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Abstract 
Coastal pollution assessment is a pressing matter as the anthropogenic pres-
sure continues to increase worldwide. A leading approach to assess coastal 
pollution is using bioindicators. However, identifying species is time-consum- 
ing and demands profound morphological knowledge. Our goal was to find 
the meiobenthic composition in each pollution level. By utilizing the meio-
benthic assemblage’s ratios, we will be able to indicate the pollution level. We 
examined the meiobenthos distribution at three sites exposed to a pollution 
gradient. We quantified the changes in the fauna assemblage in the commu-
nity phylum level, focusing on nematodes and foraminifera (90% of the total 
population). Over 400 samples were examined, covering an annual seasonal 
cycle. Nematodes population dominated in the polluted coast. Nematodes 
density increased with the pollution level, up to seemingly harmful levels of 
pollution. In contradiction, the foraminifera flourished in the control site and 
exhibited an inverse relationship to the nematodes. We witnessed drastic 
changes in the entire meiobenthic population in the winter, which we specu-
late that originated from winter turbulences. We suggest that nematodes-fo- 
raminifers’ population ratios may be utilized as bioindicators for assessing 
coast intertidal zone pollution levels. 
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1. Introduction 

The shores of the Mediterranean contain a variety of environments populated by 
different species that have adapted themselves to the different niches [1]. The 
semienclosed basin and the climate lead to barren conditions particularly in the 
southeast region, the Levantine Sea. Higher temperatures and higher evapora-
tion that, in turn, cause the sea level to decrease and the salinity to increase from 
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west to east characterizes the climate in the Levantine Sea. The Mediterranean 
basin is generally oligotrophic except for its coastal regions, which change due to 
wind, thermoclines, currents, rivers, and anthropogenic factors. These oceano-
graphic conditions cause spatial patterns of decrease in biodiversity and primary 
production from northwest to southeast [2]. 

Furthermore, eastern Mediterranean biodiversity is under severe pressure 
caused by Lessepsian migration and global warming. The opening of the Suez 
Canal opened a doorway between the Red Sea and the Mediterranean that re-
sulted in the migration of hundreds of tropical species towards the Mediterra-
nean Sea. These species inhibit the Mediterranean and push aside the local fau-
na. This situation is amplified by the constant increase in seawater temperature. 
The increase assists the adaptation of migrating subtropical species and contri-
butes to the “tropicalization” of the basin [2] [3] [4] [5] [6]. These changes in 
turn, have a tremendous effect on the biology and ecology of the indigenous or-
ganisms in the Levantine Sea [2]. 

The coastal area is generally considered the most prosperous area in the basin, 
which brought human population to set up their homes in close proximity to the 
coastline. Today, more than 40% of the world’s population lives within a range 
of 100 km from the coastline. By 2025, the population near the coastline is pre-
dicted to exceed 50% of the total global population [2] [7]. This leads to a heavy 
anthropogenic pressure on the coastal ecosystem, which constantly increases as a 
result of human development along the coasts. This leads to the substantial and 
pressing matter of the assessment of pollutants and their effect on all organisms 
and on the different ecosystems in the coastal area [8] [9] [10]. 

In the coastal ecosystem, the marine soil is an important key factor that regu-
lates the entire ecosystem. It functions as a food and mineral source, breeding 
ground, protective layer, camouflage, and buffer zone [11]. Soil characteristics, 
along with biotic and abiotic factors, determine the composition of the epifauna, 
infauna, and pelagic populations in a direct and indirect fashion [12]. Accor-
dingly, we hypothesize that by comparing the population composition between 
coasts we would be able to evaluate coastal pollution levels. We assumed that bi-
ological indicators (bioindicators) among the meiobenthic fauna of clean and 
polluted coasts maintain a relation, which we could use to determine the inter-
tidal coastal region pollution levels. We sought to determine which organisms 
are best suited to be bioindicators and can be utilized more efficiently to evaluate 
coasts pollution levels. For that purpose, we looked for bioindicators who are 
easy to extract and in sufficient amounts for statistical analysis. To identify or-
ganisms that are suitable as bioindicators we compared the meiobenthic (benthic 
organisms that were retained by passing through a 63 - 1000 µm mesh) popula-
tion composition in polluted and clean rocky coasts [9] [13] [14] [15] [16]. 

