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Abstract 
The information on urban land cover distribution and its dynamics is useful 
for understanding urbanization and its impacts on the hydrological cycle, wa-
ter management, surface energy balances, urban heat island, and biodiversity. 
This study utilizes machine learning, texture variables and spectral bands to 
quantify the urban growth annually. We used multi-temporal Landsat satellite 
image sets from 2007 to 2016 and Random Forest classification to map urban 
land-use in Dar es Salaam. We also applied Annual classification approach to 
detect the spatiotemporal patterns of urban areas. This approach improved 
classification accuracy and aided in understanding the urban land-use system 
dynamics operating in our study area. The results pointed out that, the total 
built-up areas have grown from 318 km2, 388.6 km2 and 634.7 km2 in 2007, 
2012 and 2016 respectively. The built up areas growth rate is almost 8%, 
which makes Dar es Salaam be among the fastest growing cities in Africa. The 
results indicate that, combining spectral bands, texture variables (NDVI BCI, 
MNDWI) and annual classification map approach was sufficient to map the 
urban areas. The approach applied in this research provides a useful guide to 
the urban growth studies and may also serve as a tool for land management 
planners. 
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1. Introduction 

Globally, more people live in urban areas than in rural areas, by 2050 66 per cent 
of the world’s population is projected to reside in urban [1]. Projections also in-
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dicate that between 2010 and 2025 some African cities will account for up to 
85% of the population [2]. 

This rapid growth is direct proportional to the environmental consequence by 
modification of land surfaces where large amount of natural lands have been or 
will be converted to various developed lands within which impervious surfaces 
are a major composition [3]. Converting Earth’s land surface to urban uses, ac-
celerates the loss of highly productive farmland, affects energy demand, alters 
the climate, modifies hydrologic and biogeochemical cycles, fragments habitats, 
and reduces biodiversity [4] [5]. 

From satellite observations of higher frequency, land dynamics now can be 
better understood from long-term data records at high spatial and temporal res-
olution [6].  

Urban environments are heterogeneous at relatively small scales and com-
posed of a variety of land covers, including impervious surface (built-up areas, 
roads etc), green vegetation and soil (VIS) [7]. 

Several indices have been developed to extract land cover information from 
satellite data. The Normalized Difference Vegetation Index (NDVI) is the most 
popular example of a land cover index based on band ratios in multispectral re-
mote sensing data. NDVI is not only band ratio used in urban areas but there are 
many more such as Modified Normalized Difference Water Index (MNDWI), 
Normalized Difference Built-up Index (NDBI); [8], Normalized Difference Im-
pervious Surface Index (NDISI) [9], and recently Biophysical Composition In-
dex (BCI) [10] which was found to be effective in identifying the characteristics 
of impervious surfaces and vegetation, as well as distinguishing bare soil from 
impervious surfaces. 

Impervious surfaces can be mapped at annual frequency [11] also we can de-
rive the magnitude, timing, and duration change and characterizing urban 
growth [12]. 

But estimation of impervious surface from single or multi-temporal images 
mainly focused on the spectral differences between impervious surfaces and 
other land covers, have been ineffective to a certain degree due to the problem of 
mixed pixels in the coarse or medium resolution imagery and the intra-class 
spectral variability problem in high resolution imagery [13]. 

In trying to solve some of these problems, some researchers fused optical and 
SAR images to improve the land cover classification and impervious surface es-
timation [14] [15] [16]. However, it has been observed that, the feature-level fu-
sion is subject to influences of feature selections which may introduce uncertain-
ties into the characterization of impervious surfaces [17]. Geostatistical features 
and textural measures also has been applied to distinguish between different 
land cover classes, and increase the accuracy of classification [18]. 

Machine learning algorithms such as artificial neural networks, decision trees, 
support vector machines, Naive Bayers, and Random Forest, have been success-
fully used to extract urban impervious surface area [19] [20]. Machine learning 
algorithm have been performing well in prediction of categories from spatially 
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dispersed training data and useful where process under investigation is complex 
or represented by high dimensional input [21]. Comprehensive review on dif-
ferent machine learning and techniques for classification surfaces can be found 
in [20] [21]. 

