associated with the functionality of the traditional genetic algorithm. 

2. Background 

Structures considered were support, transmission tower, and signboard trusses 
formulated by Logan [8]. Each truss member is considered a solid rod to simpli-
fy the moment of inertia criteria in the formulation of an element buckling con-
straint. A finite element solver is encoded into a series of subroutines which is 
utilized by the genetic algorithm within all phases constructed. The finite ele-
ment solver which was programmed in Visual Basic [9] removes illegitimate de-
signs which consist of singular matrix formulations and elements which fail to 
meet buckling criteria. Stress and displacement serve as the structural con-
straints for which the genetic algorithm accesses offspring designs. Additional 
constraints are implemented; however these constraints tailor toward the im-
plementation of domain specific knowledge within phase two. 
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The phase one optimization methodology operates by the use of an evolutio-
nary approach; however constant rules are introduced which ensures structural 
integrity among all offspring developed throughout the global search. This evo-
lutionary approach generates truss structures which require the minimum 
amount of elements to sustain loading and constraint conditions. Additionally, 
the modulus of elasticity of elements throughout the optimization procedure is 
manipulated to allow for an assortment of materials to be present in the con-
struction of a final phase one design. However, due to the formulation of local 
element stiffness matrices, element lengths, areas, and modulus of elasticity val-
ues are considered constants where a change in modulus of elasticity value may 
be interpreted as a change in area rather than material property. 

The phase two optimization methodology refined the best phase one design 
from a “blank sheet of paper” point of view, where force and ground nodes are 
the only required constant nodal locations. Phase two manipulates element 
areas, nodal coordinates, removes existing nodes, and creates elements which are 
initially nonexistent. Structural integrity is maintained throughout the optimiza-
tion procedure by the implementation of a finite element solver which calculates 
element stress and nodal displacement. Additional constraints which aid the 
phase two optimization procedure are element length, area, and nodal coordi-
nate constraints. 

Phase three refines the best design generated from phase two which utilizes 
the traditional genetic algorithm methodology. Each element within the final 
phase two design is subjected to area reduction to effectively produce active con-
straint values (i.e. gi(x) ≈ 0) indicating that an optimal solution has been located. 
A primary function of phases one and two is to generate the optimal topology of 
a truss structure, where any further removal of elements results in either a sin-
gular matrix or constraint violating solution. Phase two possesses the capability 
of reducing truss element areas; however phase three provides a more rigorous 
approach to refine the most optimal topological design. 

3. Problem Formulation 

The conventional genetic algorithm methodology is utilized by each phase to 
produce an efficient optimization. Phases one and three operate by the inclusion 
of a chromosome string where the length of the string is related to the total 
number of truss members currently present. Phase one manipulates two chro-
mosome strings simultaneously which include a topological design string and a 
modulus of elasticity manipulation string. The chromosomes within the topo-
logical design string can potentially acquire the value of 0 or 1. These values 
contribute to the removal or addition of elements in the configuration of a ge-
netic design. The modulus of elasticity manipulation string is composed of 
chromosome values from a predetermined range of 0.1 to 1 with a step size of 
0.1 which potentially reduces the strength of elements when multiplied by a val-
ue within this numeric array. This concept is reintroduced into phase three 
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where a predetermined range of values which consist of 0.1 to 1 with a step size 
of 0.01 are assigned to each chromosome to potentially reduce element areas and 
ultimately the overall volume of the structure. 

Domain specific knowledge is introduced into the genetic algorithm global 
search solution in the form of decision based rules. This rule based approach al-
ters the encoding strings of the conventional genetic algorithm. Each string is 
composed of chromosomes of which select and provide additional information 
to execute specified rules. Previous truss optimization approaches have incorpo-
rated some basic form of domain knowledge of truss structures; however they 
are limited in overall design efficiency. Kawamura and Ohmori [10] implement 
the configuration of truss designs through the generation of triangular element 
configurations which ensures structural stability for all offspring designs gener-
ated. However effective, this technique utilizes a constant methodology for truss 
design, where the concept of “designing from a blank sheet of paper” point of 
view is either limited or nonexistent. This novel second phase optimization ap-
proach incorporates domain specific knowledge of truss structures to manipu-
late nodal coordinates, element areas, remove nodes, and generate elements 
which were originally nonexistent. A chromosome string must be constructed in 
a sophisticated fashion to effectively distribute rules which refine the best design 
from phase one. 

A general mathematical formulation of the alternate chromosome string is 
provided below. 

