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Abstract 
The degree of variation of trading prices with respect to time is volatility- 
measured by the standard deviation of returns. We present the estimation of 
stochastic volatility from the stochastic differential equation for evenly spaced 
data. We indicate that, the price process is driven by a semi-martingale and 
the data are evenly spaced. The results of Malliavin and Mancino [1] are ex-
tended by adding a compensated poisson jump that uses a quadratic variation 
to calculate volatility. The volatility is computed from a daily data without as-
suming its functional form. Our result is well suited for financial market ap-
plications and in particular the analysis of high frequency data for the com-
putation of volatility. 
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1. Introduction 

Volatility is the downward and upward movements of the market. Naturally 
stock prices attract volatility. Economists argue that when demand is high, price 
goes up and producers are willing to sell more because a lot of people want to 
buy the same goods. Also higher supply leads to price fall and producers are 
willing to supply less because a lot of people do not want to pay more for goods 
that can be easily found in the market. The biggest driver of volatility is a drop in 
the market which later goes up for a while and comes down again. Mostly, when 
the economy is in a very precarious state, investors intervene to help solve the 
crisis which causes the stock market to revive and recover from its decline [2]. 
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High volatility brings panic to investors and this fear has an impact on the 
financial market. Volatility of a financial instrument measures the uncertainty of 
the returns. It is an important parameter in pricing of an asset, portfolio 
management, investment analysis and risk management. Volatility influences 
cash flow from selling asset at a specific future date. Higher volatility means a 
greater chance of a fall in the price of an asset. Investors find it difficult to 
determine the movement of the prices of stock because of the stochastic nature 
of volatility which makes it difficult to predict stock prices. In 1973, Fischer 
Black and Myron Scholes published a paper called “The Pricing of Options and 
Corporate Liabilities’’ [3] in which volatility was assumed to be constant. In 
reality, real stock returns have higher kurtosis; there is a high chance of large 
price change. Empirical evidence has shown that, volatility assumed constant is 
restrictive, therefore estimation of volatility is the first step to adjust the 
Black-Scholes model to real data. Volatility cannot be directly observed and 
must therefore be estimated from historical data. 

In most recent financial econometrics literature, volatility is regarded as a 
high degree of persistence and time-varying [4]. The development of new 
methods for estimating volatility still play active role in research. There is much 
evidence of volatility affecting financial assets and so estimating the ex-post 
volatility is an important tool for financial economics research. The common 
way to estimate volatility is by summing the squared returns. Although methods 
for volatility estimate work under some assumptions, it runs into a problem 
when the data exhibit some kinds of jumps in real life. Mostly since volatility 
cannot be observed, most researchers fit it in parametric econometrics models 
like Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and 
its family [5]. They also compute implied volatilities using Black-Scholes for 
option pricing or compute the absolute returns or ex-post squared [6]. Daily 
data available on prices of asset which are speculative allows quadratic variation 
method to be used to measure the activities of returns in financial market. Most 
researchers have advocated for quadratic variation as a nonparametric method 
to estimate volatility of an asset. Most researches done on quadratic variation use 
tick-by-tick intra daily data, weekly or monthly data [6] [7] [8]. Quadratic 
variation controls micro-structure effect, it is consistent and feasible [9] and the 
error of realized volatility of its moment and asymptotic distribution has been 
studied [7]. For Pure Jump and mixed Jump-Diffusion Processes, it is approxi- 
mately free of measurement error under general conditions [6]. Estimation of 
instantaneous volatility or spot volatility for high frequency data using quadratic 
variation is being researched recently and has been tested on some simulations 
[10] [11] and it has numerical derivative involved in it [12] [13] [14]. Quadratic 
variation have been used to estimate the instantaneous volatility of an asset price 
without jump diffusion process [1]. A proposed extension of a rolling sample 
variance with a continuous record asymptotic analysis of the use of quadratic 
variation for the estimation of the asset returns has been done [15]. The inte- 
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grated volatility was treated as a continuous time stochastic process using a high 
frequency data and established the link between integrated volatility estimators 
and spot volatilities [15]. 

Unlike many other researches that has been done on quadratic variation, there 
has not been a consideration of the addition of compensated poisson jump to the 
stochastic differential equation model. In view of this, we are motivated to 
propose a quadratic variation as a nonparametric method for estimating instan- 
taneous volatility from a stochastic differential equation model by including 
compensated poisson jump as an extension. This jump process has an intensity 
which is able to capture the steepness and skewness in volatility smiles for 
short-dated options. The presence of the jump will add more reality to financial 
market applications. 