Dar es Salaam, the business city of the United Republic of Tanzania, has expe-
rienced the highest population growth, according to the 2016 Tanzania Popula-
tion and Housing projection [22] the city had a population of 5.46 million with 
average annual growth rate of 5.6 percent from 2002 to 2012 [22]. With popula-
tion densities reaching 1500 persons/hectare (on average, approximately 150 
persons/ hectare), it has a population about seven times the size of the next most 
populated city, Mwanza, and continues to attract more migrants [23]. These 
high growth rates have led to pressures on existing urban infrastructure and fa-
cilities including land. 

The advances in spatial analysis from Geographical Information System (GIS) 
and Remote Sensing (RS) techniques, studying and monitoring urban growth 
dynamics has become easier now days. A previous study that utilized linear and 
non linear complex modeling to quantifies land cover changes revealed that, the 
city is growing at annual rate of 6% [24]. On the other hand, a study which used 
Landsat images experienced difficulties in differentiating spectral similarity be-
tween bare soil and artificial white surfaces which led to poor classification espe-
cially in mixed urban areas [25]. Nevertheless both studies quantify the urban 
growth up to 2011, which create a need to understand urban land dynamic in 
last 5 years. In an effort to improve the classification accuracy, urban growth 
quantification and mapping of the missed period (2012-2016), we propose a new 
approach involving machine learning, texture analysis, and spectral bands to 
quantify urban growth. 

A supervised algorithm called “Random Forest” used to classify each of the 
Landsat images from 2007-2016. Mean texture features of Biophysical Composi-
tion Index (BCI), Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Water Index (MNDWI), and original Landsat images combined to-
gether detect the urban land consumption rate and the changes that have taken 
place during the last decade. Annual classification map approach applied to 
detect the spatiotemporal pattern and quantify the urban growth. 

2. Data and Methods 
2.1. Study Area Description 

Figure 1 shows the study area (Dar es Salaam) which geographically, located at 
6˚51'S, 39˚18'E along the south western coast of the Indian ocean, covering total 
surface area of 1628 km2 out of which 235 km2 or 14.4 percent is covered by wa-
ter bodies of mainly the Indian ocean and the remaining 1393 km2 is land area 
[26]. Generally the city experiences tropical climatic conditions, typified by hot 
and humid weather throughout much of the year with a monthly average tem-
perature of 29˚C. The highest temperature season is from October to March 
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Figure 1. Africa and Tanzania (a) study area, Dar es Salaam (b). 

 
during which temperatures rise up to 35˚C. It is relatively cool between May and 
August, with the monthly average temperature around 25˚C. Annual rainfall is 
approximately 1100 mm (lowest 800 mm and highest 1300 mm), and in a nor-
mal year there are two rainy seasons: the long rains from March/April to May 
and the short rains from October to November/December. Humidity is around 
96% in the morning and 67% in the afternoon. The climate is also influenced by 
the southwesterly monsoon winds from April to October and northwesterly 
monsoon winds between November and March. The city is a lowland area with 
its altitude ranging from the sea level at the coast to an approximately 250 m in 
the South-west along Pugu hills situated about 25 km from the city centre. 

2.2. Data Source 

In order to carry out this study, 11-years time series of Landsat satellite images 
was utilized. Figure 2 shows total number Landsat imagery (20), resolution of 
30m with cloud cover less than 20% spanning from 2007 to 2017 downloaded 
from the United State Geological Survey(USGS)/Earth Explorer (Reference sys-
tem: WRS-2, Path: 166, Row: 65). Landsat images of Thematic Mapper (TM), 
Enhance Thematic Mapper plus ETM + (including Scan Line Corrector-SLC-off 
data), and Operation Land Image (OLI) were all selected for the analysis. All 
images were converted to Top of Atmosphere (TOA) reflectance. ETM- of SLC- 
off data were identified by using band-specific gap mask files in the SLC-off data 
products and filled using fill nodata tool available in QGIS 2.14.2 software. All 
data acquired between June and October (dry season). 
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Figure 2. Number of Landsat 5, 7, and 8 (TM, ETM+, OLI) data 
(path/row = 166/65) downloaded from USGS/Earth Explore. 