1 1 1 1 2 2 2 2 3 3 3 3 n n n nAB C D E B C D E B C D E B C D E            (2) 

The A field represents the number of rules to apply, Bi represents which of the 
rules to apply and the fields Ci, Di and Ei provide specific rule implementation 
information. The subscript n represents the maximum number of rules to be ex-
ercised during one modification of a selected design encoding. 

The formulation of the objective function and constraints for the truss design 
examples considered are as follows: 

( ) ( )Maximize volume Volume Encoding valuei i= ×∑ ,        (3) 

i = 1,∙∙∙, number of elements 
subject to 

( ) ( )limit max
1

limit

calculated
0

S S
g x

S
− 

= ≥ 
 

               (4) 

and 

( ) ( )limit max
2

limit

calculated
0

D D
g x

D
− 

= ≥ 
 

               (5) 

Here, Slimit and Dlimit are the maximum allowable stress and displacement while 
Smax (calculated) and Dmax (calculated) are the computed values. The formulation 
of Equations (4) and (5) generate ratios, which allow for normalization of con-
straint violation in the disparate magnitudes of the displacement and stress val-
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ues as well as allow for a consistent graphical representation over the diverse set 
of designs within each genetic population. Both constraint equations produce 
positive values for any design which does not exceed the design limits. 

4. Phase One 

Initially, a random population of strings for both element selection and modulus 
of elasticity manipulation are generated when the phase one operation is 
launched. These two random strings function independently, yet are synchro-
nized with each other to represent a single design. Elements are originally se-
lected at random from the original design configuration which generates an ini-
tial population. These random elements chosen may not form a structure; 
therefore constant phase one structural rules were derived to ensure that arbi-
trary genetic designs are viable structures. The constant phase one rules are gen-
eral in nature which ensure that they can be applied to a wide variety of truss 
structures and correct imperfections created by the genetic algorithm. Listed be-
low are the phase one constant rules which mend genetic design deficiencies. 
1) All force and ground nodes must be present 
2) All force and ground nodes must be connected to at least two other nodes 
3) All non force and non ground nodes must be connected to at least three oth-

er nodes 
These rules seem simple but without them as high as 90% of the initial designs 

created by the genetic algorithm will not be structures. An example is provided 
below and illustrated within Figures 2-4 to demonstrate the phase one constant 
rule process of operation. Truss illustrations throughout this research were de-
veloped using AMSES software [11], where numbered squares and circles within 
each truss configuration label each element and node present. 

 

 
                  Figure 1. Fifteen element plane truss. 
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                  Figure 2. Plane truss phase one design. 
 

 
Figure 3. Plane truss final design. 

 
Since the phase one constant rules are general, the rules on occasion may fail 

to create a valid structure. Illegitimate structures are detected within the finite 
element algorithm and the solving process is halted. The defective design is sent  
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Figure 4. Objective Function versus Generation. 

 
to the constraint subroutine and assigned a poor default value for both stress and 
displacement constraints. 

5. Phase Two 

The phase two optimization process is used to refine the best design from phase 
one by the implementation of domain specific knowledge provided by the user 
in the form of rules. The fundamental procedures of the genetic algorithm re-
main identical to the phase one methodology with the exception of the develop-
ment of sophisticated rule execution strings. Each time the genetic algorithm lo-
cates a rule sequence for which both stress and displacement constraints are sa-
tisfied and an improvement in the objective function is achieved, the improved 
design now becomes the design considered for further optimization. Four rules 
were developed for the phase two operation, where each rule works indepen-
dently or is synchronized with other rules to improve the objective function by 
reducing the overall volume within the current truss structure. 

Listed below are the four rules developed which can be utilized in order to 
improve the phase one final design. 

Rule 1 
Rule one manipulates the area of elements selected by the genetic algorithm 

based upon calculated stress. Before genetic optimization begins, the user speci-
fies the maximum allowable area each element can acquire. Upon the selection 
of rule one, the genetic code locates the maximum element stress within the 
current design and a comparison is made to the maximum allowable stress con-
straint. If the computed maximum element stress exceeds or falls below the 
maximum allowable stress constraint, then the area of the element pre-selected 
by the genetic algorithm is altered by a factor of 0.1 to 0.9 with a step size of 0.1. 
Once the area has been altered, the new area is evaluated by the maximum al-
lowable area constraint, where areas which exceed the constraint are not intro-
duced into the creation of a new design. 