2. Material and Methods 
2.1. Study Sites 

The research was conducted in the Levantine Sea, in the southeastern basin of 
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the Mediterranean Sea, along the coastline of Israel. Three rocky coasts re-pre- 
senting a pollution gradient along a 28 km strip, were selected according to He-
rut et al. (2014), Herut et al. (2015), Hoffman et al. (2011) and personal commu-
nication1 [17] [18] [19]. Of the three coasts, the most polluted one was Jisr 
ez-Zarqa (Za, 32˚37'14.33"N, 34˚55'2.84"E), followed by Mikhmoret (Mi, 
32˚24'15.90"N, 34˚51'59.20"E) coast, and the cleanest coast was Nahsholim (Na, 
32˚32'23.01"N, 34˚54'5.88"E). The Za coast is located at the estuary of the Croco-
dile Stream, while the Mi coast is located in close proximity to the Alexander 
River and a marina. In both water sources the main pollutants are agriculture 
and sewage residues. The sampling sites were in semi-enclosed areas (near rocks 
and rock tables), with the lowest water inflow possible. Those coasts were sam-
pled and monitored every other month between July 2013 and September 2014 
(if the sea conditions allowed), when the lowest amplitude between the neap and 
spring tides was present (first and third quarter of the moon cycle). 

2.2. Sampling 

Meiobenthic core samples were collected from sandy areas parallel to the coas-
tline at a 0.5 m depth and with 0.5 m intervals between samples. The core sam-
ples were taken by inserting 150 ml plastic cups (n = 5 - 14, 5.5 cm diameter, 6.8 
cm in length) into the soil. The cores were then capped and maintained in a dark 
cooler with water and ice until they were transported to the lab. We chose to 
identify the organisms to the phylum level. The average size of meiobenthos in 
close proximity to the coast didn’t exceed 1 mm. Thus, recognition of species 
according to the morphology was a time consuming task. Thus, choosing to fo-
cus on the phylum level allowed us to analyze more samples in shorter time. 

2.3. Environmental Parameters 

The abiotic parameters of the water, including temperature (t), pH, salinity (S), 
conductivity, oxygen concentration, oxygen saturation, oxidation reduction po-
tential, specific resistance, partial pressure, and total dissolved solids, were mo-
nitored at each coast using a WTW Multi 3430 Multiparameter Meter equipped 
with SenTix 940, TetraCon 925, and FDO 925 sensors (WTW GmbH, Weilheim, 
Germany). 

2.4. Organism Preservation 

From January to September 2014, an amount of 5 cm3 soil from each sample was 
placed in a 15 ml conical tube and stained with 5 ml of Rose Bengal solution 
(g·l−1). The samples were stored for at least 10 days before counting and classify-
ing the different phyla under a stereo microscope. Foraminiferal samples of do-
minant species were examined and identified to the genus or species level, when 
possible. 

A volume of 30 cm3 soil from each sample was inserted into a 50 ml centrifuge 

 

 

1According to unpublished data from the labs of Prof. Barak Herut and Dr. Gil Rilov of Israel Ocea-
nographic and Limnological Research (IOLR). 
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tube and mixed with formaldehyde solution (4% formaldehyde, 96% artificial 
seawater) using a vortex; the rest of the sample was taken for organic-matter 
(OM) analysis. After 48 h, the solution was poured out and replaced with etha-
nol solution (70% ethanol, 30% artificial seawater) for preservation and storage. 
Extraction was initiated by pouring the sample into a 63 µm sieve and gently 
rinsing it with tap water. A volume of 30 cm3 of soil was taken from the sample 
and placed into a 50 ml conical tube. The sample was processed and its meio-
benthos were extracted according to Burgess (2001) [20], and stored in a 50 ml 
conical tube with 70% ethanol solution. The organisms were stained with 1 drop 
of Rose Bengal solution (5 g·l−1) per 5 ml of sample solution. The samples were 
stored for at least one week before being sieved through a filter and analyzed 
under stereo microscope. 