2.3. Biophysical Composition Index (BCI) and Other Indices 

Before calculating BCI, tasseled cap transformation required. For the first time, 
tasseled cap transformation was proposed by Kauth and his colleagues [27]. 
Since then, others have presented versions of the tasseled cap transformation for 
other platforms and sensors such as Landsat TM TOA [28], Landsat ETM+ TOA 
[29], and Landsat 8 TOA [30]. Three tasseled cap components related to 
“Brightness”, “Greenness” and “Wetness” respectively were derived and norma-
lized as proposed by Deng and Wu [10].  

BCI was derived as per Equation (1), sourced from equation (2), (3), and (4). 
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Other Indices i.e. NDVI and MNDWI were derived as per Equation (5) and 
(6). 
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where NIR  is TM, ETM band 4, OLI band 5; 
RED  is TM, ETM, band 3, and OLI band 4; 
GREEN  is TM, ETM, band 2, and OLI band 3; 
SWIR  is TM, ETM, band 5, and OLI band 6. 

2.4. Training Sample 

Training samples were selected from each image. BCI images were used to ex-
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tract consistent training samples, because they can effectively differentiate vari-
ous land cover compositions, particularly between impervious surfaces and ve-
getation [13]. Further, higher resolution historical images from Google Earth 
were also used to collect training samples through visual interpretation on 
Landsat images [11]. For each class, we selected 5 to 10 classes in different 
brightness levels as training samples from each image. This was due to the fact 
that the number of land cover especially Built up areas depends on the image 
quality. Our three selected classes were: (1) Built-up areas consisting of com-
mercial, residential, roads and other impervious features, industrial, and other 
associated land uses including: airports, parking lots, dumpsites, construction 
site, sport and leisure facilities etc. (2) Non-built up area includes cropland 
(agriculture) land, parks, grassland, forest, woodland shrubs, mangrove, green 
space, bare soil, and others. (3) Water body consists of artificial ponds, oceans 
and others. With the support of Google Earth, training data were collected with 
higher confidence. 

To avoid biases results for our classifier, training classes had an equal number 
of training pixels per class. We used stratified sampling method [31] for sam-
pling random points inside all polygons (training sample) of the same class. 

2.5. Texture Analysis 

Texture based on the Grey Level Co-Occurrence Matrix (GLCM) proposed by 
Haralick was applied on BCI, NDVI and MNDWI for each image [32]. Window 
sizes are important components of a texture analysis because of the multi-scale 
phenomenon. Using small window sizes could result in poorly sampled 
co-occurring probabilities and an inconsistent estimate of individual texture 
measures; while focusing on only larger window sizes could result in the eroding 
of class boundaries [18] [33]. Therefore it is necessary to use a range of small, 
medium and large window sizes and find optimal size. 

After trial and error for different window sizes (i.e. 3 × 3, 5 × 5, 7 × 7, 15 × 15, 
31 × 31), 5 × 5 window size was chosen. Mean spatial measures results were 
stacked together with original images. 

2.6. Data Visualization 

Before using training samples for our classification model, an exploratory analy-
sis was performed to summarize data characteristics. We used bar plots and his-
tograms to generate descriptive statistics for each attribute (band image), start-
ing with band 1 to 5 and 7 as well as BCI, NDVI and MNDWI data. The aim was 
to reduce the number of variables by checking those which will have a higher 
contribution to the classifier due to the fact that Random Forest can be applied 
only to those variables which have been identified as the most important and 
which contribute most to increase accuracy [18]. Random Forest seems to per-
form better as long variable correlation is low [34]. Therefore colinearity test was 
conducted to check contribution each band image to our Land Use Land Cover 
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(LULC) classes training dataset. 
A commonly used value for high correlation to indentify the functional rela-

tionship between predictors and response variable is 0.7 [31] [35]. Table 1 shows 
absolute correlation coefficients above 0.7 observed among variables (bands). 
The result pointed out that, TM, ETM band 1, 2, 3 and 7 are highly correlated 
while band 4 NDVI, and BCI were not. The same test was conducted to OLI im-
age bands also. 

