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Abstract 
For a given graph G, a k-role assignment of G is a surjective function  

( ) { }: 1, 2, ,r V G k→   such that ( ) ( ) ( )( ) ( )( )r x r y r N x r N y= ⇒ = , where 

( )N x  and ( )N y  are the neighborhoods of x and y, respectively. Further-
more, as we limit the number of different roles in the neighborhood of an in-
dividual, we call r a restricted size k-role assignment. When the hausdorff dis-
tance between the sets of roles assigned to their neighbors is at most 1, we call 
r a k-threshold close role assignment. In this paper we study the graphs that 
have k-role assignments, restricted size k-role assignments and k-threshold 
close role assignments, respectively. By the end we discuss the maximal and 
minimal graphs which have k-role assignments. 
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1. Introduction and Preliminary 

Role assignments, introduced by Everett and Borgatti [1], who called them role 
colorings, formalize the idea, arising in the theory of social networks, that 
individuals of the same social role will relate in the same way to individuals 
playing counterpart roles. 

Let G be a graph with vertices representing individuals and edges representing 
relationships. For any vertex ( )v V G∈ , the neighborhood ( ) ( )GN v N v=  of 
vertex v is the set of all vertices adjacent to v in G. Let ( ):r V G Z→ , where Z is 
the set of positive integers. For ( )S V G⊆ , denote ( ) ( ){ }:r S r x x S= ∈  and 
[ ]G S  be the subgraph of G induced by set S. For any i Z∈ , 
( ) ( ) ( ){ }1 :r i v V G r v i− = ∈ = . The function r is a role assignment if 

( ) ( ) ( )( ) ( )( ).r x r y r N x r N y= ⇒ =                   (1) 
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In other words, in a role assignment, if two individuals have the same role, 
they are related to individuals with the same sets of roles. A k-role assignment 
for graph G is a role assignment r so that ( )( ) { }1,2, ,r V G k=  . We say that G 
is k-role assignable if it has a k-role assignment. 

Pekeč and Roberts [2] proposed a modification of the role assignment model, 
which would limit the number of different roles in the neighborhood of an 
individual. This limit could be different for different individuals or could be 
uniform for the network. For a group of nonnegative integers 1 2, , , ks s s , we 
define a restricted size k-role assignment r of a graph G to be a k-role  
assignment in which ( )( ) ir N v s≤  must hold for all ( )1v r i−∈ . When  

1 2 ks s s s= = = = , we call the restricted size k-role assignment a restricted 
s-size k-role assignment, i.e., a k-role assignment in which ( )( )r N v s≤  must 
hold for all ( )v V G∈ . 

If S and T are two sets of real numbers, let the distance ( ),d S T  be defined 
by ( ) { }, min : ,d S T s t s S t T= − ∈ ∈ , with ( ),d S ∅ = ∞  if S ≠ ∅  and 0 other- 
wise. For a given graph G, we say the function r from ( )V G  into the set of 
positive integers is a threshold role assignment (Roberts [3]) if 

( ) ( ) ( )( ) ( )( )( )= , 1.r x r y d r N x r N y⇒ ≤                    (2) 

If ( )( ) { }1,2, ,r V G k=  , we say r is a k-threshold role assignment. 
Roberts [3] also introduced an alternative definition of distance, the 

Hausdorff distance hd , ( ) ( ) ( ){ }, max max , ,max ,h x S x Td S T d x T d x S∈ ∈= , By 
convention ( ),hd S ∅ = ∞  if S ≠ ∅  and 0 otherwise. For a given graph G, we 
say the function r from ( )V G  into the set of positive integers is a threshold 
close role assignment (Roberts [3]) if 

( ) ( ) ( )( ) ( )( )( )= , 1.hr x r y d r N x r N y⇒ ≤             (3) 

If ( )( ) { }1,2, ,r V G k=  , we say r is a k-threshold close role assignment. If 
such an assignment exists, we say G is k-threshold close role assignable. 

A graph with 3n ≥  vertices is role primitive if it has no k-role assignment 
for 2 1k n≤ ≤ − . Roberts and Sheng [4] studied it for a special class graphs 
called indifference graphs. 