Section 2 reviews some mathematical preliminaries used in estimating vola- 
tility.  

Section 3 presents the estimation of stochastic volatility using quadratic va- 
riation.  

Section 4 presents the analysis of the results using data.  
Section 5 concludes the work.  

2. Mathematical Preliminaries 

In this section, we review some mathematical theories which are used in esti- 
mating volatility. 

Definition 1 A real valued process X defined on the filtered probability space 
( ), , , , 0t tΩ ≥   is called a semi-martingale if it can be decomposed in the 
form of 

( ) ( ) ( )X t M t A t= +  

where M  is a local martingale and A  is a càdlàg adapted process of locally 
bounded variation [16]. 

Definition 2 Suppose ( ),M d  is a metric space, and E ⊆  , a function 
:f E M→  is a càdlàg function if f  is right-continuous with left limits. That 

is for every t E∈ , 
• the left limit ( ) ( ): lims tf t f s− ↑=  exists and 
• the right limit ( ) ( ): lims tf t f s+ ↓=  exists and equals ( )f t  [17]. 
Definition 3 A poisson process is a stochastic process ,tN t +∈  which has a 

jump size of 1 only and has a constant path between two jumps. At time, t , the 
value of tN  is 

) ( ),
1 jt T

j
N I t

∞

 ∞=

= ∑  

where 

) ( ),

1 if
0 if 0 .j

j
T

j

t T
I t

t T ∞

≥=  ≤ <
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1j ≥  and jT  is the increasing family of jump times of : limt j jN T→∞ = +∞  
where 

tN  satisfies: 
• Independent increments: { }0 10 , 1nt t t n∀ ≤ < < < ≥

 the random variables 

1 0 1
, ,

n nt t t tN N N N
−

− −

 are independent. 
• Stationary increments: t h s hN N+ +−  has the same distribution as t sN N− , 

0h∀ >  and 0 .s t≤ ≤  [18] 
Definition 4 The compensated poisson process t tM N tλ= − , t +∈  is a 

martingale with respect to its own filtration t  [18]. 
Definition 5 Let tV  be a real-valued stochastic process defined on a pro- 

bability space ( ), ,Ω   and with time t  that ranges over non-negative real 
numbers then the pth variation is defined as, 

10 1
lim

k k

n p

t t t
k

V V V
−Π → =

= −∑  

where [ ]0, tΠ∈ , and Π  is the norm of the partition 

0 1 20 nt t t t t= < < < < =  such that we have ( ){ }1max ,  1, ,i it t i n−Π = − ∀ =   
if the above sum converges [19]. 

This is true under certain conditions for example, 1p =  defines the first 
variation or total variation process, for 2p = , the pth variation equals the 
quadratic variation if the sum converges. Also, it is a bounded variation if and 
only if for 1, tp V= < +∞ . 

For a generalized Itô processes, 

0 0 0
d d ,

t t
t s s sX X B sσ µ= + +∫ ∫  

where B  is a Brownian motion, its quadratic variation is given by 

[ ] 2
0

d
t

stX sσ= ∫  [20].  

The quadratic variation of a compensated poisson process t tM N tλ= −  is 

[ ] 2
s tt

s t
M M N

≤

= ∆ =∑  [21]. 

3. Stochastic Volatility Estimation 

A poisson process added to the stochastic differential equation with Brownian 
motion dependent embodies discontinuities in the returns on stock. This helps 
fit a better market data with regards to the reflection of the reality in the stock 
market and also accurately calculate volatility because it incorporates the effect 
of uncertainty over the jump size [22]. When there is a jump-diffusion process, 
it can describe the stock prices more accurately at the expense of making the 
market incomplete because jumps in stock prices cannot be hedged in traded 
securities. When the market is incomplete then the payoffs of the option cannot 
be replicated which will make it difficult to price the option [22]. In order to 
describe the stock prices more accurately, a compensated poisson jump is in- 
corporated in a stochastic differential equation. 

