
Open Journal of Statistics, 2017, 7, 743-759 
http://www.scirp.org/journal/ojs  

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2017.74052  Aug. 31, 2017 743 Open Journal of Statistics 
 

 
 
 

Simulated Minimum Hellinger Distance 
Estimation for Some Continuous Financial  
and Actuarial Models 

Andrew Luong*, Claire Bilodeau 

École d’actuariat, Université Laval, Québec, Canada 

 
 
 

Abstract 
Minimum Hellinger distance (MHD) estimation is extended to a simulated 
version with the model density function replaced by a density estimate based 
on a random sample drawn from the model distribution. The method does 
not require a closed-form expression for the density function and appears to 
be suitable for models lacking a closed-form expression for the density, models 
for which likelihood methods might be difficult to implement. Even though on-
ly consistency is shown in this paper and the asymptotic distribution remains 
an open question, our simulation study suggests that the methods have the 
potential to generate simulated minimum Hellinger distance (SMHD) esti-
mators with high efficiencies. The method can be used as an alternative to 
methods based on moments, methods based on empirical characteristic func-
tions, or the use of an expectation-maximization (EM) algorithm. 
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1. Introduction 

In actuarial science or finance, we often encounter the problem of fitting distri-
butions to data where the distributions have no closed-form expressions for their 
densities. These distributions are often infinitely divisible and they happen to be 
the distributions of the regularly spaced increments of Lévy processes. Beside in-
finitely divisible distributions, mixture distributions created using a mixing me-
chanism also provide examples of continuous densities without a closed-form 
expression. These types of distributions are often encountered in actuarial 
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science. A few examples will be provided as illustrations subsequently. 
Likelihood methods might be difficult to implement in such cases, due to the 

lack of a closed-form expression for the density function. To handle such a situ-
ation, we can consider the following approaches: 

1) Expectation-maximization (EM) algorithm. Only under special conditions 
can the EM algorithm be used as it requires some conditional distributions, and 
these conditional distributions might be difficult to obtain; see McNeil, Frey and 
Embrechts [1] (pages 81-85) or McLachlan and Krishnan [2]. 

2) Method of moments. Even though the model density has no closed form, if 
the model moments can be expressed in closed form, then the method of mo-
ments can be used. The main drawback of the method of moments is that esti-
mators thus obtained might not be efficient nor robust for models with three or 
more parameters as the estimators will depend on a polynomial of degree three 
or higher, making the methods very sensitive to data which are contaminated; 
see Küchler and Tappe [3] [4] for method of moments estimation. 

3) The k-L procedure. Even if the density has no closed form, if the model 
characteristic function has a closed-form expression, then we can select points 
from the real and imaginary parts of the empirical characteristic function and 
match them with their model counterparts at the chosen points. This is the k-L 
procedure as proposed by Feuerverger and McDunnough [5] (pages 22-24). 

4) Indirect inference. These methods are based on simulations and they re-
quire two steps. First, we need to choose a proxy model to obtain the estimators 
which are biased. Second, we remove the bias using simulations. See Garcia, Re-
nault and Veredas [6] for this method. The proxy models from which the esti-
mators are obtained affect the efficiencies of the estimators. For some models, it 
is difficult to know which proxy model will generate estimators with high effi-
ciencies. 

When implementing these methods for distributions without closed-form 
densities, there are some drawbacks which motivate us in this paper to extend 
minimum Hellinger distance methods originally proposed by Beran [7] to a 
simulated version (version S) which consists in replacing the model density 

( )f xθ  by a density estimate ( )Sf xθ  using a random sample drawn from ( )f xθ  
and minimizing 

( ) ( ) ( )
211

22 dS
n nQ f x f x x

∞

−∞

 
 = −     

 
∫ θθ

              
(1) 

to obtain the simulated minimum Hellinger distance (SMHD) estimators, where 

( )nf x  is an empirical density estimate based on the observed data with the 

property ( ) ( )
0

p
nf x f x→ θ  where 0θ  is the true vector of parameters. This 

consistency property will imply ( ) ( )
0

211
22 d 0p

nf x f x x
∞

−∞

 
 − →     

 
∫ θ  as 

n →∞ ; see section 3 (page 224) of Tamura and Boos [8]. 
Clearly, the new method proposed here will avoid the problem of arbitrariness 
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in the choice of points for the k-L procedure based on characteristic functions. 
Unlike indirect inference, the proposed method does not need a proxy model. 
Furthermore, the estimators obtained using the proposed method might be 
more robust and efficient than method of moments estimators. Besides, the 
proposed method does not require conditioning, which can be difficult, whereas 
the EM algorithm does. 