A good survey about role assignment is [5]. Recently, many new papers 
related to role assignment appeared, see [6] [7] [8]. All the graphs in the paper 
are simple graphs. In Section 2 we give a characterization of graphs that are 
k-role assignable. In Section 3 we study the restricted k-role assignable graphs 
and characterize the graphs that are restricted size k-role assignable or restricted 
s-size k-role assignable. In Section 4 we discuss the graphs that are k-threshold 
close role assignable. In Section 5 we discuss the maximal and minimal k-role 
assignable graphs. 

2. k-Role Assignable Graphs 

The assignment ( ) 1r x ≡  for any vertex ( )x V G∈  is a role assignment if and 
only if the graph has no isolated vertices or all isolated vertices, so this describes 
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the graphs which are 1-role assignable. The assignment where ( )r x  is different 
for each vertex ( )x V G∈  is always a role assignment, so every graph of n 
vertices is n-role assignable. The other cases are not straightforward. 

The 2-role assignable graphs are the first interesting class of graphs. Roberts 
and Sheng [9] showed that the problem of determining if G has a 2-role assign- 
ment is NP-complete. Sheng [10] characterized 2-role assignable indifference 
graphs and extended some results about indifference graphs to the broader class 
of triangulated graphs. For the general case, we have the following results. 

Theorem 1 Let G be a graph and S a proper subset of ( )V G . If S satisfies the 
following properties: 

• 1S k= − , 
• G S−  has no isolated vertices or all isolated vertices, and 
• for any v S∈ , ( ) ( )( )\N v V G S∩ =∅  or ( ) \V G S . 
Then G is k-role assignable. 
Proof. We give an assignment r for G by assigning each role of { }1,2, , 1k −  

to one vertex of S and k to all vertices of G S− . The following is to verify that r 
is a k-role assignment of G. In fact, we just need to check the vertices with role k. 
By property (3), we may assume that 1 2S S S= ∪  and 1 2S S∩ =∅ , where 

( ) ( )( ) ( ){ }1 : \ \S v S N v V G S V G S= ∈ ∩ =  and 
( ) ( )( ){ }2 : \S v S N v V G S= ∈ ∩ = ∅ . For any vertex ( ) \v V G S∈ , since 

( ) ( )1 G SN v S N v−= ∪ , then 

( )( ) ( ) { }
( )

1

1

, if has no isolated vertices,
, if all vertices of are isolated vertices.

r S k G S
r N v

r S G S
∪ −

=  −
 

So r is a k-role assignment of G in each case. The proof is complete. 
Theorem 2 A graph G with at least k vertices has a k-role assignment if and 

only if ( )V G  can be partitioned into k nonempty sets 1 2, , , kV V V , and the 
following two properties are satisfied. 

• [ ]iG V  has no isolated vertices or all isolated vertices, where 1,2, ,i k=  , 
and 

• for each { }1,2, ,i k∈  , there exist ik  sets { }
1 2 1 2, , , , , ,

kii i i kV V V V V V∈  , 
where 0 ik k≤ ≤ , such that for any ix V∈ , ( )

jiN x V∩ ≠∅  when  
1,2, , ij k=  , and ( ) jN x V∩ =∅  when 1 2, , ,

ikj i i i≠  . 
Proof. Let r be a k-role assignment of graph G and ( )1

ir i V− = , in which 
1,2, ,i k=  . Then it is obvious that ( )V G  is partitioned into k nonempty sets 

1 2, , , kV V V . For any ix V∈ , if ( )( )i r N x∈ , then [ ]iG V  has no isolated 
vertices; if ( )( )i r N x∉ , then all vertices of [ ]iG V  are isolated vertices. For any 

ix V∈ , let ( )( )ik r N x= , then there exist ik  sets { }
1 2 1 2, , , , , ,

kii i i kV V V V V V∈  , 
where 0 ik k≤ ≤ , such that for any ix V∈ , ( )

jiN x V∩ ≠∅  when 
1,2, , ij k=  , and ( ) jN x V∩ =∅  when 1 2, , ,

ikj i i i≠  . 
On the converse case we suppose ( )V G  can be partitioned into k nonempty 

sets 1 2, , , kV V V , and G satisfies the two properties mentioned in the theorem. 
Let ( )ir V i=  for 1,2, ,i k=  . Then it is easy to check that r is a k-role assign- 
ment of graph G. 
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Roberts and Sheng [9] did some work on 2-role assignable graphs. For 2k = , 
Sheng [10] have studied the indifference graphs and triangulated graphs. For 