Suppose that the price process ( )p t  of an asset follows the Itô process of a 
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semi-martingale form: 

( ) ( ) ( ) ( ) ( )d , d , d d ,p t t B t t B B t M tα σ= + +             (1) 

where ( ) ( )M t N t tλ= −  and ( )N t  is a poisson process with intensity λ , α  
is the drift, σ  is the volatility, time is represented by t  and the Brownian 
motion is B  then α  and σ  are adapted to a random process satisfying the 
conditions in (QA) below; 

( )( )2

0
d

T
E t tα  < ∞  ∫  

(QA) 

( )( )2

0
d

T
E t tσ  < ∞  ∫  

where ( ) ( ) ( ) ( ), , ,t t B t t Bα α σ σ= =  and it’s bounded by cα σ+ ≤ , where 
c  is a constant. 

The time interval can be split into subsequent equal intervals which contain a 
certain number of observations. The volatility can be expressed in terms of its 
mean quadratic variation. From equation (1), 0α =  implies an efficient market 
[23]. The drift term makes no contribution to the quadratic variation process 
[24]. The theorem below is the main results of this paper which exhibits the 
estimation of volatility with a compensated poisson jump. 

Lemma 6 For the time interval [ ],t t ε+ , where ε  denotes the interval 
between the two consecutive points, the volatility is constant in the interval and 
its value of observed quotations of the volatility is the mean quadratic variation: 

( )
( )2

2

0

d
lim .

t

t
t

s s
t

ε

ε

σ
σ

ε+

+

→

 
 =  
  

∫   

Proof. 

( )
( )

2
2

0 0

d 1lim lim d .
t

tt
t tt

s s
s s

ε
ε

ε ε

σ
σ

ε ε+ +

+
+

→ →

 
   =     

  

∫
∫    

Assuming σ  is càdlàg adapted process, if t  is generated by the full 
observation of the price process, then using Fatou’s Lemma we have, 

( )

( ) ( )

( )

( ) ( )

( ) ( )

2

0

22

0 0

2 2

0 0

2 2

1lim d

d dd dlim lim d
d

dlim d lim
d

.

t
tt

tt
tt

t t

t
t tt

t

s s

s ss s

s s t

t t

ε

ε

εε

ε ε

ε

ε ε

σ
ε

σσ ε
ε ε

ε

σ σ ε
ε

σ σ

+

+ +

+ +

+

→

++

→ →

+

→ →

 
  

     = =          
   = = +     
 = = 

∫

∫∫

∫



 

 





 

 



 

Hence, 
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( )
( )

2
2

0

d
lim .

t

t
t

s s
t

ε

ε

σ
σ

ε+

+

→

 
  = 
  

∫   

The expression in Lemma 6 shows the volatility process integrated over a 
given interval [ ],t t ε+ . This expressions gives the general case for obtaining 

( )2 tσ . On the other hand, ( )2 tσ  can be estimated from a given model, for 
instance equation (1), as shown in the theorem below. 

If volatility is estimated, it will help identify the type of financial model the 
stock price follows; whether it is geometric Brownian motion or Ornstein- 
Uhlenbeck process and many more for the purpose of option pricing. This will 
also help investors to evaluate the rate of their investment risks. The theorem 
below is the volatility estimate based on Equation (1). 

Theorem 7 Suppose that the price process, p , is given as 
( ) ( ) ( ) ( ) ( )d , d , d dp t t B t t B B t M tα σ= + + , then its volatility, ( )( )Vol p t  is; 

( )( ) ( )
( ) ( )( ) ) ( )

2

,
12

0
lim

jT
j

t

p t p t I t
Vol p t t

ε

ε
σ

ε+

∞

 ∞=

→

  
+ − − ∆  

  ≡ =  
 
  

∑
   

where  t⋅     denotes the conditional expectation operator with respect to 
the σ-field t . 

Proof. Given a price process ( ) ( ) ( ) ( ) ( )d , d , d dp t t B t t B B t M tα σ= + + , we 
estimate the volatility for evenly spaced time intervals using quadratic variation 
as follows: 

( ) ( ) ( ) ( ) ( )d , d , d dp t t B t t B B t M tα σ= + +  

( )( ) ( ) ( ) ( ) ( )( )2 2
d , d , d d .p t t B t t B B t M tα σ= + +  

Since ( ) ( )( )2d d , d 0B t t t →  and ( )( )2
d dB t t→  [25], and ( )M t  is a marti- 

ngale, it implies that ( ) ( ) ( )d ,d 0, d ,d 0,M t t M t B t= =        and we obtain, 

