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Abstract 
Visible light-sensitive photocatalyst was developed by combining n-type sili-
con (n-Si) and tungsten trioxide (WO3, n-Si/WO3), yielding an ohmic contact 
in between. In this system, the ohmic contact acted as an electron-and-hole 
mediator for the transfer of electrons and holes in the conduction band (CB) 
of WO3 and in the valence band (VB) of n-Si, respectively. Utilizing thus- 
constructed n-Si/WO3, the decomposition of 2-propanolto CO2 via acetone 
was achieved under visible light irradiation, by the contribution of holes in the 
VB of WO3 to decompose 2-propanol and the consumption of electrons in the 
CB of n-Si to reduce O2. The combination of p-type Si (p-Si) and WO3 (p-Si/ 
WO3), not the ohmic contact but the rectifying contact, was much less effec-
tive, compared to n-Si/WO3. 
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1. Introduction 

Various photocatalytic materials have been evaluated for the oxidative decom- 
position of organic stains and production of hydrogen (H2) via water splitting 
for environmental preservation and generation of clean energy, respectively, by 
utilizing solar energy [1] [2] [3]. Among examined materials, titanium dioxide 
(TiO2) with which Fujishima and Honda first demonstrated photo induced wa-
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ter-splitting [1] is the most promising photocatalysts due to their high perfor-
mance, abundance, nontoxicity, thermal stability and high resistance against 
photo-corrosion [2] [3]. Despite these advantageous properties, TiO2 is only 
sensitive to ultraviolet (UV) light and therefore requires modification for the 
utilization of visible light. To this end, numerous studies have examined the ef-
fects of doping foreign elements into TiO2 [4] and other UV-light sensitive pho-
tocatalysts, such as strontium titanate (SrTiO3) [5], zinc oxide (ZnO) [2] [3] and 
so on. Another common method is to produce or find photocatalysts with nar-
row band-gaps which can absorb visible light [6] [7] [8] [9]. From these studies, 
combined systems consisting of two such narrow band-gap photocatalysts (PC1/ 
PC2) have been devepoled, such as tungsten disulfide (WS2)/tungsten trioxide 
(WO3), cobalt oxide (Co3O4)/bismuth vanadate (BiVO4), and so on (Type I in 
scheme 1) [10] [11] after the suggestions made in the literatures as to the more 
efficient charge separation in the combined system of TiO2 and cadmium sulfide 
(CdS), iron oxide (Fe2O3), WO3, ZnO, cupper oxide (Cu2O), or bismuth oxide 
(Bi2O3) etc., resulting in the increase in the lifetime of the charge carriers and the 
enhancement of the activity [12] [13]. However, all these combined systems are 
not recommended from the viewpoint of oxidation and reduction potentials of 
holes and electrons, respectively, after their interparticle transfer because the 
oxidation power of the holes and reduction powers of the electrons become weak 
after the transfer (Type I in Scheme 1). 

To overcome the decrease in the oxidation power of the holes and reduction 
powers of the electrons, the insertion of a conducting layer (CL, metal such as 
gold (Au), silver (Ag), and tungsten (W) or reduced graphene oxide (RGO)) 
between two types of photocatalysts was reported [14]-[20] (PC1/CL/PC2, Type 
II in Scheme 1). Regarding the powdered system, CdS/Au/TiO2, WO3/W/ tita-
nium doped-lead bismuth niobium oxide (PbBi2Nb1.9Ti0.1O9) were reported for 
the decomposition of organic substances [14] [15]. For the overall water-split- 
ting under visible light, ruthenium (Ru)-loaded rhodium-doped SrTiO3 
(Ru-STO:Rh)/RGO/bismuth vanadate (BiVO4), zinc rhodium oxide (ZnRh2O4)/ 
Ag/silver antimonite (AgSbO3) and ZnRh2O4/Ag/bismuth vanadate (Bi4V2O11) 
were reported [16]-[20]. In addition, direct connection of the two or more types 
of photocatalysts without the conducting layer was also reported based on the  
 