It appears that the proposed method, which originally combines simulation 
with Hellinger distance, adds to the set of statistical techniques that can be useful 
for financial and actuarial data, yet many of which do not receive much atten-
tion in the actuarial literature. SMHD methods depend on being able to draw 
samples from the parametric family; in general, this is indeed possible. Conse-
quently, SMHD methods also add to the existing literature on simulated infer-
ence which is relatively new; see comments by Davidson and MacKinnon [9] 
(page 393). 

The new method is built on the classical version (version D) of Hellinger dis-
tance as proposed by Beran [7] which consists in minimizing 

( ) ( ) ( )
21 1

2 2 dn nQ f x f x x
∞

−∞

 
= −       

 
∫ θθ

              
(2) 

to obtain the minimum Hellinger distance (MHD) estimators. The MHD esti-
mators have been known to have nice robustness properties with breakdown 
point greater than 0. Also, they are consistent with, in general, less stringent 
conditions for consistency than maximum likelihood (ML) estimators. However, 
more restrictions are placed upon the underlying parametric family for the 
MHD estimators to attain full efficiency, such assuming ( )f xθ  having a com-
pact support for example. Despite this drawback, simulation studies often show 
that the methods perform well across many models. For a literature review of 
Hellinger distance (HD) methods, see chapters 3 and 10 of the book by Basu, 
Shioya and Park [10]. From the literature, it can be seen that HD methods still 
do not receive proper attention for their use in actuarial science and finance, es-
pecially in actuarial science. 

In this paper, we introduce a simulated version of HD methods and show that 
the SMHD estimators are consistent. However, the question of asymptotic nor-
mality is still not resolved for the time being. Further work should generate re-
sults on asymptotic distributions for the SMHD estimators that shall then be 
presented in a subsequent paper. In this paper, the methods are presented with 
fewer technicalities and we relate them with the traditional likelihood methods. 
In doing so, we wish to encourage practitioners to use these methods for their 
applied works in their fields. In the next paragraphs, we will consider a few ex-
amples for illustrations of the types of distributions without closed-form expres-
sions often encountered in finance and actuarial science where the new simu-
lated method can be particularly useful. 

Example 1 
We present here the class of normal mean-variance mixture distributions 
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where the random variable X  can be represented using equality in distribution 
as 

dX W W Zθ µ σ= + + ,                    (3) 

where 
1) θ , µ  and σ  are parameters with θ−∞ < < ∞ , µ−∞ < < ∞ , and 

0σ > ; 
2) W  is a nonnegative random variable with an infinitely divisible (ID) dis-

tribution; 
3) Z  follows a standard normal distribution ( )0,1N  and is independent of 

W . 
The generalized hyperbolic, variance-gamma, and normal-inverse Gaussian 

distributions belong to this class; see McNeil, Frey and Embrechts [1] (pages 
77-79). By conditioning on W  first, the moment generating function (mgf) for  

X  can be obtained and given by ( ) 2 21e
2

s
X WM s M s sθ µ σ= + 

 
 

, where the  

moment generating functions of X  and W  are given respectively by 
( )XM s  and ( )WM s . Distributions of the increments observed at regular in-

tervals of a subordinated Brownian motion process belong to this class. It can 
easily be seen that the density function of X  depends on the density function 
of W . Consequently, the density function of X  might not have a closed-form 
expression in general. Closely related to the variance-gamma distribution is the 
generalized normal-Laplace (GNL) distribution which is introduced by Reed 
[11] and is given in the next example. 

Example 2 
A random variable X  follows a GNL distribution if it can be represented as 

1 2
1 1dX Z G Gρµ σ ρ
α β

= + + − ,                 (4) 

where 
1) the parameters are µ , σ , ρ , α  and β , with µ−∞ < < ∞ , 0σ > , 

0ρ > , 0α > , and 0β > ; 
2) the random variables 1G  and 2G  are independent and follow a common 

gamma distribution with density function ( ) ( )
11; e , 0, 0xg x x xρρ ρ

ρ
− −= > >

Γ
; 

3) Z  follows a standard normal distribution, ( )0,1N , with Z  being inde-
pendent of 1G  and 2G . 

The distribution is infinitely divisible and can display asymmetry and fatter 
tail than the normal distribution. It will be symmetric if  α β= . The vector of 
parameters is ( ), , , ,µ σ ρ α β ′=θ  and the mgf for X  can be obtained using 
the representation given by Equation (4) and is given by 

( )
2 21

2e
s s

XM s
s s

ρρρ µ σ α β
α β

+ 
 
    =   − +   

.              (5) 

From the cumulant generating function, the mean and variance are given re-
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spectively by 

( ) 1 1E X ρ µ
α β

 
= + − 

                       
(6) 

and 

( ) 2
2 2

1 1V X ρ σ
α β

 
= + + 

 
.                   (7) 

Higher cumulants are 

( ) ( )1 11 ! 1 r
r r rrκ ρ

α β
 

= − + − 
 

 for 2r > .             (8) 

Due to the lack of a closed-form expression for the density function, Reed [11] 
(page 477) has proposed using the method of moments and matching the em-
pirical cumulants with the model cumulants to estimate the parameters. He ap-
plied the method to data collected on stocks. In the particular case with four pa-
rameters, where α β= , moment estimators can be obtained explicitly. How-
ever, for the general case with five parameters, the moment equations must be 
solved numerically. The moment estimators will be discussed in more detail in 
section 3 and we shall compare their efficiencies with the efficiencies of the 
SMHD estimators based on simulated samples. 