1k n= − , we also have the following result. 
Theorem 3 A graph G with n vertices has a ( )1n − -role assignment if and 

only if there exist ( ),x y V G∈  such that ( ) { } ( ) { }\ \N x y N y x= . 
Proof. Let r be a ( )1n − -role assignment of G. Since ( )V G n= , there must 

be two vertices x and y with the same role, i.e., ( ) ( )r x r y k= = , where 
1 1k n≤ ≤ − , and each of the other vertices have unique roles. Because 

( )( ) ( )( )r N x r N y= , if x is not adjacent to y, then ( ) ( )N x N y= , and 
( ) { } ( ) { }\ \N x y N y x=  is obvious; if x is adjacent to y, then 
( ) { } ( ) { }\ \N x y N y x= . 
If there are two vertices x and y satisfying ( ) { } ( ) { }\ \N x y N y x= , then let 
( ) ( ) 1r x r y= = , and the r values of the other 2n −  vertices are 2,3, , 1n −  

respectively. It is easy to see that r is a ( )1n − -role assignment of graph G. 

3. Restricted k-Role Assignable Graphs 

In this section we study the restricted size k-role assignment and the restricted 
s-size k-role assignment of a graph G. It is easy to see that any k-role assignment 
of graph G is a restricted k-size k-role assignment. So we may assume in the 
following that 0 s k≤ ≤  and 0 is k≤ ≤ , in which 1,2, ,i k=  . 

Pekeč and Roberts [2] just discussed the restricted s-size k-role assignment for 
the special case when 1s = , i.e., when everyone in the neighborhood of an 
individual should be assigned the same role. They showed that G has a restricted 
1-size k-role assignment if and only if ( ) ( )k c G b G≤ + , where ( )c G  is the 
number of connected components of G and ( )b G  is the number of connected 
components of G that are bipartite but not isolated vertices. In particular, a 
connected graph G on at least two vertices has a restricted 1-size 2-role 
assignment if and only if G is bipartite. For the restricted size k-role assignment, 
we have the following result. 

Theorem 4 For k nonnegative integers 1 2, , , ks s s , a graph G with at least k 
vertices has a restricted size k-role assignment if and only if ( )V G  can be 
partitioned into k nonempty sets 1 2, , , kV V V , and the following two properties 
are satisfied. 

• [ ]iG V  has no isolated vertices or all isolated vertices, where 1,2, ,i k=  , 
and 

• for each { }1,2, ,i k∈  , there exist it  sets { }
1 2 1 2, , , , , ,

tii i i kV V V V V V∈  , 
where 0 i ik s≤ ≤ , such that for any ix V∈ , ( )

jiN x V∩ ≠∅  when 
1,2, , ij t=  , and ( ) jN x V∩ =∅  when 1 2, , ,

it
j i i i≠  . 

Proof. For k nonnegative integers 1 2, , , ks s s , let r be a restricted size k-role 
assignment of graph G and ( )1

ir i V− = . Then we have ( )( ) ir N v s≤  for all 

iv V∈ , in which 1,2, ,i k=  . The following is similar to the proof of Theorem 2. 
When 1 2 ks s s s= = = = , we have the following corollary for the restricted 

s-size k-role assignment. 
Corollary 1 A graph G with at least k vertices has a restricted s-size k-role 
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assignment if and only if ( )V G  can be partitioned into k nonempty sets 

1 2, , , kV V V , and the following two properties are satisfied. 
• [ ]iG V  has no isolated vertices or all isolated vertices, where 1,2, ,i k=  , 

and 
• for each { }1,2, ,i k∈  , there exist it  sets { }

1 2 1 2, , , , , ,
tii i i kV V V V V V∈  , 

where 0 it s≤ ≤ , such that for any ix V∈ , ( )
jiN x V∩ ≠∅  when 1,2, , ij t=  , 

and ( ) jN x V∩ =∅  when 1 2, , ,
it

j i i i≠  . 