All organisms were identified to the phylum level according to Atkins (2002), 
Murray (2006), Guilini (2017), and Ridel (2010) [12] [21] [22] [23]. 

2.5. Soil Analysis 

Each of the samples was processed according to Eleftheriou & McIntyre (2005) 
and Avnimelech et al. (2001) [24] [25]. According to “loss on ignition” method, 
the samples were oven-dried at 70˚C for at least 48 h. They were then weighed 
and placed in an oven set to 390˚C for 8 h, and the lost weight was calculated to 
OM percentage. Porosity was measured under the assumption that the water 
density was 1 g·cm−3. Soil size fractions were measured by screening with a me-
chanical sieve shaker through 63 µm, 125 µm, 250 µm, 500 µm, and 1000 µm 
sieves. 

3. Results and Discussion 

The present study is among the few focusing on the effects of pollution on 
meiobenthic populations in the intertidal area of the southeastern basin of the 
Mediterranean. The study also examined the seasonal changes on the meioben-
thic populations. The samples indicated a high presence (over 90% of the organ-
isms in each sample) of nematode, foraminiferal, and annelid populations. The 
rest of the phyla were present in negligible numbers and, therefore, were not in-
cluded in this study. Furthermore, a high variability in the number of organisms 
among samples, which caused a significant standard deviation, was observed in 
each coast. In our attempt to overcome this problem, we raised the number of 
samples at each site to up to 14. This attempt was not successful, as  no signifi-
cant reduction in standard deviation was observed. This led us to realize the 
mosaic-like nature of the complex, observed ecosystems, which are characterized 
by patchy population distribution. Future work would require a reduction of the 
number of samples and a concomitant increase in the size of each sample to at 
least 10 cm diameter [24]. 

When we evaluated the variety of organisms at the three coasts, a few trends 
became obvious. There was an opposite relationship between the nematode and 
foraminiferal assemblages (t test (p < 0.05), −0.556, Spearman rho (p < 0.05)): a 
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growth in the number of nematodes was accompanied by a decline in the num-
ber of foraminifera, and vice versa. This situation can imply a prey-predator re-
lationship, competition over resources, antibiosis, or a combination of these. 
This assumption is strengthened by previous studies. Evidence for a prey-predator 
relationship was found in a number of works on both nematodes and foramini-
fera. Furthermore, both taxa were described as “opportunists” that could change 
their nutritional habits or feed on a number of food sources [12] [22] [26] [27] 
[28]. In addition, the nematodes themselves can produce dissolved organic ma-
terial that can be utilized by other fauna, like foraminifera [12]. The dominant 
foraminifera at all of the coasts were Ammonia sp., Amphistegina lobifera, and 
Pararotalia calcariformat (Sorites orbiculus and Quinqueloculina sp. were also 
present, but in far lower numbers). A study of the foraminiferal species Ammo-
nia beccarii (which is common throughout the Mediterranean and the dominant 
genus in all our samples) found that it consumed a substantial amount of algae 
and bacteria and thereby reduced the numbers of other populations (e.g., nema-
todes), depending on them as a food source [22] [26]. The mentioned studies 
support our assumption for an inverse relationship. 

We could also see that the foraminiferal population fluctuated with the sea-
sons (Figure 1). This pattern was also evident when we examined each individu-
al coast, with peaks in January, May, and September. When the highest peaks 
were around the cold season (January and September). We assume that this in-
crease might be part of a distribution strategy in which the foraminifera utilizes 
the big waves and strong currents of the winter to reach new, faraway environ-
ments. This strategy is even more important in an area with very weak tidal 
forces, such as the eastern Mediterranean costal area [29] [30] [31] [32]. 