For more on Lévy processes and infinitely divisible distributions used in fi-
nance, see chapter 6 of the book by Schoutens [12] (pages 73-83). For nonnega-
tive infinitely divisible distributions used in actuarial science, see Dufresne and 
Gerber [13], and Luong [14]. For mixtures of distributions without closed-form 
density functions, for which the proposed estimators can also be used, see 
Klugman, Panjer and Willmot [15] (pages 62-65). We shall consider HD estima-
tion in all those cases. 

Assume that we have a random sample of observations 1, , nX X�  and they 
are independent and identically distributed as the random variable X  which is 
continuous with model density given by ( )f xθ . The vector of parameters is 
denoted by ( )1, , mθ θ ′= �θ . In his seminal paper, Beran [7] proposes to esti-
mate θ  by the minimum Hellinger distance estimators denoted by θ̂  which 
minimize, with respect to θ , the Hellinger distance between a consistent em-
pirical density estimate nf  and the parametric family fθ  with the property 

( ) ( )
0

 p
nf x f x→ θ  pointwise. It leads to minimize the objective function 

( ) ( ) ( )
21 1

2 2 dn nQ f x f x x
∞

−∞

 
= −       

 
∫ θθ .              (9) 

Beran [7] also noted that, intuitively, the methods are robust as data are 
smoothed by a kernel density estimator nf , and hence the effects of outliers are 
mitigated. It has been confirmed in various models that the asymptotic break- 

down points of the estimators are around 1
2

 and it is well-known that the sam- 

ple mean has a breakdown point of 0. See Hogg, McKean and Craig [16] (pages 
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594-595), and Maronna, Martin and Yohai [17] (page 58) for the notions of fi-
nite sample and asymptotic breakdown points as measures of robustness of es-
timators. See Lindsay [18] for the discussions on robustness and efficiencies of 
MHD estimators. We also note that, since 

( ) ( ) ( )
1 1
2 22 2 dn nQ f x f x x

∞

−∞
= −       ∫ θθ               

(10) 

and, using the Cauchy-Schwarz inequality, ( ) ( )
1 1
2 2 d 1nf x f x x

∞

−∞
≤      ∫ θ , we find 

( )0 2nQ≤ ≤θ .                       (11) 

Moreover, since ( ) ( )
1 1
2 2 d 1nf x f x x

∞

−∞
=      ∫ θ  if and only if ( ) ( )nf x f x= θ   

almost everywhere, it implies ( ) 0nQ =θ  if and only if ( ) ( )nf x f x= θ  almost 
everywhere. 

The objective function is stable and bounded. This might explain why, intui-
tively, minimizing such an objective function, we obtain estimators that are also 
stable and therefore robust in some sense. 

Kernel density estimators are often used to define ( )nf x . One of the simplest ker-
nel density estimators is the rectangular kernel density estimator which generalizes the 
usual histogram estimator. In general, kernel density estimators have the form 

( ) 1

1 n i
n i

n n

x xf x
nh h

ω
=

 −
=  

 
∑ ,                  (12) 

where 
a) nh  is the bandwidth with the property that 0nh →  and  nnh →∞  as 

n →∞ ; 
b) ( )xω  is a density function. 
The property specified by a) guarantees the consistency of ( )nf x ; see Corol-

lary 6.4.1 given by Lehmann [19] (pages 406-408). Subsequently, we implicitly 
assume that density estimates used with the SMHD method meet the require-
ments specified by a) and b). 

For the rectangular kernel density, the following symmetric density around 0 

is chosen with ( ) 1  
2

xω =  for 1 1x− < < . The kernel ( )xω  has a compact  

support. The density estimate at x  is then the average of rectangles located 
within nh  units from x . For other kernels and their implementation using the 
package R, see chapter 10 of the book by Rizzo [20] (pages 281-318). For Hellin-
ger distance estimation, it is preferable to use a symmetric kernel with a compact 
support and twice differentiable for meeting the regularity conditions of Theo-
rem 4 as given by Beran [7] (pages 450-451); also see the discussions by Basu, 
Shioya and Park [10] (pages 78-83). In this paper, we only need univariate kernel 
density estimates but multivariate density estimates based on kernels can also be 
defined similarly; see Toma [21] and Scott [22]. 