4. k-Threshold Close Role Assignable Graphs 

Roberts [3] showed that every graph G has a k-threshold role assignment for 
every ( )2 k V G≤ ≤ . Roberts [3] [11] showed that every graph with k or more 
vertices is k-threshold close role assignable for the cases 2,3,4k =  and 5. 

Let [ ]1, 1d +  denote the set of all positive integers less or equal to 1d +  and 
the diameter of a graph G be defined as 

( ) ( ){ }diam max , : , .G d x y x y V G= ∈              (4) 

Then we have the following result. 
Theorem 5 Given a connected graph G. If diam G d= , then G is k-threshold 

close role assignable for any [ ]1, 1k d∈ + . 
Proof. Without loss of generality, we may assume that there are two vertices 

( ),x y V G∈  such that ( )diam ,G d x y d= = , i.e., x and y are the endpoints of 
some path of G. We partition ( )V G  into 1d +  nonempty sets 1 2 1, , , dV V V +  
by the following way: Let 

{ } ( ){ }1 and : , 1 , where 2,3, , 1.iV x V v d x v i i d= = = − = +         (5) 

Then it is easy to see that 1dy V +∈  and the following properties are valid. 
• ( )1

1

d
ii V V G+

=
=



, 
• i jV V∩ =∅ , when i j≠ , and 
• for any ( ) 1,i iv V N v V −∈ ∩ ≠∅  and ( ) jN v V∩ =∅ , where 

1,2, , 2, 2, 3, , , 1j i i i d d= − + + +  . 
Note that ( ) 1iN v V +∩  may be null or not. 
Now we construct other 1d +  nonempty sets * * *

1 2 1, , , dV V V +  from 

1 2 1, , , dV V V + . Let 

( )* *
1 1 1\ and , 1,2, , ,i i i i d dV V H H V V i d+ + += ∪ = =             (6) 

in which 1H = ∅ , 1dH + = ∅  and 
[ ] ( ){ }1: is an isolated vertex of andi i iH v v G V N v V += ∩ = ∅ , 2,3, ,i d=  .  

Then ( )1 *
1

d
ii V V G+

=
=



, * *
i jV V∩ =∅  when i j≠ , and for any vertex *

iv V∈ ,  

the neighborhood ( )N v  must be one of the following four cases. 
• ( ) ( ) ( )* * *

1 1, ,i i iN v V N v V N v V+ −∩ = ∅ ∩ ≠∅ ∩ ≠∅ , 

• ( ) ( ) ( )* * *
1 1, ,i i iN v V N v V N v V− +∩ ≠ ∅ ∩ =∅ ∩ =∅ , 

• ( ) ( ) ( )* * *
1 1, ,i i iN v V N v V N v V− +∩ ≠ ∅ ∩ ≠∅ ∩ =∅ , 

• ( ) ( ) ( )* * *
1 1, ,i i iN v V N v V N v V− +∩ ≠ ∅ ∩ ≠∅ ∩ ≠∅ . 



Y. N. Liu, Y. Q. Zhao 
 

182 

Then, for any [ ]1, 1k d∈ + , let ( )*
ir V i=  for 1,2, ,i k=  , and ( )*

jr V k=  
for 1, 2, , 1j k k d= + + + . Then ( )( ) { }r N v k=  for any vertex 1 *

1

d
ii kv V+

= +
∈


. 
For any vertex *

kv V∈ , ( )( )r N v  must be { }k  or { }1,k k− . For any vertex 
*

iv V∈  where 1, 2, , 1i k= − , since ( )N v  is in one of the four cases above, 
( )( )r N v  must be one of the following four sets: { }1, 1i i− + , { }i , { }1,i i−  

and { }1, , 1i i i− + . Thus it is easy to see that ( )( ) ( )( )( ), 1hd r N u r N v ≤  for any 
two vertices u and v with same role, i.e., r is a k-threshold close role assignment 
of G. The proof is complete. 