To reduce training time of classification model, the most significant predictive 
features have to be selected by using the importance measures [18]. Due to that, 
Internal fitted model, using condition interface decision ctree [36] available in 
R-party::ctree Package was performed on the same training dataset to examine 
the best combination of variables that may be helpful in predicting our land 
class. In the ctree model it was observed that, first split our training data set 
classes were mean texture (NDVI and BCI), followed by a band split based NIR 
band (TM, ETM band 4, OLI band 5), and the final split was on the blue band 
while other bands contribution was low. Basically MNDWI, NIR band, and 
NDVI band used to split water and vegetation from other classes, while BCI, 
Band 5 split soil class and urban areas from other classes. The decision tree 
helped us to see a combination of variables which were useful in predicting our 
land classes. Based on this internal decision by ctree algorithm, mean texture 
(NDVI, MNDWI and BCI), was chosen as an important attribute and stacked 
together with band 5, 4, 1 from landsat 5, 7 and band 6, 5, 2 from Landsat 8 OLI 
of the original image for our classifier. 

2.7. Classification Using Random Forest (RF) 

RF is ensemble learning [37] method that grows multiple trees during the train-
ing process. In each node is split using the best among a subset of predictors 
randomly chosen at that node. This somewhat counterintuitive strategy turns 
out to perform very well compared to many other classifiers, including discri- 
 
Table 1. Landsat band correlation coefficient. 

TM/ETM B1 B2 B3 B4 B5 B6 B7 NDVI BCI MNDWI 

B1 1 0.89 0.84 0.25 0.44 0.56 0.64 −0.07 0.24 0.11 

B2 
 

1 0.97 0.6 0.74 0.65 0.85 0.31 −0.13 −0.17 

B3 
  

1 0.64 0.8 0.68 0.9 0.35 −0.19 −0.34 

B4 
   

1 0.91 0.41 0.78 0.92 −0.85 −0.88 

B5 
    

1 0.6 0.95 0.76 −0.67 −0.88 

B6 
     

1 0.71 0.24 −0.08 −0.3 

B7 
      

1 0.56 −0.44 −0.72 

NDVI 
       

1 −0.97 −0.88 

BCI 
        

1 0.68 

MNDWI 
         

1 
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minant analysis, support vector machines and neural networks, and is robust 
against over fitting [34]. In addition, it is very user-friendly in the sense that it 
has only two parameters (the number of variables in the random subset at each 
node and the number of trees in the forest), and is usually not very sensitive to 
their values. Several studies have proved that RF performing well compared to 
other machine learning algorithm [11] [13] [18] [21]. RF was applied as our ba-
sic classifier considering its relatively robust performance, the capability of in-
cluding a bigger number of variables, and quantitative measurement of variable 
contributions as proposed with above scholars. One advantage of RF is that, it 
generates an internal unbiased estimate of the generalization error as the forest 
building progresses using out-of-bag (OOB) error estimate. Figure 3 shows the 
methodology applied in this study. 

2.8. Software 

This study utilized open source, both QGIS 2.14.2 and R 3.3.1. RF classification 
model, was implemented using random Forest package provides an R interface 
to the Fortran programs by Breiman and Cutler (available at  
http://www.stat.berkeley.edu/users/breiman). 

2.9. Annual Classification Map 

Following assumption was taken into account in classifying annual map (see 
Figure 4). 

1. The impervious surface Irreversible. Therefore, the impervious samples 
from the earlier years could be used in the later years 

2. Urban land cover within a 30 m by 30 m pixel can take a varying length of 
time (e.g. 1 - 3 years) to change. So no big change can be expected within a year. 