( )( ) ( ) ( )( )2 22d d dp t t t M tσ= +  

( )( ) ( )( ) ( )2 2 2d d d .p t M t t tσ− =                 (2) 

If ( ) [ ], : ,p M t t ε+ → , then integrating Equation (2) with respect to the 
interval gives: 

( )( ) ( )( ) ( )2 2 2d d d
t t t

t t t
p s M s s s

ε ε ε
σ

+ + +
− =∫ ∫ ∫  

( ) ( ) ( ) ( ) ( )2d d d d d .
t t t

t t t
p s p s M s M s s s

ε ε ε
σ

+ + +
⋅ − ⋅ =∫ ∫ ∫  

With respect to p  and M , we have their quadratic variation as  
( ) ( ) [ ][ ] [ ][ ]d d d , ds sp s p s p p p⋅ = =  and ( ) ( ) [ ][ ] [ ][ ]d d d , ds sM s M s M M M⋅ = = , 

this implies that, 

[ ][ ] [ ] ( )2d d , d d .s ssM N s N s N s Nλ λ λ= − − = − =  

Then we have, 
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[ ][ ] [ ][ ] ( )2d d d
t t t

s st t t
p M s s

ε ε ε
σ

+ + +
− =∫ ∫ ∫  

[ ][ ] ( )2d d d
t t t

sst t t
p N s s

ε ε ε
σ

+ + +
− =∫ ∫ ∫  

[ ][ ] [ ] ( )2
,,

d
t

t tt t t
p N s s

ε

εε
σ

+

++
− = ∫  

( ) ( ) ( )2 2 d .
t

t t t t t
p p N N s s

ε
ε ε σ

+

+ +− − − = ∫  

Dividing both sides by ε , we have, 

( ) ( )22 d
.

t

t t t t t
s sp p N N

ε

ε ε
σ

ε ε ε

+

+ +− −
− = ∫  

Taking the conditional expectation of both sides we have, 

( ) ( )( ) ( ) ( )2 2 d
t

t t t
t t

s sp t p t N N
ε

ε
σε

ε ε ε

+

+
   + − −    − =    

      

∫    

( ) ( )( ) ( ) ( )2 2

0 0

d
lim = lim .

t

t t t
t t

s sp t p t N N
ε

ε

ε ε

σε
ε ε+ +

+

+

→ →

  + − − −   ⇒   
    

∫    

t tN Nε+ −  can be written as tN∆ , but from Definition (3), 

) ( )1 ,jt j T
N I t∞

= ∞
= ∑ , then it follows that, 

( ) ( )( ) ) ( )

( )

2

,
=1

0

2

0

lim

d
lim .

jT
j

t

t

t
t

p t p t I t

s s

ε

ε

ε

ε

ε

σ

ε

+

+

∞

 ∞

→

+

→

  
+ − − ∆  

  
 
 
  
 
 =  
  

∑

∫









 

From Lemma 6, we have, 

( )
( )2

2

0

d
lim .

t

t
t

s s
t

ε

ε

σ
σ

ε+

+

→

 
 =  
  

∫   

Therefore the volatility of a price process which has an evenly spaced interval 
is: 

( )( ) ( )
( ) ( )( ) ) ( )

2

,
=12

0
lim .

jT
j

t

p t p t I t
Vol p t t

ε

ε
σ

ε+

∞

 ∞

→

  
+ − − ∆  

  ≡ =  
 
  

∑
   

This operator ( ) t⋅     is generated by the full observation of the price 
process until time t  where t  is the observation of single path of the market 
evolution within a given period. 

This theorem is a link to Lemma 6, that is: 
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( )( ) ( )
( )

( ) ( )( ) ) ( )

2
2

0

2

,
=1

0

d
lim

lim .
j

t

t
t

T
j

t

s s
Vol p t t

p t p t I t

ε

ε

ε

σ
σ

ε

ε

ε

+

+

+

→

∞

 ∞

→

 
 ≡ =  
  

  
+ − − ∆  

  =  
 
  

∫

∑









 

If the price process is independent of its past information, then 
( )( ) ( )2Vol p t tσ≡  will be, 

( )
( ) ( )( ) ) ( )

2

,
=12

0
lim 0

jT
j

t

p t p t I t
t

ε

ε
σ

ε+

∞

 ∞

→

  
+ − − ∆  

  = = 
 
  

∑
   

since the martingale part of the price process will vanish and the jump is esti- 
mated from the price process and hence the volatility will be constant. 