Corollary 2 Any graph that has no isolated vertices or all isolated vertices is 
k-threshold close role assignable for any [ ]1,k d ω∈ + , where 

1 2d d d dω= + + + , ω  is the number of components of G and id  is the 
diameter of each component of G, 1,2, ,i ω=  . 

Proof. When all vertices of G are isolated vertices, the result is obvious. Now 
we assume that G has no isolated vertices and that 1 2, , ,G G Gω  are the  
connected components of G. For each iG , we define *

ijV  as *
jV  for G in 

Theorem 5, where { }11,2, , ij d +∈  . Furthermore, we order them as follows: 

( ) ( ) ( )1 2

* * * * * * * * *
11 12 21 22 31 321 1 2 1 1, , , , , , , , , , , .d d dV V V V V V V V V

ωω+ + +  
 

For any [ ]1,k d ω∈ + , we assign all the vertices of the ith set in above 
sequence with role i, where 1 i k≤ ≤ , and assign all vertices of the other sets 
with role k. Then the result is valid by the similar discussion in Theorem 5. 

The following three results are immediate from Theorem 5. 
Corollary 3 Any path with n vertices is k-threshold close role assignable for 

any [ ]1,k n∈ . 
Corollary 4 Any tree whose longest path has t vertices is k-threshold close 

role assignable for any [ ]1,k t∈ . 
Corollary 5 Any cycle with n vertices is k-threshold close role assignable for  

any 11,
2

nk +  ∈     
. 

Remark. Any cycle C with n vertices is k-threshold close role assignable for 
any [ ]1,k n∈ . In fact, let 

( )1 3 5 1 2 4 2, , ,, , , , , , , evenn n nv v v v v v v v n− −   

or 

( )1 3 5 2 1 4 2, , , , , , , , , . oddn n nv v v v v v v v n− −   

be the n vertices of C in clockwise order. For any [ ]1,k n∈ , let ( )ir v i=  for 
any 1,2, ,i k=  , ( )1 1kr v k+ = −  and ( )jr v k=  for 2, 3, ,j k k n= + +  . 
Then it is easy to see that r is a k-threshold close role assignment of C. 

5. Maximal and Minimal k-Role Assignable Graphs 

Suppose graph G with n vertices is k-role assignable. We may add (or delete) 
edges on G to get a complete (or empty) graph G′ . It is easy to see that G′  is 
k-role assignable too. So we can maximize or minimize the graph G and keep 

( )( )r N x  fixedness for any ( )x V G∈  such that the resulting graph is still 
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k-role assignable. 
For a given k-role assignment r of graph G, the maximal (minimal, 

respectively) k-role assignable graph respect to r, denoted by rG+  ( rG− , 
respectively), is the graph that will get by the following ways. 

If ( )1
iV r i−= , where 1,2, ,i k=  , we may use the following ways to get rG+ . 

• If [ ]iG V  has no isolated vertices, then add some edges to join each pair of 
vertices unconnected in iV , where 1,2, ,i k=  . 

• If ( )xy E G∈ , where ix V∈  and jy V∈ , { }, 1,2, ,i j k∈  , then add some 
edges on graph G such that each vertex of iV  joins with every vertex of jV . 

We may also use the following ways to get rG− . 
• If [ ]iG V  has no isolated vertices, then delete some edges of [ ]iG V  at mostly 

and keep [ ]iG V  without any isolated vertex, where 1,2, ,i k=  . 
• If ( )xy E G∈ , where ix V∈  and jy V∈ , { }, 1, 2, ,i j k∈  , then delete 

some edges between iV  and jV  at mostly but keeping ( ) jN x V∩ ≠ ∅  for 
any ix V∈  and ( ) iN y V∩ ≠ ∅  for any jy V∈ . 

By the ways of constructing rG+  and rG− , the following theorem is obvious. 
Theorem 6 If a graph G is k-role assignable, then both rG+  and rG−  are all 

k-role assignable. Furthermore, rG+  ( rG− , respectively) is the maximal (mini- 
mal, respectively) k-role assignable graph such that ( )( )r N x  keeps fixedness 
for any ( )x V G∈ , where r is some k-role assignment of graph G. 
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