We selected classified map of 2007 as the starting image for its high classifica-
tion accuracy due to the fact that, weakness of this approach lied in its depen- 
 

 
Figure 3. The study methodology. 
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Figure 4. Annual classification map flow. 

 
dence on the first image [5]. We used images with cloud cover less than 20%, 
and annual classification maps was initialized as {C1, C2, C3}, C1, C2, C3 are 
corresponding to classification image in year 1, 2, and 3. If a pixel was classified 
as non built-up in C1 and C2 respectively and in C3 classified to another class 
e.g. built-up, this pixel was set to unknowns. If the pixel was classified to the 
built-up area in C1, C2 non built-up area or water and in C3 that pixel becomes 
built-up area, that pixel was set to the built-up area. If the pixel was also classi-
fied as another class (e.g. non built-up area) in C2 and C3 while in C1 it was a 
built-up area, that pixel will be corrected as non built-up area, instead of built-up 
area and vise verse. Based on the irreversibility assumption above, persistent of 
built-up area samples should remain in all images while other classes may sub-
ject to changes. 

2.10. Accuracy Assessment 

The land class map was created from the rule-based on supervised classifica-
tions. An accuracy assessment was performed for all images from 2007. Google 
earth historical data helped in the collection of ground-truth. For each sample 
on land class, 100 stratified random samples were generated and resulted to two 
subsets. One was for training classifier, another one for accuracy assessment. 
Error matrix (also called confusion matrix) was used to evaluate the accuracy. 
The sensitivity, user’s accuracy and overall accuracy were derived as per equa-
tion (7), (8) and (9). 

Sensitivity CN
CN OR

=
+

                         (7) 

whereby CN is number of correct classified pixels in given class (e.g Urban) and 

-----
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OE Number of wrong classified pixels within that class (omission errors). 

User Accuracy CN
CN CE

=
+

                      (8) 

whereby CE Number of wrong classified pixels within the class (commission er-
rors) 

1

1Ovarall Acurracy
m

ii
i

Q
N =

= ∑                       (9) 

whereby iiQ  is number pixels in class i which were classified correctly as class i, 
N: Total number of Validation data m the number of classes. 

3. Results and Discussion 
3.1. Results 
3.1.1. Estimation of Urban Growth 
Figure 5 Shows the three land classification results distributions from 2007 to 
2016, indicating that the urban areas have increased by almost 100% from 2007 
up 2016. The urban area has grown from 318 km2, 388.6 km2 and 634.7 km2 in 
2007, 2012 and 2016 respectively (see Figure 6). The highest amount of growth 
was observed between 2012 and 2016, when the urban area almost doubled in 
size. With 8% growth rate of built up areas, this means Dar es Salaam is among 
the fastest growing cities in Africa. 

The vegetation class has experienced a sharp decrease in the many areas, while 
protected areas remain unaffected. In 2007, the main land cover types were ve-
getation and arable land, accounting for more than 80% of the total area. After 
10 years, this land cover has changed significantly with a rapid urbanization at 
the cost of losing this arable land and now it remained less than 60%. The long 
term impact of increasing built-up areas at expenses of vegetation and other land 
class will be led to modification climate condition in the city and cause Urban 
Heat Island. 

The expansion of built-up areas was highly concentrated along major 4 high-
ways, radiating outward the city (i.e. Morogoro, Bagamoyo-, Kilwa, Nelson 
Mandela and Nyerere road) while south east part (Kigamboni district) largely 
remain unaffected . 

3.1.2. Accuracy of Changed Year Layer 
Accuracy for each classified map was different; some were not well classified due 
to clouds pixels on the image. The base year map (2007 image) was well classi-
fied with Kappa coefficient was 0.82 which means that 82.9% of the classification 
was good. This is considered good because of a Kappa statistics above 0.8, indi-
cating a strong agreement or accuracy between the classification map and the 
ground reference information [38]. 

The average overall accuracy for the all study period was 80% with a kappa 
coefficient of 0.72. The accuracy was determined based on individual year’s map, 
due to that, the accuracy of the individual year classes varied considerably. The  
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Figure 5. Annual classification maps for three land class. 
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Figure 6. 10 years built-up area growth in square km. 

 
sensitivity of the annual classes varied from 77.16% to 92.57%, the user’s accu-
racy varied from 79.50% to 91.95%, and overall accuracy varied from 75.4% to 
84% (see Figure 7). The years that had the lowest accuracy (e.g. 2010 and 2015) 
were due to remaining cloud cover on images. 