If ( )f xθ  has no closed-form expression but random samples can be drawn 
from the distribution with density ( )f xθ , clearly we can use the same type of 
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kernel density estimator, used to define ( )nf x , to estimate ( )
0

f xθ . In other 
words, in order to estimate ( )f xθ , we similarly define ( )Sf xθ  as being the 
kernel density estimator based on a random sample of size U nτ= . Note that 
U →∞  as n →∞  and τ  needs to be reasonably large so that there is little 
loss of efficiencies due to simulations; we recommend 10τ ≥ . 

Consequently, for the simulated version, we shall minimize the objective 
function given by 

( ) ( ) ( )
211

22 dS
n nQ f x f x x

∞

−∞

 
 = −     

 
∫ θθ

             
(13) 

to obtain the SMHD estimators. 
For terminology, we shall call the classical version, which is deterministic in 

terms of ( )f xθ , version D, and the simulated version, version S. Since ( )nQ θ , 
as given by Equation (13), is not differentiable, a direct simplex search method 
which is derivative-free is recommended. The R package already has a built-in 
function for performing the Nelder-Mead simplex method which is a deriva-
tive-free method to minimize a function. Also, there is a built-in function to 
handle density estimates using various kernels. These features will facilitate the 
implementation of SMHD methods for applied works by practitioners. Fur-
thermore, because the densities ( )nf x  and ( )Sf xθ  based on a rectangular or 
triangular kernel are positive only in some finite interval and zero elsewhere, this 
makes the integration for evaluating Equation (13) easy to handle. A trapezoid 
quadrature method will suffice to find the SMHD estimators. Note that for the 
simulated version, we still have 

( )0 2nQ≤ ≤θ .                       (14) 

As data are also smoothed, intuitively, these features will again make the 
simulated version robust. 

The paper is organized as follows. In Section 2, we will look into the asymp-
totic properties of MHD estimators. More precisely, we shall briefly review the 
asymptotic properties of the classical MHD estimators in Section 2.1 and estab-
lish the consistency of SMHD estimators in Section 2.2. Also in Section 2.2, an 
estimator for the Fisher information matrix is proposed with the use of SMHD 
estimators. In Section 3, we use a limited simulation study to compare the effi-
ciencies of the SMHD estimators with those of method of moments estimators, 
using the GNL distribution. Despite being limited, the study seems to show that 
the SMHD estimators are more efficient than the method of moments estimators. 
This seems to point to the potential of SMHD methods to generate estimators 
with good efficiency and further justify their use in actuarial science and finance. 

2. Asymptotic Properties 
2.1. Asymptotic Properties of the Classical MHD Estimators 

MHD estimators can be seen to be consistent in general for version D and ver-
sion S. In fact, the conditions are even less restrictive than the conditions for 
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maximum likelihood estimators to be consistent. Since we aim for applications, 
we only consider asymptotic properties under the strict parametric model, i.e., 
assuming the observations come from the parametric density family ( )f xθ , 
where ∈θ Ω , and the parameter space Ω  is assumed to be compact. 

Let 

( ) ( ) ( ) ( )

1
2 21 11 1

2 22 21 2 1 2 df f f x f x x
∞

−∞

  
 − = −          
∫ ,        (15) 

where ( )1f x  and ( )2f x  are density functions. Note that ⋅  is a norm in the 
density functional space and it will respect the triangular inequality. 

Tamura and Boos [8] (page 224) have noted that, if ( ) ( )
0

p
nf x f x→ θ , then 

( ) ( )0

11
22 0p

nf f− →θ , and if ( ) ( )
1 1
2 2 0nf f− >θ  for 0≠θ θ  in probability,  

it is sufficient for the MHD estimators given by the vector θ̂  obtained by 

minimizing Equation (10) to be consistent, i.e., 0
ˆ p→ θ θ , assuming the pa-

rameter space Ω  is compact. See Theorem 3.1 by Tamura and Boos [8] (page 
224). Comparing with the regularity conditions for ML estimators as given by 
Theorem 2.5 of Newey and McFadden [23] (page 2131), the regularity condi-

tions for MHD estimation do not require that ( )( )sup logE f x < ∞θ θ  as in 

likelihood estimation. This makes the MHD estimators consistent in general 
even with fewer restrictions than ML estimators. 

However, for asymptotic normality, they require more stringent conditions to 
be as efficient as ML estimators. They are found in Theorem 4 given by Beran 
[7] (pages 450-451), which is summarized in Theorem 1 below, focusing on the 
strict parametric model. Beran [7] (pages 450-451) allows the bandwidth of the 
kernel to be randomly chosen with n n nh c s= , where nc  is a sequence of con-

stants but ns  is a sequence of random variable with p
ns s→ . It also requires  

a compact support K for both ( )log f x∂
∂

θ

θ
 and ( )f xθ . Despite these restric- 

tions, empirical studies often show that the estimators have high efficiencies in 
many models without the condition of compact support for the parametric fam-
ily met. The regularity conditions of Beran’s Theorem 4 when restricted to the 
strict parametric model are stated using Theorem 1 below. We also require the 
vector of true parameters 0θ  to be in Ω , where Ω  is compact. Theorem 1 
can be viewed as a corollary of Theorem 4 as given by Beran [7] and the proofs 
have been given there. 