However, when we focused on each individual coast, new trends became evi-
dent. At the Na coast (Figure 1(a)), there was an almost-complete domination 
of foraminifera over the nematodes (a minimum of 8.82 oragnisms·cm−3 differ-
ence in favor of the foraminifera), reaching its peak at the end of the summer 
(74.26 organisms·cm−3). The Na coast is consistently characteristic of subtropical 
areas, in which population growth reaches its peak in late summer [12]. When 
we looked at the nematode population, we could see that in the Na coast, this 
population increased in the winter (12.28 organisms·cm−3) but remained at a low 
basal level for the rest of the year. Comparison with the other shores supports 
our assumption that there are reciprocal relations between the two populations. 
The domination of the foraminifera over nematodes is not common [12] [22] 
and, in most cases, the nematodes in sandy marine soils are the dominant taxa 
among the benthic population throughout the year. We assume that this niche of 
the intertidal zone that is affected by constant waves and currents and sup-
pressed by rocks and rock tables is best suited for the foraminifera. The mild but 
constant currents that bring fresh oxygen and nutrients to the top layers of the 
sediment are ideal, allowing the foraminifera to flourish and become dominant 
over the nematodes. The annelids (Figure 2) did not appear to have any notable 
relationship with the other populations. However, we could see a population  
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Figure 1. Nematode, foraminifera, and OM average (n = 6 - 14). The samples were taken 
at Na (a), Mi (b), and Za (c) coasts in each sampling from January to September 2014. 
Significant to January (a), previous month (b) and between nematode and foraminifera 
(*) according to t test p < 0.05. 
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Figure 2. Nematodes (a) annelids (b) and OM average (n = 6 - 14) at Na, from August 
2013 to August 2014. Significant to previous month (a) according to t test p < 0.05. 
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Figure 3. Nematodes (a) annelids (b) and OM average (n = 6 - 14) at Mi, from August 
2013 to August 2014. Significant to previous month (a) according to t test p < 0.05. 

 
its original size of the previous year. We assume the cause for this is a pollutant 
or other significant disturbances in the summer of 2013. 
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Figure 4. Nematodes (a) annelids (b) and OM average (n = 6 - 14) at Za, from August 
2013 to August 2014. Significant to previous month (a) according to t test p < 0.05. 
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todes in the polluted beach have completely changed their growth pattern and 
stopped showing any noticeable seasonal cycle. On the other hand, they grew in 
numbers towards the end of summer with the increase in temperature. This led 
us to the realization that the anthropogenic factors caused constant reproduction 
within the nematode population and, as the temperature rose, the conditions 
became more ideal for them to flourish. We also suggest that the pollution-sen- 
sitive foraminifera reproduce more significantly in the winter at polluted coasts 
as a result of the high turbulence in the sea at that time. The strong, turbulent 
oceanographic conditions in the winter dilute the pollution in the water column 
and in the soil by distributing the pollution homogeneously around the coastal 
line while, at the same time, they enrich the water and soil with organic particles. 
Those conditions facilitate the reproduction and distribution of foraminiferal 
gametes [38] [39]. When we evaluated the foraminifera-nematode ratio we saw 
that while in the winter the ratio average is above ~4 in all coasts (with no signi-
ficate difference between coasts, p < 0.05). In the summer, Na coast was signifi-
cantly higher (~23 ratio in average, p < 0.05) than the rest of the coasts (~0.41 
ratio average). Thus, the ratio indicates the level of coast cleanliness, the higher 
the number, the less polluted the coast is. 

We evaluated the diversity of the population at each coast (Table 1) according 
to the Simpson index. While the Mi coast did not show any significant trend, the 
Na and Za coasts showed opposing results. Although stress on the ecosystem 
commonly causes a decline in diversity. In January, the Simpson index at the Na 
coast was the lowest while at Za it was the highest. In the following months, the 
Simpson index at Na increased while at Za it declined. These results strengthen 
our assumption that, in the winter, the harsh weather and oceanographic condi-
tions dilute pollution in the polluted coasts which, in turn, causes a steep in-
crease in the reproduction of the entire community and, in turn, increases the 
entire coastal diversity. This increase in diversity is not maintained for long: the 
coasts slowly return to their polluted state while diversity declines with the in-
crease in pollution. Hence, the winter season restores the natural state. We sug-
gest that this repeating renewal acts as a buffer that prevents pollution tolerant 
species from overtaking this niche from native species [40]. At the Na coast, 
winter has the opposite effect: it brings change to the stable community, and the 
organic enrichment does not have a positive effect, which lowers the diversity of 
the entire community. 
 