3.2. Discussion 
3.2.1. Annual Based Classification Map 
In this study, texture and spectral bands of Landsat time series data used to 
quantify the spatiotemporal patterns of built-up areas in Dar es Salaam from 
2007 to 2016. Mean texture BCI, NDVI, MDWI and three spectral bands used to 
extract built up areas from non built areas. 

The use of high resolution images from Google earth historical data can over-
come the cost of collecting ground truth, especially when dealing with annual 
land cover changes in a period where these historical images are available. 

However, there were some issues deserving to be discussed. One of the issues 
in this approach was missing data problem which influenced the accuracy of 
classification [11]. All images that had a little bit clouds cover in some part reg-
istered low accuracy. The annual map 2008, 2010 and 2015 registered low accu-
racy compared to other due to that reason. Several methods have been suggest-
ing to tackle the problem [39], but they need continuous data to minimize error. 
This is a challenge for some areas, due to fact that acquisition of continuous 
(16days) Landsat image scenes with cloud cover less than 30% is very difficult. 
The assumption set to classify our annual map worked very well especially in 
unmixed urban areas, but higher mixed urban (low density) areas, the separation 
of built-up and non built-up area produced some errors which contributed 
highly to unknown’s pixels of land classification 

Also, it was found that there is confusion between ocean sand and built-up 
areas, due to similar spectral signatures. The most probable explanation for this 
is that sand areas appear spectrally and texturally similar to low density residen-
tial areas. However, our annual classification map approach showed more 
promising in discriminating these paired classes. This indicated that the com-
bined spectral and texture variables (NDVI BCI, MNDWI) and annual classifi-
cation map approach were sufficient to map the urban area. Water bodies were  
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Figure 7. Overall accuracy, sensitivity, kappa, user accuracy. 

 
identified more accurately than the rest of the classes. 

3.2.2. Study Limitation 
The accurate classification in the quantification of urban growth is very impor-
tant for city planners and other authorities. We have used Landsat image with a 
coarse spatial resolution of 30 m which is likely to miss some detailed informa-
tion especially in highly mixed urban areas. Although we used texture analysis 
and annual classification map approach to improve the classification accuracy, 
for better quantification of urban growth, the availability of very high spatial 
resolution images, such as Sentinel-2, Quick Bird, Rapideye, and Worldview 
image data, will help in detection small-scale changes in those areas and quantify 
accurately the total urban growth. 

4. Conclusions 

This study utilizes RF algorithm, texture variables, and spectral bands to quanti-
fy the Dar es Salaam 10 years’ urban growth. We applied the annual classifica-
tion map approach to detect the spatiotemporal patterns of urban area from 
2007 to 2016 .The result pointed out that, the total built-up areas have grown 
from 318 km2, 388.6 km2 and 634.7 km2 in 2007, 2012 and 2016 respectively. The 
built up areas growth rate is almost 8%, which makes Dar es Salaam be among 
the fastest growing cities in Africa. The expansion of built-up areas was highly 
concentrated along major 4 highways, radiating outward the city, which agrees 
with other studies that cultural drivers such as; economic growth, population 
growth and transportation infrastructures have a higher impact on urban LULC 
change. 

However, challenges presented in the discrimination of some classes between 
ocean sand and built-up areas especially in higher mixed urban (low density 
areas) require further improvements in future. With the additional temporal 
coverage by Sentinel-2 satellites (much higher resolution 10 m) in near future, 
further improvements in the classification and mapping of more detailed urban 
land use/cover on a large scale are expected. 

Results from this study will enhance our understanding of the LULC changes 
in urban areas and its associated impacts. By quantifying urban growth and 
shows its direction, policy makers can analyze the effects of establishing new 
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housing and road infrastructure in undeveloped areas rather than in existing set-
tlements. This study provides a useful guide to the growth of Dar es Salaam, as 
well as identifies and illustrates areas in which expansion is taking place. This 
study may also serve as a tool for city planners. While only tested in an urban 
area (Dar es Salaam), this approach can be applied in other studies of LULC 
areas as well. 
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