From Theorem 7, it can be seen that the compensated poisson jump has a 
negative effect on the price process. Also, Theorem 7 requires high frequency 
data since it is the time evolution of the price of an asset in its semi-martingale 
form with a compensated poisson jump. Theorem 7 can be further simplified to 

( )( ) ( )
( ) ( )( ) ) ( )2 ,

12

0 0
lim lim

jT
j

t

I t
p t p t

Vol p t t
ε ε

ε
σ

ε ε+ +

∞

 ∞=

→ →

 
∆  + −   ≡ = −

 
 

∑
   

but it cannot be determined numerically, because  t⋅     cannot be deduced 
from the observations but it can be determined when the distribution of the 
price process is known. For example, if the distribution of the price process 
follows a normal distribution then, we can apply antithetic variate Monte Carlo 
simulation to it. 

Antithetic variate is defined as; 

( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

0

2 2

1

1

1
2

t

n

s

p s p s

p s p s p s p s
n

ε
ε

ε ε
ε =

+ −

 + − + + − =   
 

∫

∑
 

where ( ) ( )( ) ( ) ( )( )2 2
p s p s p s p sε ε+ − = − + − − , but 

( ) ( )1 2, , , np s p s s sε ε ε ε+ = + + +
 and 

( ) ( ) ( )1 2 1 2, , , 1 ,1 , ,1n np s p s s s p s s sε ε ε ε ε ε ε− + = − + − + − + = − + − + − + 
. 

1 2, , , ns s s  are independent random numbers and are uniformly distributed on 

( )0,1 , 1 21 ,1 , ,1 ns s s− − −  are also uniformly distributed on ( )0,1  and it 
makes ( ) ( )( )2

p s p sε+ −  has the same distribution as ( ) ( )( )2
p s p sε− + − −  

since 1 21 ,1 , ,1 ns s s− − −  are negatively correlated with 1 2, , , ns s s . 
Then  t⋅     can be computed as: 
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( ) ( )( ) ( ) ( )( )
2

2

0

1 .
t

t

p t p t
p s p s

ε
ε

ε ε

 + −  = + −
 
 

∫             (3) 

The algorithm below estimates  t⋅     using antithetic variate Monte 
Carlo simulation. 
 

 
 

When simulating an evenly spaced data, there is a need to have a benchmark 
in order to assess the good prediction of the model proposed. To achieve this, we 
use the true volatility as the benchmark calculated as: 

( ) ( ) ( )( )22

1
true volatility 1 .

n

t
p t p tσ

=

= + −∑              (4) 

Equation (4) assists in assessing the performance of different estimators used. 
In this work, the estimators used are; the true volatility, the instantaneous 
volatility with a compensated poisson jump and the instantaneous volatility 
proposed by Malliavin and Mancino [1]. 

Malliavin and Mancino [1] proposed; 

( )( ) ( )
( )2

2

0

d
lim

t

t
t

s s
Vol p t t

ε

ε

σ
σ

ε+

+

→

 
 ≡ =  
  

∫              (5) 

for calculating the instantaneous volatility without a jump. In order to apply data 
to Equation (5), we use antithetic variate Monte Carlo simulation to evaluate it. 

From the Algorithm above, 1 to 8 is used to estimate the true volatility using 
Equation (4). The algorithm numbered 1 to 13 is used to generate the antithetic 
variate Monte Carlo simulation using Equation (5) and the numbered algorithm 
from 1 to 19 is used to compute the instantaneous volatility with a compensated 
poisson jump using Theorem 7. 

4. Empirical Analysis of Theorem Using Data 

Stock prices indicate the strength and performance of the company. Any data 
can be used but with reference to this analysis we use data from AngloGold 
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Ashanti Ghana (AGA). A daily high frequency stock prices data from AGA 
containing the closing prices from 16 April 2008 to 17 June 2016 was plotted 
with time (in years) as shown in Figure 1. 

Closer to the later part of 2015 to 2016, the graph exhibits some sort of a jump. 
At the top of bear market, returns are earned than the bottom of a bull market. 
Increase in stock prices means investors are buying stocks rather than selling it 
and the fall in the price of stocks means investors are selling their stocks rather 
than buying. Also, an increase in the stock price of a company means there is a 
profit making and a risk reduction of layoff of workers in the company. When 
there is an increase in stock price, good returns are generated. When the stock 
price of a company falls continuously then there is a higher chance of a takeover 
by another company, a merge or even close down of the company. 