Theorem 1 
Suppose 
1) The kernel density ( )xω  is symmetric about 0 and has a compact support. 
2) The function ( )xω  is twice differentiable and its second derivative is 

bounded on the compact support. 
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3) ( )log f x∂
∂

θ

θ
 and ( )f xθ  have a compact support K  and ( ) 0f x >θ  on 

K . 
4) ( )f xθ  is twice absolutely continuous with its second derivative with re-

spect to x  being bounded. 

5) 
1
2limn nn c→∞ = ∞ , 

1
22lim 0n nn c→∞ = , and lim 0n nc→∞ = . 

6) There exists a positive constant s  which might depend on ( )
0

f xθ  such 
that ( )nn s s−  is bounded in probability. 

Then ( ) ( )( )1
0 0

ˆ 0,Ln N I −→−θ θ θ  where ( )0I θ  is the Fisher informa-
tion matrix with elements given by 

( ) ( ) ( )2log log log
, 1, , , 1, ,

j i j i

f x f x f x
E E i m j m

θ θ θ θ

   ∂ ∂ ∂
= − = =      ∂ ∂ ∂ ∂   

� �θ θ θ

  
(16) 

and assumed to exist. 
We just give an outline establishing the results of Theorem 1 and focus only 

on the strict parametric model for applications with the aim that it might help 
practitioners in the applied fields to follow more easily the arguments needed to 
develop the new method subsequently. 

Note that, beside the rectangular kernel, the triangular kernel with ( ) 1x xω = −  

for 1 1x− ≤ ≤  and the Epanechnikov kernel with ( ) ( )23 1
4

x xω = −  for  

1 1x− ≤ ≤  meet conditions 1 and 2 as required by Theorem 1 and are available 
in the package R. 

For establishing asymptotic normality results for the estimators as indicated 
by Theorem 1, we can consider a Taylor expansion of the system of equations  

( ) ( )
ˆ

ˆ 0nQ
D

=

∂
= =

∂
θ θ

θ
θ

θ
 around the true vector of parameters 0θ . The system of 

equations implies 

( ) ( ) ( )
( )

( )

ˆ
11
22

ˆ
ˆ

ˆ d 0n

f x

D f x f x x
f x

∞

−∞

∂
  ∂ = − =     
 

∫
θ

θ
θ

θθ

         

(17) 

with 
( ) ( )ˆ

ˆ

f x f x

=

∂ ∂
=

∂ ∂
θθ

θ θ
θ θ

 and ( ) ( )ˆ ˆf x f x
=

= θθ θ θ
. 

We proceed to perform a Taylor expansion by noting 

( ) ( ) ( )
( )

( )

0

0

0

11
22

0 dn

f x

D f x f x x
f x

∞

−∞

∂
  ∂ = −     
 

∫ θ

θ

θ

θθ ,         (18) 

( ) ( ) ( ) ( )
( ) ( )0 0

0

0

0

log log1 d 1
2 p

f x f xD
D f x x o

∞

−∞
=

′∂ ∂  ∂
= = − +    ∂ ∂ ∂  

∫� θ θ
θ

θ θ

θ
θ

θ θ θ
,(19) 

assuming ( )D θ  is differentiable with respect to θ  and  
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( ) ( )
( )

0
0

11
22 d 0p

n

s x
f x f x x

∞

−∞

∂ 
 − →      ∂ 

∫
θ

θθ , with ( )
( )

( )

0

0

0

f x

s x
f x

∂

∂=

θ

θ
θ

θ , using 

the compact support assumption for { }fθ . As a result, we can write that 

( ) ( ) ( )0 0
1   1
2 pD I o= − +� θ θ .                  (20) 

Therefore, with the regularity conditions met, we will have the representation 

( ) ( ) ( ) ( )1
0 0 0

ˆ   1pn D n D o
−

 − = − + 
�θ θ θ θ ,           (21) 

where ( )1po  is the remainder term which converges to 0 in probability, which 
can be re-expressed using the following equality which holds in law, 

( ) ( ) ( ) ( )
( )

( )

0

0

0

111
22

0 0
ˆ 2 dd

n

f x

n I n f x f x x
f x

∞−

−∞

∂
  ∂  − = −      
 

∫
θ

θ θ
θ

θθ θ . (22) 

Using the argument given by Beran [7] (page 451) allows us to establish the 
equality in probability, 

( ) ( )
( )

( )

( ) ( )( )
( )

( )

( )
( )

0

0

0

0

0

0 0

11
22 d

1 d 1
2

n

n
p

f x

n f x f x x
f x

f x
f x f x

n x o
f x f x

∞

−∞

∞

−∞

∂
  ∂ −     
 

∂
− ∂= +

∫

∫

θ

θ

θ

θ

θ

θ

θ

θ θ

.          (23) 

This can be viewed as a form of generalized delta method to establish equality 
of the left-hand side and the right-hand side of Equation (23). 