 
Scheme 1. Three types of previously proposed heter-junctioned photocatalysts. 
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concept of ohmic contact (PC1/PC2, Type III in Scheme 1). In most cases, they 
were a photoelectrochemical (PEC) electrode water-splitting systems, such as 
n-type silicon (n-Si)/Fe2O3, galium indium phosphorus (GaInP2)/galium arsenic 
(GaAs), three types of amorphous Si, and so on [21] [22] [23]. As for the pow-
dered system, cupper bismuth oxide (CuBi2O4)/WO3 for the oxidative decompo-
sition of acetaldehyde, and Ru-STO: Rh/BiVO4 and ZnRh2O4/defective AgSbO3 
for the overall water-splitting were reported [17] [24] [25]. However, no experi-
mental evidences for the formation of the ohmic contact were demonstrated in 
all cases but only provided the concept of the ohmic contact. Thus in the present 
study, we demonstrated that the formation of the ohmic contact could produce a 
more efficient photocatalyst than that of the rectifying contact by connecting 
n-Si or p-type silicon (p-Si) with WO3 (n-Si/WO3, p-Si/WO3). 

2. Experimental Section 
2.1. Preparations of n-Si/WO3 and p-Si/WO3 Electrodes 

Single crystaln-Si(100) and p-Si(100) wafers with a thickness of 525 ± 25 µm 
were purchased from Kyodo International Inc. The n-Si(100) and p-Si(100) wa-
fer surfaces were cleaned by a RCA cleaning method [26]. That is, the successive 
immersions of the wafers in a boiling mixture of 95% sulfuric acid (H2SO4) and 
30% hydrogen peroxide (H2O2) at a volume ratio of 3:1, in a 5% hydrofluoric 
acid (HF) solution for 5 min, in a boiling mixture of 25% aqueous ammonium 
(NH3), 30% H2O2 and distilled water at a volume ratio of 1:1:3 for 15 min, again 
in the 5% HF solution for 5 min, and in a 40% ammonium fluoride (NH4F) solu-
tion for 5 min [26]. On the cleaned n-Si(100) or p-Si(100) surface, a WO3 film 
was deposited by sputtering a W metal target under oxygen (O2, 40 SCCM)/argon 
(Ar, 60 SCCM) gas mixture and 1.5 Pa for 16 min at substrate temperature of 
400˚C, using a radio frequency (RF) magnetron sputtering apparatus (Tokuda, 
Model CFS-8EP). The thickness was controlled to be ~200 nm. 

2.2. Preparations of n-Si/WO3 and p-Si/WO3 Powders 

To obtain n-Si and p-Si powders, the purchased n-Si(100) and p-Si(100) wafers, 
respectively, were roughly pulverized by a mortar and then finely pulverized us-
ing a planetary ball-milling apparatus at 500 rpm for 5 min before use. Then 
WO3 was loaded by a liquid phase deposition (LPD) on the surface of either 
pulverized n-Si or p-Si powder as follows [27]. Briefly, 5.01 g of tungsten acid 
(H2WO4, Kanto Chemical) was dissolved in 50 mL of an aqueous solution of 2% 
HF. 7.45 g of boric acid (H3BO3) was dissolved in 50 mL of distilled water and 
was used as the reagent which acts as F− scavenger. These two solutions were 
mixed to use as the reaction solution for WO3 deposition. 7.72 × 10−2 g of either 
pulverized n-Si or p-Si powder (Si/WO3 = 1/60 wt% or 1/7.3 mol%) was stirred 
with the mixed solution using a magnetic stirrer for 6 h at room temperature. 
The reaction product was obtained by a filtration, followed by washing with suf-
ficient distilled water and drying at 50˚C. Then the samples were heated at 
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500˚C for 1 h in air. 