Table 1. Simpson’s diversity index for the nematode, foraminiferal, and annelid popula-
tions in all coasts from January to September 2014. 

Month 
Coast 

January March May August September 

Nahsholim 0.53025 0.699969 0.779154 0.881065 0.948944 

Mikhmoret 0.722352 0.899955 0.500216 0.688553 0.594867 

Zarqa 0.916413 0.664822 0.590617 0.476568 0.538559 
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When we looked at the OM at each coast (Figures 1-4), we saw that there was 
a similar seasonal cycle of the OM in Mi and Za coasts but a different OM cycle 
in Na coast. Both polluted coasts (Mi and Za) exhibited an increase in OM in 
January and August while, at the clean coast (Na), we observed an increase only 
in January (that increase was maintained and even grew until the summer). Sur-
prisingly, the OM amounts were higher at the clean coast compared to the pol-
luted ones, opposite to the nematode assemblages. These observations led us to 
the conclusion that the nematodes that thrive in the polluted coasts feed on the 
OM and act as biofilters; therefore, this population grows as the OM declines. 

If we compare the porosity in the different populations (Figure 5), we can see 
that at the Na coast, there is a correlation between the average number of fora-
minifera and the average total number of all organisms to the porosity. We also 
noticed a weak correlation the nematodes and the porosity. These relationships 
weaken as the level of pollution increases. In addition, porosity declines as the 
pollution level rises. While all fauna can increase porosity in the soil, the nema-
todes play a greater role. The saliva that the nematodes produce acts as a glue 
that strengthens the burrows that the nematodes leave in their tracks. These sta-
ble burrows significantly increase the porosity of the soil. This ability, along with 
the high mobility of the nematodes, renders them much less affected by the nat-
ural porosity of the soil and explain their anoxia tolerances [12] [41] [42] [43]. 
This data suggests that while the increase in porosity in the natural state allows 
the meiobenthos to flourish and expand deeper into the soil, pollution halts the 
population’s ability to do so and, as a result, general porosity remains low. 
However, the resilient nematodes are not affected by both of these factors and 
they can flourish until the level of pollution will halt their growth as well. 

4. Conclusions 

The meiobenthic population showed a dramatic change in numbers and in 
growth cycles, as the pollution levels rose. The winter climate assisted in diluting 
the pollution, which, in turn, shifted the coastal community and reinstated the 
natural community state. The winter acted as a buffer which offered the com-
munity time to revert to the natural state. At the same time, hindered pollution 
resilient meiobenthic species completely overtake this habitat. The foraminifera 
showed significant sensitivity to pollution while the nematodes were more resi-
lient (as were the annelids) and thus became dominate. We suggest that pollu-
tants harm the foraminifera while changing the natural food sources available. 
This provides the nematodes, which can thrive on diverse food sources, a com-
petitive advantage. Therefore, we propose that the nematodes and foraminifera 
can be reliable bioindicators of polluted coasts. Furthermore, the nematode-fo- 
raminifers’ ratio can be utilized for a costal cleanliness evaluation. 

Future research should study the changes that occur at the species or genus 
level while monitoring pollutants on a monthly basis. When we will be able to 
better quantify the level of pollution and how it affects the nematode-foramini- 
fers’ ratio we will be able to associate and evaluate the conditions of the different  
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Figure 5. Average (n = 6 - 14) of soil porosity, nematodes, foraminifera and the total of 
organisms extracted in each sampling. The samples were taken at Na (a), Mi (b) and Za 
(c) coasts from August 2013 to September 2014. 
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coasts. We suggest that a metagenomic approach be used. The knowledge re-
quired and the time-consuming methods of extraction and identification by 
morphology are likely to cause errors throughout the study. 
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