Rule 2 
Similar to rule one, rule two manipulates the area of elements selected by the 

genetic algorithm. Area manipulation is based upon calculated nodal displace-
ment rather than element stress. Once the selection of rule two has been identi-
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fied, the genetic code locates the maximum nodal displacement from the current 
design and a comparison is made with the maximum allowable displacement 
constraint. If the computed displacement value exceeds or falls below the maxi-
mum allowable displacement constraint, the area of an element predetermined 
by the genetic algorithm is altered by a factor of 0.1 to 0.9 with a step size of 0.1. 
Once the area of the selected element has been manipulated, a maximum allow-
able area constraint determines if the altered area is a legitimate area to be con-
sidered for the creation of a new design. 

Rule 3 
The objective of rule three is to expand or compress element length, which is 

accomplished by altering the nodal coordinates of pre-selected nodes. Rule three 
manipulates the coordinates of non-force and non-ground nodes which are se-
lected by the user. A user defined coordinate manipulation constraint was de-
veloped to specify how much each nodal coordinate can either be compressed or 
expanded. When rule three is selected nodes within the current design are ex-
amined to ensure that each predefined node still exists within the current design. 
Nodes that are no longer contained in the best design but were pre-selected to 
allow nodal coordinate manipulation are simply ignored. Once a pre-selected 
node is found within the current design, the genetic code determines if the coor-
dinates of the particular node are to be expanded or compressed. Once the ex-
pansion or compression decision has been executed, the nodal coordinates are 
evaluated by a coordinate constraint which includes both the x and y directions 
to ensure that the manipulated coordinates fall within predefined guidelines. 

Rule 4 
Finally, rule four removes nodes and creates new elements which were pre-

viously nonexistent. This allows for the genetic algorithm to create a structure 
from a “blank sheet of paper” point of view while only requiring the genetic code 
to use preexisting ground and force nodes. Phase one within the genetic algo-
rithm removes only elements and corresponding nodes based upon the original 
structural configuration. This is a legitimate optimization approach for if the de-
signer’s intent were to keep the optimized structural configuration identical to 
the original structure. Phase two permits the user to create a design which allows 
for the possibility of developing a legitimate structure that does not resemble the 
original truss, but satisfies existing constraints. Rule four begins operation by the 
selection of an element which is not attached to a force or ground node. This 
non force and non ground node element is selected by the genetic algorithm. 
The genetic code locates within the selected element the node of highest order 
and removes the higher order node along with the selected element. Elements 
throughout the structure that connect with the higher order node are also re-
moved from the design. Next, the lower order node of the selected element un-
der investigation is examined to determine if the lower order node shares any 
nodes with the higher order node which when connected form additional ele-
ments. If the lower order node connects to the same node(s) that the higher or-
der node was connected to those element(s) remain. However, if the lower order 
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node does not connect to the same node(s) that the higher order node connects 
with new element(s) are created which connect the lower order node to the 
node(s) that connect with the higher order node. 

6. Phase Three 

The third and final phase of the truss optimization algorithm minimizes the 
overall volume of the best structure generated from phase two by reducing the 
area of truss members present. Area reduction is implemented by the use of a 
traditional global genetic algorithm search. Each element area can potentially be 
multiplied by a factor of 0.1 to 1 with a step size of 0.01. A phase three or global 
refinement search is not only necessary to further reduce the areas of the truss 
members present but to allow preset constraints to become active. The rules de-
rived within phase two permit an increase or decrease in element area depending 
on specific rule criteria, however phase two aims to locate the optimal design 
topology which can be constructed from a “blank sheet of paper” point of view. 
An optimal topological design may be located to sustain loading conditions and 
satisfy constraints however satisfied the constraints may not be active. Hence a 
rigorous global search for the optimal area configuration is incorporated to en-
sure that the maximum amount of material is removed while locating an active 
constraint solution. 

7. Results 

The specific input parameters utilized for each of the design exercises including 
population size, and number of generations of offspring to produce for both the 
phase one and phase two search processes are documented in Table 1. From this 
table, it is noted that both the population size as well as the number of genera-
tions increased as the number of elements increased in the phase one search. 
These parameters for phase two search remained constant, regardless of the 
number of truss elements contained in the design space mesh. This is a direct 
correlation to the length of the encoding string which increases for phase one as 
the number of elements increases, but remains fixed for the phase two search 
component. The results for each truss structure considered will be reviewed in 
detail. The phase one search is equivalent to a traditional genetic optimization, 
while the phase two search procedure represents the rule based, global search 
process. 