2.3. Characterizations 

The crystal structures of the prepared n-Si/WO3 and p-Si/WO3 electrodes and 
powders were examined by X-ray diffraction (XRD) using a PW-1700 system 
(Panalytical). A scanning transmission electron microscope (SEM, Hitachi, 
S-4500) was used to observe the morphology of the prepared samples. UV-visible 
absorption spectra for the n-Si/WO3 and p-Si/WO3 powders were obtained by 
the diffuse reflection method using a V-650 (JASCO) spectrometer. 

The current-voltage (I-V) analysis in the presence or absence of light from a 
Xe lamp (LA-251Xe, Hayashi Tokei)for the n-Si/WO3 and p-Si/WO3 electrodes 
were performed in a conventional two electrode system using a potentiostat at 
(Hokuto Denko, HSV-10). To serve an ohmic electrode, platinum was deposited 
on WO3 using a quick coater (Sanyu Electron Co., Ltd., SC-708) and indium 
(Kanto Chemical) was attached on either n-Si or p-Si. 

The photocatalytic activity of the n-Si/WO3 and p-Si/WO3powdered photoca-
talysts were evaluated by the oxidative decomposition of gaseous 2-propanol ir-
radiated with visible light (>420 nm, 1 mW/cm2) from the Xe lamp (the same 
above) equipped with a glass filter (Y-44, HOYA). For the analysis, 300 mg of 
the photocatalyst was uniformly spread over a 5.5-cm2 irradiation area in a 
500-ml quartz vessel. Prior to the injection of 6 µmol (~300 ppm) gaseous 
2-propanol, the organic pollutants (originating from the air) absorbed on the 
surface of the photocatalysts were first photo-oxidized into CO2 and the gas in 
the quartz vessel was then replaced with pure synthetic air (in the absence of 
CO2 and organic pollutants). Following the injection of 2-propanol, the reaction 
vessel was kept in the dark overnight and was then subjected to visible light ir-
radiation to start the photocatalytic reactions. The concentrations of acetone and 
CO2 produced were monitored using a gas chromatograph (model GC-8A, Shi-
madzu Co., Ltd.). 

3. Results and Discussion 
3.1. Characterization of the Prepared Electrodes and Powders 

Figure 1 shows XRD patterns of n-Si/WO3 and p-Si/WO3 electrodes. The faces 
of n-Si(100) and p-Si(100) were utilized to deposit WO3, so the peak at ~69˚ 
corresponding to (400) should be large, and in fact the extremely large (400) 
peak of n-Si was observed. However, that of p-Si was not so large, which would 
be attributable to the deviation from the right angle in setting p-Si/WO3 to the 
sample holder of the XRD apparatus. The peaks originated from WO3 on both 
n-Si and p-Si wafers were quite similar, and WO3 on both wafers was confirmed 
to have a single phase, probably the triclinic phase. WO3 in both n-Si/WO3 and 
p-Si/WO3 powders was confirmed to have a single phase of triclinic WO3 in the 
obtained XRD patterns (Figure 2). As for Si, being different from Figure 1, all 
the peaks originating from cubic Si were observed although some of the peaks 
overlapped with those from WO3. The peak intensity of Si was not as high as that  
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Figure 1. XRD patterns of the prepared n-Si/WO3 
and p-Si/WO3 electrodes. 

 

 
Figure 2. XRD patterns of the prepared n-Si/WO3 
and p-Si/WO3 powders. 

 

of WO3 because WO3 powders completely covered the surface of Si as discussed 
below. 

Figure 3 shows the cross sectional SEM image of the n-Si/WO3 electrode. The 
dense WO3 film with a thickness of ~200 nm was observed, similar to p-Si/WO3 
(not shown here). In Figure 4, the SEM image of the n-Si/WO3 powder is 
shown. The entire surface of each Si powder was covered (Figure 4(a)) by the 
needle-like WO3 powders (Figure 4(b)), which coincided well with the results of 
Deki et al. [27]. Figure 5 shows the UV-visible absorption spectra for commer-
cially available WO3, prepared n-Si/WO3 and p-Si/WO3 powders. The absorp-
tion over a wider wavelength region (>500 nm) clearly increased for n-Si/WO3 
and p-Si/WO3, indicating the successful connection of WO3 and n- or p-Si. In 
addition, the absorptions over 500 nm of n-Si/WO3 and p-Si/WO3 were similar 
within a several percent, so the amounts of WO3 connected to n-Si and p-Si were 
presumed to be similar. 