The volatility is determined from the stock price of AngloGold Ashanti. It is 
used to determine the performance and strength of the stock price. It also help 
generate the investors return made from the stock price. The graphs below show 
the volatility of the stock prices obtained from AngloGold Ashanti. 

The graph in Figure 2 indicates the plot of the true volatility using Equation 
(4). The graph in Figure 3 reveals the plot of the instantaneous volatility without 
a jump by Malliavin and Mancino (2009) [1] using Equation (5). The graph in 
Figure 4 shows the plot of the instantaneous volatility with a compensated 
poisson jump using Theorem 7 with the Algorithm stated above. The stock price 
is assumed to be normally distributed then antithetic variate Monte Carlo 
simulation is applied to it. The higher the volatility, the greater the returns and 
the higher the risk associated with the type of investment. Comparing the graphs 
in the stock prices as in Figure 1 and the volatility graphs in Figures 2-4, it 
shows that from 2009 to the mid of 2010, the stock prices increased sharply and 
its corresponding volatility was high which implies that investors were buying 
stocks rather than selling it. Also when there was a drastic decrease in stock 
prices from 2011 to 2014, the volatility also decreased sharply. Closer to 2015, 
the stock prices shot up again which made it highly volatile and might be 
 

 
Figure 1. Plot of stock prices from AGA. 
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Figure 2. Plot of the True volatility. 
 

 
Figure 3. Plot of Instantaneous volatility without a jump Malliavin and Mancino (2009) 
[1]. 
 
attributed to the merge that took place between the then Ashanti Goldfields 
Corporation limited and AngloGold to form AngloGold Ashanti [26]. The trend 
of volatility helps the investor to re-balance its weights on portfolio of stocks and  
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Figure 4. Plot of Instantaneous volatility with a compensated poisson jump. 
 
also help the investor knows the performance and strength of the company. 

Comparison of Results 

The results obtained by Malliavin and Mancino [1] was 

( )( ) ( )
( ) ( )( )2

2

0
lim t

p t p t
Vol p t t

ε

ε
σ

ε+→

 + − ≡ =
 
 

   

from the model ( ) ( ) ( ) ( )d , d , d ,p t t B t t B B tα σ= +  and when compensated 
poisson jump was added to it we obtained 

( )( ) ( )
( ) ( )( ) ) ( )
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,
=12

0
lim

jT
j

t

p t p t I t
Vol p t t

ε

ε
σ

ε+

∞

 ∞

→

  
+ − − ∆  

  ≡ =  
 
  

∑
   

From this, it can be seen that the compensated poisson jump has an effect on 
the price process. Also, error analysis of the estimates were done using the Root 
Mean Square Error(RMSE) calculated as; 

( )2

1

1RMSE estimated true volatility .
N

iN =

= −∑  

The RMSE of the instantaneous volatility proposed by Malliavin and Mancino 
[1] was 3.0210 and the RMSE of the instantaneous volatility with a compensated 
poisson jump was 3.0184. This means that, the introduction of compensated 
poisson jump reduced the error margin and is a good predictive model than the 
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instantaneous volatility proposed by Malliavin and Mancino [1]. This means 
that the stochastic differential equation with a compensated poisson jump is a 
better representative model for stock prices than stochastic differential equation 
without a compensated poisson jump. 

5. Conclusion 

We have established the theoretical basis for estimating stochastic volatility with 
the presence of a compensated poisson jump for univariate settings for evenly 
spaced observations using quadratic variation. The conditional expectation, 

 t⋅     was calculated using antithetic variate Monte Carlo simulation of the 
price process for implementation of data to be possible. We analyzed this using 
data from AGA, Ghana. Also, the RMSE of the instantaneous volatility with a 
compensated poisson jump gave a smaller value as compared to the RMSE of the 
instantaneous volatility proposed by Malliavin and Mancino [1]. It is therefore 
advisable for financial and economic analyst to employ jump processes when 
using such data for forecasting else; there will be error incorporated. This will 
help minimize the risk (in terms of loss) associated in investing in assets that are 
highly volatile like gold. It will be interesting to investigate the effect of other 
types of jumps on evenly spaced data. 
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