The number of function evaluations required to run each example problem 
 
Table 1. Truss Function Evaluations. 

Number of Phase One Phase One Phase Two Phase Two Phase Three Phase Three Function 
Truss Elements Populations Generations Populations Generations Populations Generations  

Evaluations 

15 100 50 100 50 550 400 230000 

33 150 100 150 50 550 400 242500  

41 150 100 150 50 550 400 242500 
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considered is determined via the equation 

Function Evaluations = *Size SizePopulation Generation       (6). 

8. Example One 

The first example is a fifteen element plane truss formulated by Logan [8] shown 
in Figure 1. The point of origin was ground node one. The plane truss was op-
timized with three sets of user defined genetic input parameters listed in Table 
1. The initial modulus of elasticity and constant cross sectional areas for each 
element were preset to 210 GPa and 3E−4 m2 respectively. Maximum allowable 
stress and displacement constraints were 8 MPa and 0.002 m. Nodal forces 
ranging from 2000 N to 4000 N were applied to nodes three, five, and seven re-
spectively. The phase one optimized fifteen element plane truss is provided in 
Figure 2 followed by the final design encompassing the combined outcome of 
both phases two and three is illustrated in Figure 3. 

The phase one genetic optimization process removed five elements which in-
cluded the removal of node eight. Both stress and displacement constraints were 
not violated at the conclusion of phase one however neither concluding con-
straint values are active. Since stress and displacement constraints are not active 
(i.e. g1(x), g2(x) > 0), at the conclusion of the phase one process, further im-
provement is possible. Figure 3 shows the final phase two result from which ex-
ecuted rules based upon domain specific knowledge are applied. Results con-
sisting of objective function illustrating reduced truss volume and constraint 
values versus generation for the complete optimization process are provided in 
Figure 4 and Figure 5. Lastly, structural characteristics composing of the design 
in Figure 3 are depicted in Table 2 which outlines optimized element areas and 
modulus of elasticity values. 

Recall that constraint values result from Equations (4) and (5) which produce 
constraint values without units. 

9. Example Two 

A transmission line truss developed by Logan [8] is shown in Figure 6 and is the 
next truss structure investigated. This thirty three element truss was subjected to 
two nodal forces applied to nodes twelve and seventeen. The point of origin was 

 

 
Figure 5. Constraint versus Generation. 
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 Figure 6. Transmission line truss. 

 
Table 2. Plane truss phase three design parameters. 

Element Start Node End Node Area (m2) Modulus (Pa) 

1 1 3 2.61E−03 2.1E+11 

2 3 5 1.94E−03 2.1E+11 

3 5 7 1.39E−03 2.1E+11 

7 4 2 3.16E−03 1.05E+11 

8 1 4 1.58E−03 2.1E+11 

9 2 3 1.61E−03 2.1E+11 

12 4 5 1.58E−03 2.1E+11 

15 7 4 2.39E−03 2.1E+11 

 
located directly under node seventeen at the ground level. The creation of this 
point of origin allowed all nodal coordinates to have positive x and y values. 
Nodal forces consisted of 2780 N and 3558 N, forces both in the negative x and y 
directions. Additional parameters consisted of an initial cross sectional area of 
0.001935 m2 and a modulus of elasticity of 210 GPa for all elements considered. 
Preset stress and displacement constraints were 12 MPa and 0.00635 m. The 
phase one optimized transmission line truss is provided in Figure 7 followed by 
the final design encompassing the combined outcome of both phases two and 
three is illustrated in Figure 8. Results consisting of objective function illustrat-
ing reduced truss volume and constraint values versus generation for the com-
plete optimization process are provided in Figure 9 and Figure 10. Lastly, 
structural characteristics composing of the design in Figure 8 are depicted in 
Table 3 which outlines optimized element areas and modulus of elasticity val-
ues. 

10. Example Three 

A signboard truss developed by Logan [8] is shown in Figure 11 and is the last  
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Figure 7. Transmission line truss phase one result. 

 

 
Figure 8. Transmission line truss final design. 

 
truss structure examined within this literature. This forty-one element truss was 
subjected to two nodal forces applied to nodes twenty and sixteen. The applied 
load is the total weight of the signboard divided by the two identified support 
nodes. Each force node supports 500 N in the negative y direction. The point of 
origin designated for this example was specified at ground node one. Additional 
structural properties included a modulus of elasticity provided by Logan [8] of 
290E9 Pa and a constant cross-sectional area of each element of 3E−4 m2. Preset 
stress and displacement constraints consisted of 5E6 Pa and 0.001 m respective-
ly. The phase one optimized transmission line truss is provided in Figure 12  
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 Figure 9. Objective Function versus Generation. 