3.2. I-V Analysis 

We examined the I-V analysis in the dark and under light irradiation as shown 
in Figure 6. The typical rectifying I-V (typical p-n junction) behavior in p-Si/ 
WO3 was observed, particularly, under irradiation with light. It is plausible to 
consider the contact of p-Si and WO3 (n-type semiconductor). That is, p-Si has 
the more negative energy of Fermi level (Ef) than that of WO3 when we consider  
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Figure 3. A cross sectional SEM image of the n-Si/WO3 electrode. 
 

 
Figure 4. SEM images of the n-Si/WO3 powder. (b) is the enlargement of (a). 
 

 
Figure 5. UV-visible absorption spectra of WO3, n-Si/WO3 and p-Si/WO3 powders. 
 

 
Figure 6. I-V characteristics of (a) p-Si/WO3 and (b) n-Si/WO3 heterojunctions. 
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the vacuum level as zero energy (Scheme 2(a)). In contrast, the ohmic I-V cha-
racteristic in n-Si/WO3 was observed. As shown in Scheme 2(b), WO3 has the 
more negative energy of Ef than that of n-Si, so it is probable to form the ohmic 
contact between n-Si and WO3. In addition, irradiated with light, the current 
density of n-Si/WO3 was demonstrated to be much larger than that of p-Si/WO3. 
This means that the interparticle charge transfer, that is, charge transfer between 
photo generated holes in the valence band (VB) of n-Si and photoexcited elec-
trons in the conduction band (CB) of WO3 proceeded (Scheme 2(b)). Such an 
ohmic I-V characteristic was also observed in In2O3-Cu2O system with poor-
photovoltaic properties [28]. However, we can anticipate that the ohmic contact 
will function positively in terms of photocatalytic activity as discussed below. 

3.3. Decomposition of Gaseous 2-Propanol 

We next examined the 2-propanol decomposition in the presence of the p-Si/ 
WO3 and n-Si/WO3 photocatalysts under visible-light irradiation (Figure 7). In 
the presence of n-Si/WO3, the evolved acetone initially increased and then de-
creased. This decrease was accompanied by the increase in the CO2 production. 
This behavior is plausible as it is known that 2-propanol decomposes into CO2, 
which is the final product, via acetone, the intermediate product [29]. In con-
trast, in the presence of p-Si/WO3, both acetone and CO2 increased monotoni-
cally up to irradiation time of ~330 h. We cannot exclude the possibility that the 
acetone concentration would decrease after further irradiation of visible light, 
accompanied by the increase in the CO2 evolution in the presence of p-Si/WO3. 
Even in such a case, it is readily apparent that the CO2 generation rate was smaller 
compared to that of n-Si/WO3 during the acetone-increasing period. In addition, 
the longer acetone-increasing period indicates that acetone is reluctantly de-
composed to CO2 in the presence of p-Si/WO3. It is generally accepted that 
2-propanol is easily decomposed to acetone; however acetone is hardly decom 
 

 
Scheme 2. Band alignments of (a) before and after connection of p-Si and WO3, and (b) 
that of n-Si and WO3. The charge transfer processes are also shown in the alignments af-
ter connection. 
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Figure 7. Changes in acetone and CO2 concentrations as func-
tions of time in the presence of n-Si/WO3 and p-Si/WO3 under 
visible light irradiation. 

 
posed to CO2. Thus, in any case, we can confidently conclude that the photoca-
talyticoxidative activity of n-Si/WO3 is much higher than that of p-Si/WO3. 