Consequently, Equation (22) can be re-expressed, using the equality in distri-
bution, as 

( ) ( ) ( ) ( )( ) ( )
0

0

1
0 0

logˆ dd
n

f x
n I n f x f x x

∞−

−∞

∂
 − = −  ∂∫

θ
θθ θ θ

θ
.    (24) 

Note that 

( ) ( )( ) ( )
( )

( )
0 0

0

log log
d dn n

f x f x
f x f x x f x x

∞ ∞

−∞ −∞

∂ ∂
− =

∂ ∂∫ ∫
θ θ

θ θ θ      
(25) 

as, in general, ( )
( )

0
0

log
d 0

f x
f x x

∞

−∞

∂
=

∂∫
θ

θ θ
. Furthermore, 

( )
( ) ( )

( ) ( )0 0
log log

d d 1n n p

f x f x
n f x x n F x o

∞ ∞

−∞ −∞

∂ ∂
= +

∂ ∂∫ ∫
θ θ

θ θ
,    (26) 

where ( )nF x  is the commonly used sample distribution function. This allows 
the following representation: 

( ) ( )
( )

01
0 0 1

log1ˆ n id
i

f x
n I

n
−

=

∂
 − =   ∂∑ θθ θ θ

θ
.          (27) 
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Therefore, ( ) ( )( )1
0 0

ˆ 0,Ln N I −→−θ θ θ . 

For the simulated version, i.e., version S, we can only obtain results for con-
sistency and they will be given in the next section. As for asymptotic normality, 
we cannot conclude for the time being whether or not conditions of Theorem 
7.1 given by Newey and McFadden [23] (pages 2185-2186) for the asymptotic 
normality of estimators obtained from a non-smooth function can be met. We 
hope to have more results on this issue in the future and would present them in 
a subsequent paper. This does not prevent SMHD estimation from being used as 
an alternative to methods of moments if the primary interests are in point esti-
mation. 

2.2. Asymptotic Properties of the SMHD Estimators 

For version S, we minimize 

( ) ( ) ( )
211

22 dS
n nQ f x f x x

∞

−∞

 
 = −     

 
∫ θθ .             (28) 

We recommend using the same seed across different values of θ  if possible 
and the simulated sample size U nτ=  such that U →∞  at the same rate as 
n →∞ . These recommendations conform with other simulated methods of in-
ference such as the method of simulated moments as discussed by Davidson and 
McKinnon [9] (page 284) or simulated quasi-likelihood found in Smith [24] 
(page S68). The condition of the same seed being used is not necessary for con-
sistency, but it allows ( )nQ θ  to have the value for each θ  fixed each time we 
want to evaluate ( )nQ θ ; otherwise, the values might differ slightly due to the 
fact that simulations are needed to evaluate ( )nQ θ . With the same seed, ( )nQ θ  
behaves like a non-random function with respect to θ . 

Let 

( ) ( )( )
1
2

n nG Q=θ θ ,                     (29) 

with ( )nQ θ  as defined by Equation (28). The following Theorem, which is es-
sentially Theorem (3.1) given by Pakes and Pollard [25] (page 1038) with the 
assumption of compactness of the parameter space added, can be used to estab-
lish the consistency of SMHD estimators. The proofs of the following Theorem 
have been given by Pakes and Pollard [25] (page 1038) using the Euclidean norm. 
Their proofs are still valid with the norm as defined by Equation (29) and dis-
cussed in Section 2.1. It is implicitly assumed that there is no identification 
problem for the parametric family, i.e., if 1 2≠θ θ , then ( ) ( )

1 2
f x f x≠θ θ  except 

on a set of measure zero. 
Theorem 2 
Suppose 
1) The parameter space Ω  is compact, and 0 ∈θ Ω . 
2) ˆSθ  minimizes ( )nG θ  or equivalently ( )nQ θ . 
3) ( )

0

1
sup nGδ

−

− >θ θ θ  for each 0δ > , is bounded in probability, where ⋅  
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denotes the norm being used. 
Then 0

ˆ pS →θ θ . 
Clearly, we have consistency for ˆSθ  as ( )0 2nQ≤ ≤θ  and ( ) 0p

nQ →θ  
only at 0=θ θ . 