 

 
Figure 10. Constraint versus Generation. 

 
followed by the final design encompassing the combined outcome of both phas-
es two and three is illustrated in Figure 13. Results consisting of objective func-
tion illustrating reduced truss volume and constraint values versus generation 
for the complete optimization process are provided in Figure 14 and Figure 15. 
Lastly, structural characteristics composing of the design in Figure 13 are de-
picted in Table 4 which outlines optimized element areas and modulus of elas-
ticity values. 

11. Conclusion 

This multi-phase genetic algorithm approach resulted in the minimization of 
element volume while satisfying both stress and displacement constraints. Addi-
tionally, the inclusion of domain specific knowledge enabled the algorithm to 
generate alternative designs through the formation of new truss elements. Table 
5 illustrates the total structural volume removed during each phase for each truss 
example investigated. Overall, through the use of domain specific knowledge, 
the genetic algorithm solution search is enhanced through solution convergence 
and intelligent design. Although the design outcome of the truss structures pre-
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sented in Examples 2 and 3 do not illustrate symmetry, the intent of this rule 
based methodology is to illustrate the creativity enhancement within the design 

 
Table 3. Transmission line truss phase three design parameters. 

Element Start Node End Node Area (m2) Modulus (Pa) 

1 1 4 1.43E−03 2.1E+11 

2 1 3 1.14E−03 1.26E+11 

3 2 3 4.84E−04 2.1E+11 

4 2 6 1.66E−03 8.40E+10 

5 6 3 5.61E−04 2.1E+11 

8 6 4 9.68E−04 2.1E+11 

12 8 4 1.59E−03 2.1E+11 

13 8 6 6.58E−04 2.1E+11 

15 10 8 9.68E−04 2.1E+11 

16 10 6 7.55E−04 2.1E+11 

18 14 8 1.84E−03 6.30E+10 

20 17 14 8.51E−04 4.20E+10 

21 17 8 1.72E−03 2.1E+11 

26 10 14 6.97E−04 2.1E+11 

28 14 13 4.45E−04 6.30E+10 

29 13 12 3.10E−04 1.26E+11 

30 12 10 1.68E−03 2.1E+11 

31 13 10 1.16E−03 8.40E+10 

 
Table 4. Signboard truss phase three design parameters. 

Element Start Node End Node Area (m2) Modulus (Pa) 

1 1 3 3.09676793078184E−04 147000000000 

7 9 6 4.9677318769455E−04 210000000000 

8 9 10 1.67741593847275E−04 210000000000 

11 13 10 1.80644800769091E−04 210000000000 

12 13 2 3.29031593847275E−04 126000000000 

13 2 14 4.19353984618187E−04 210000000000 

14 14 13 6.45160009613633E−05 21000000000 

18 14 10 2.77418804614544E−04 105000000000 

20 16 10 1.29032001922727E−04 147000000000 

23 16 9 8.38707969236374E−05 189000000000 

24 16 18 1.09677201153636E−04 63000000000 

28 18 20 7.7419198269546E−05 210000000000 

31 18 6 6.45160009613633E−05 168000000000 

34 20 6 1.35483595770001E−04 210000000000 

36 22 6 2.12902808459997E−04 210000000000 

38 6 3 1.87096394616365E−04 210000000000 

40 22 3 7.09675996154547E−05 210000000000 

41 22 1 4.12902390770912E−04 210000000000 
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Figure 11. Signboard truss. 

 

 
Figure 12. Signboard truss phase one result. 

 

 
Figure 13. Signboard truss final design. 
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Figure 14. Objective Function versus Generation. 

 

 
Figure 15. Constraint versus Generation. 

 
Table 5. Volume Removed per Genetic Algorithm Phase. 

 
Volume Removed Phase 

1 (m3) 
Volume Removed Phase 

2 (m3) 
Volume Removed Phase 3 

(m3) 

Plane Truss 0.11278006 0.14803488 0.2237124 

Transmission Line 
Truss 

0.021528924 0.105182161 0.1721993 

Signboard Truss 0.014329714 0.047476224 0.0855189 

 
process through the injection of domain specific knowledge. 
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