It is well-known that the photo-produced holes play an important role in the 
generation of photocatalytic oxidative activity. In this sense, WO3 is a candidate 
for having holes with strong oxidative power because the VB top potential of 
WO3 is 3.1 - 3.2 V (vs. SHE, pH = 0 [30]). The potential is even more positive 
than that of anatase TiO2 (3.04 V vs. SHE, pH = 0 [31]), which has already been 
widely utilized as practical applications. The photo-generated electrons also play 
a crucial role in the generation of the photocatalytic oxidative activity. That is, to 
generate the photocatalytic oxidative activity, the photo-generated electrons 
need to be consumed in the O2 reduction because photocatalysts are usually uti-
lized in air. If the photo-generated electrons are not consumed, the pho-
to-produced holes will be recombined with them and eliminated. The CB bot-
tom of TiO2 lies at −0.16 V (vs. SHE, pH = 0 [31]), which is slightly more nega-
tive than that of one-electron O2 reduction (O2 + H+ + e− → HO2, −0.046 V vs. 
SHE, pH = 0 [31]). Thus, O2 reduction is expected to proceed in the TiO2 pho-
tocatalyst. In contrast, the CB bottom of WO3 lies at 0.3 - 0.5 V vs. SHE [30], so 
the photo-generated electrons cannot react with O2 through one-electron reac-
tion. This is the reason why WO3 exhibits very low photocatalytic oxidative ac-
tivity although the photo-produced holes in its VB have the strong oxidative 
power. To realize WO3 for the highly active photocatalyst, either Pt or Cu(II) is 
loaded on WO3 (Pt/WO3, Cu(II)/WO3) [32] [33]. Again, WO3 exhibits very low 
photocatalytic oxidative activity because the photogenerated electrons cannot 
reduce O2 through the one-electron reaction reduction. Pt or electron injected 
Cu(II) (i.e., Cu(I)) acts as a catalyst for multi-electron oxygen reduction (two 
electron reduction: O2 + 2H+ + 2e− → H2O2, 0.68 V; or four-electron reduction: 
O2 + 2H2O + 4H+ + 4 e− → 4H2O, 1.23 V [32]).Thus the photogenerated electrons 
in either Pt/WO3 or Cu(II)/WO3 are consumed in the multi-electron reduction 
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of O2. 
In the n-Si/WO3 system (Scheme 2(b)), we consider that the 2-propanol de-

composition performance was derived from the photo-produced holes with the 
strong oxidative power that were generated in the VB of WO3 contributing to 
2-propanol oxidation, and the photo-excited electrons that were generated in the 
CB of n-Si contributing to O2 reduction through one-electron reaction. Impor-
tantly, the ohmic contact between n-Si and WO3 acts as electron-and-hole me-
diator for the transfer of electrons and holes in the CB of WO3 and in the VB of 
n-Si, respectively. Note that, to the best of our knowledge, Si (both n-Si and p-Si) 
does not function as the multi-electron O2 reduction catalyst. In the p-Si/ WO3 
system (Scheme 2(a)), the photo-produced holes in p-Si do not have the poten-
tial to oxidize 2-propanol, considering its VB top potential. Contrastly, a portion 
of the photo-produced holes in WO3 that exist on its surface across the Si par-
ticle can react with 2-propanol, and the photo-excited electrons reduce WO3 it-
self to produce protonated WO3 (HxWO3−y) and are eliminated. Thus, p-Si/WO3 
exhibited the activity for the 2-propanol decomposition, however the activity 
was low. 

4. Conclusion 

We demonstrated the ohmic-contact n-Si/WO3 system that could decompose 
2-propanolinto CO2 via acetone under irradiation with visible light in compari-
son with the rectifying-contact p-Si/WO3 system. These results point out a 
promising direction for producing an efficient photocatalyst by using the ohmic 
direct-connection with small band-gap materials to utilize the solar spectrum 
more efficiently. 
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