For the time being, we cannot assert that ˆSθ  follows a multivariate normal 
distribution asymptotically as we cannot verify the regularity conditions of 
Theorem 7.1 given by Newey and McFadden [23] (pages 2185-2186) for estima-
tors obtained from a non-smooth objective function. For the simulated un-
weighted minimum chi-square, Pakes and Pollard [25] (page 1049) find the as- 

ymptotic covariance to be 11 V
τ

 + 
 

, with V  being the asymptotic covariance  

matrix of the estimators without using simulations. Conforming with other 
simulated methods which typically give the same type of asymptotic covariance 
formula, we recommend choosing 10τ ≥  to minimize the loss of efficiency due 

to simulations. The matrix 11 V
τ

 + 
 

, where ( ) 1
0V I −= θ , can be viewed as a 

form of benchmark for the approximate asymptotic covariance matrix for ˆSθ  if 
indeed asymptotic normality can be shown. In the absence of a rigorous proof, 
we have to rely on simulations to evaluate the efficiency of ˆSθ , just as for ver-
sion D when the support of the distribution is not compact. Further asymptotic 
results to be obtained in the future will be presented in a subsequent paper. 

Since we have estimates for densities, it is natural that we can estimate the 
Fisher information matrix. Clearly, if the model density has a closed-form ex-
pression, then the following matrix  

( )

( )

( )

( )

ˆ ˆ

1
ˆ ˆ

1
S S

S S

i i

n

i
i i

f x f x

n f x f x=

′  ∂ ∂
  

∂ ∂  
  
  
  

∑
θ θ

θ θ

θ θ

                 

(30) 

can be used to estimate ( )0I θ . Instead of ( )ˆS if x
θ

, if it is not available, we can 
use the kernel density estimate of ( )ˆS if x

θ
, and, following a method given by 

Pakes and Pollard [25] (page 1043), we can use 

( ) ( ) ( )ˆ ˆˆ S SS n j
i ii

j n

f x f xf x
θ

+
−∆

=
∆

e


θ θθ ,                (31) 

w i t h  0n →  a t  t h e  r a t e  ( )n o n δ−= ,  w h e r e  1
2

δ ≤ ,  t o  e s t i m a t e 

( )ˆ , 1, ,
S i

j

f x
j m

θ

∂
=

∂
�θ , assuming ( )ˆ 0, 1, ,S if x i n> = �

θ
. The vector je  is a unit 

vector with 1 in its j-th place and 0 elsewhere. Replacing ( )ˆS if x
θ

 and 
( )ˆS i

j

f x
θ

∂

∂
θ   

by these estimates will give an estimator for the information matrix. An estimate 
of the information matrix is useful as the information matrix is related to the 
Cramer-Rao lower bound. 
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3. Limited Simulation Study 

In this study, we shall compare the efficiencies of the moment estimators for the 
case with α β= , i.e., the GNL distribution with only four parameters. Reed [11] 
(page 477) has given the expressions for the moment estimators using the first six 
empirical cumulants , 2, ,6rk r = � , with the sample mean 1X k= . They can be  

obtained using central empirical moments ( )2

1

1 , 2, ,6n
r ii

m X X r
n =

= − =∑ �  as  

they follow the same type of relationships which exist between model cumulants 
  rκ  and model central moments. Let ( )2 , 2r E X rµ µ= − > , and ( )E Xµ = . 
The following relationships can be found in Stuart and Ord [26] (pages 90-91) 
and they are given by 

1κ µ= , 

2 2κ µ= , 

3 3κ µ= , 

2
4 4 23κ µ µ= − , 

5 5 3 210κ µ µ µ= − , 

2 3
6 6 4 2 3 215 10 30κ µ µ µ µ µ= − − + .                (32) 

Explicitly, the moments estimators are 
1
2

4

6

20 k
k

α β
 

= =  
 

�� , 
3
4
2
6

100
3

k
k

ρ =� , 1k
µ

ρ
=�
�

 and 2 2
2

2k
σ

ρ α
= −�
� �

.    (33) 

Reed [11] (page 477) also notes that method of moments estimators (MM es-
timators) can take on negative values for positive parameters, and it is not easy to 
include constraints in method of moments estimation. Also, the use of EM algo-
rithm does not appear to be straightforward for the GNL distribution. SMHD es-
timation can handle constraints by minimizing the objective function, which is 
given by Equation (28), with constraints. 

A limited simulation study using parameters for the symmetric GNL distribu-
tion with four parameters, focusing on parameters in the ranges 0µ = , 

0.008σ = , 0.1 5.0ρ≤ ≤ , 30 40α≤ ≤ , has been carried out and the relevant 
results are summarized in Table 1. The ranges of parameters as indicated are 
chosen accordingly and conform with the empirical study conducted by Reed 
[11] (page 481) using stock data. The simulated sample size for data is 1000n =  
and the simulated sample size drawn from the model for SMHD estimation is 

10000U = , hence with 10τ = . It takes about twenty minutes on a laptop com-
puter to obtain the estimators for 50M =  samples and, due to the limited 
computer capacity, we fix 50M =  samples for each combination of parameters 
for our study. As we only have access to laptop computers, the scale of the study 
is limited. 

We noticed that the method of moments estimator for 2σ  is often negative 
and we set it equal to zero whenever this is the case, and the comparisons of effi-
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ciencies use this version of the method of moments estimator. The density esti-
mate is based on the built-in function of the package R with a rectangular kernel 
and default bandwidth based on the normal distribution. The overall asymptotic 
relative efficiency (𝐴𝐴𝐴𝐴𝐴𝐴) used for comparisons is 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆˆ ˆS S S SMSE MSE MSE MSE
ARE

MSE MSE MSE MSE

µ σ α ρ

µ σ α ρ

+ + +
=

+ + +� �� �
,      (34) 

with ( )ˆMSE θ  being the commonly used mean square error of the estimator θ̂  
and it is estimated using 50M =  samples for estimating the expression for ARE 
and the values of the estimated ARE’s using different sets of parameters are dis-
played in Table 1. 

Despite the scope of the study being limited, it suggests that SMHD estimators 
perform much better than method of moments estimators overall for the ranges 
of parameters used in finance. The method of moments estimator for θ  tends 
to perform better for small values of ρ  and deteriorates rapidly as ρ  grows 
larger with 0ARE →  even for various parameter values that we tested which lie 
outside the ranges indicated above and not shown in Table 1. Table 1 is used for 
illustration and provides a summary of the key findings of the study. Also, in the 
ranges considered, the method of moments estimator for µ  tends to perform 
better than its SMHD counterpart, but the overall efficiency of MM estimators 
still falls behind the overall efficiency of SMHD estimators in general as shown in 
Table 1. Clearly, more work needs to be done numerically and theoretically, but 
it shows the potential efficiencies of SMHD methods. 

 
Table 1. Asymptotic relative efficiencies to compare SMHD estimators with MM estima-
tors with 0.008σ = . 

α⋱ρ 0.1 0.2 0.3 0.4 1.0 5.0 

30 0.591517 0.230986 0.108643 0.091801 0.000000 0.002654 

32 0.424564 0.086852 0.334888 0.034317 0.000003 0.000022 

34 0.786910 0.382450 0.321474 0.059785 0.000011 0.014531 

36 0.618782 0.991033 0.200291 0.001051 0.000020 0.000062 

38 0.449053 0.317762 0.121347 0.069595 0.000001 0.005445 

40 0.434306 0.472453 0.144194 0.008689 0.000000 0.000002 

Note: Tabulated values are estimates of the asymptotic relative efficiencies of the SMHD estimators versus the 
MM estimators. 

 
Individual ratios of mean square errors for some sets of parameters 

( )0, 0.008, 30, 0.1µ σ α ρ ′= = = = =θ  

( )
( )
ˆ

22.9437
SMSE

MSE

µ

µ
=

�
, 

( )
( )
ˆ

0.8584
SMSE

MSE

σ

σ
=

�
, 

( )
( )
ˆ

0.5918
SMSE

MSE

α

α
=

�
, 

( )
( )
ˆ

0.0222
SMSE

MSE

ρ

ρ
=

�
, 0.5915ARE =  
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( )0, 0.008, 34, 0.3µ σ α ρ ′= = = = =θ  

( )
( )
ˆ

925.3334
SMSE

MSE

µ

µ
=

�
, 

( )
( )
ˆ

0.6064
SMSE

MSE

σ

σ
=

�
, 

( )
( )
ˆ

0.3240
SMSE

MSE

α

α
=

�
, 

( )
( )
ˆ

0.0151
SMSE

MSE

ρ

ρ
=

�
, 0.3215ARE =  

( )0, 0.008, 40, 1µ σ α ρ ′= = = = =θ  

( )
( )
ˆ

1.3739
SMSE

MSE

µ

µ
=

�
, 

( )
( )
ˆ

0.0503
SMSE

MSE

σ

σ
=

�
, 

( )
( )
ˆ

0.0004
SMSE

MSE

α

α
=

�
, 

( )
( )
ˆ

0.0000
SMSE

MSE

ρ

ρ
=

�
, 0.0000ARE =  

4. Conclusion 

As SMHD estimators remain consistent with minimum regularity conditions 
and despite the lack of results on asymptotic normality, the proposed method 
appears to be useful for fitting actuarial and financial models using continuous 
infinitely divisible distributions which arise from Lévy processes or continuous 
mixture distributions constructed using mixing operations, whenever it is not 
difficult to simulate from these distributions but the density functions of these 
distributions have no closed-form expressions. In many models, the proposed 
method appears to be more efficient than traditional methods such as the 
method of moments. The proposed method is not difficult to implement but 
methods based on simulations do not seem to receive much attention in finance 
and actuarial science. They might be considered as additional robust statistical 
techniques for analyzing empirical data, especially if point estimation is the main 
interest. 
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