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Abstract 
A solid ball of mass m, size r and spin ω about an axis through its center is 
dropped freely from a height h on a rough horizontal plane. Assuming its an-
gular momentum is parallel to the horizontal plane upon impact it bounces 
repeatedly drifting on a vertical plane. We analyze the kinematics of the 
bouncing ball assuming the impacts are semi-elastic without slipping. By va-
rying the spin and relevant parameters, a robust Mathematica [1] program 
enables simulating the trajectories. 
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1. Introduction 

Kinematics, including multiple trajectories of a bouncing massive point-like par-
ticle on a vertical plane thrown at an angle with respect to a horizontal surface is 
a classic physics problem [2]. The point-like character of the object i.e. the lack 
of its size suppresses the impact of its internal degrees of freedom, e.g. spin, on 
kinematics. We depart from this stepping stone scenario and consider a genera-
lization where a point-like object is replaced with a round shaped entity such as 
a solid and/or a hallow ball or a short length cylinder. The spin adds interesting 
features to the kinematics. For instance a free falling spinning object upon im-
pact with a horizontal surface bounces multiple times drifting away from the 
points of impacts. As we were developing the mathematics of the problem aux-
iliary quantities such as: run-time between adjacent bounces, sensitivity of the 
range between sequential bounces and etc. were calculated as well. The general 
features of these analyses are summarized in a Mathematica based simulation 
program making the analysis robust providing opportunities exploring the 
“what if” scenarios. This note is composed of three sections. In addition to Mo-
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tivation and goals, in Sect. 2 we develop the needed physics solving the problem. 
This section also embodies analysis and output. Section 3 is the conclusions and 
closing remarks. 

2. Physics of the Problem and Its Solution 

Figure 1 depicts the scenario at hand. A solid ball of mass m, size r and clock-
wise spin ω about the horizontal axis through the center is held, h, distance away 
from a horizontal reflecting surface. The ball is dropped freely, as it falls the only 
active force on the ball is the weight that passes through the center; this pre-
serves the spin from the point of release to the impact, as shown. 

At the impact the floor imparts three different effects: 1) it reorients the initial 
downward vertical velocity in a slanted upward direction 2) because of surface 
roughness it generates a horizontal impulse drifting the ball along the horizontal, 
specifically, it pushes the ball along the opposite direction of the orientation of 
the angular velocity at the impact, x-axis as shown in Figure 2(b) and 3) the 
surface roughness slows the spin. These are depicted in Figure 2. 

It is intuitive to say that right after the bounce because gravity is the only ac-
tive force acting on the ball the center of the ball would trace a parabolic trajec-
tory. Furthermore, because of the same reason the spin of the ball stays the same; 
its angular momentum conserves. One may also extend the aforementioned 
conclusions for all subsequent multiple bounces the number of which is deter-
mined by the restitution factor, e. 

With this intuitive insight to quantify the kinematics we formulate the prob-
lem. 

We write the dynamic version of the Newton’s law as,  
 

 
Figure 1. A spinning ball held at rest from a re-
flecting surface. 

 

 
Figure 2. (a) depicts the ball at impact. (b) is the 
situation right after the impact. 
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where ( )tN  is the floor reaction and is perpendicular to the interface. Sym-
bolically speaking the time span, ( )2 1t t− , is the contact time of the ball-floor 
and its value depends on the value of e. For the analysis of the problem on hand 
its value doesn’t come in the play. The 1v  and 2v  are the corresponding ve-
locities right before and after the impact, respectively. By projecting Equation (1) 
along the x-axis and replacing the integrand with ( )s tµ N  i.e. the maximum 
static friction we identify the cause of the horizontal push. In this scenario the 
RHS of Equation (1) is, 1 0xv =  and momentum of the drifted bounced ball is 
mv2x. Accordingly, Equation (1) along the x-axis is,  
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s x
t
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one may realize the integral on the Left Hand Side (LHS) is the linear impulse 
along the y-axis. Note also the orientation of the static friction shown in Figure 
2(a) is the cause of spin retardation. Its impact is given via angular impulse. 
Writing Equation (1) for the torque and related angular momentum gives,  
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t
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t

t t Iτ ω ω= −∫ ,                     (3) 

where ( )tτ  is the torque, so that the LHS is the angular impulse, where Icm is 
the moment of inertia of the rotating object about the center-of-mass (cm) and 
ω’s are the associated spins, i.e. angular velocities. Applying Equation (3) to the 
case on hand replaces the integrand with ( )sr N tµ , yielding,  
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Substituting Equation (2) in (4), gives, 

( ) ( )2 1 2x cmr mv I ω ω= − ,                    (5) 

Furthermore, while the ball is in contact with the floor and rolls without slip-
ping we apply, v rω= . Specifically, for the problem on hand the horizontal 
component of the velocity, v2x, right after the bounce is subject to 2 2xv rω= . 
Substituting this in Equation (5) we get,  
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Accordingly, we realize the explicit relationship between the spins before and 
after the impact; i.e., 2 10 ω ω< < , meaning 1) the bounced ball spins slower after 
the impact and 2) its positive value shows that after the impact it doesn’t change 
its spin direction—in the shown figure it preserves its clockwise spin. The mo-
ment of the inertia about the center-of-mass, Icm, may be substituted as  
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2
cmI mrγ= . Depending to the character of the object on hand, e.g. a solid 

sphere, a hallow sphere or a short cylinder about its axial axis, γ, is known. These 
are γ = 2/5, 2/3 and 1/2, respectively. Substituting for Icm, Equation (6) yields,  

2 11
γ

ω ω
γ

 
=  + 

.                       (7) 

its value for a solid ball is, 2 12 7ω ω= . That is a free falling solid sphere irrespec-
tive of the mass, size and the initial height, h, upon impact loses 71% of its spin. 

In general the ball bounces more than once. Following analysis similar to the 
aforementioned reveals the subsequent bounces don’t alter the spin other than 
the first bounce; i.e. the spin given by Equation (7) stays the same. This is justi-
fied according to Equation (5). For a multiple bounce it reads,  

( ) ( )fx ix cm i fmr v v I ω ω− = − ,                 (8) 

where i and f indicate the “initial/before” and “final/after” states. For a rolling 
ball we substitute ix iv rω=  and fx fv rω= , Equation (8) yields, i fω ω= . 
Meaning the static friction doesn’t do mechanical work and preserves the spin. 
This is the same conclusion that one draws analyzing the states of a rolling ball 
on a rough horizontal surface. An auxiliary outcome of this observation is the 
equality of the horizontal velocities between the multiple bounces. However, be-
cause the runtimes between the bounces dependent on the restitution factor, e, 
their associated range, i.e. the horizontal traveled distances between adjacent 
bounces differ. Perfect elastic collisions with 1e =  result identical range. 

For instance, the runtime between the first and the second impact is,  

2 2 ht e
g

= . 

During this time interval 2 2xv rω= . Combining the latter two expressions 
with Equation (7) yields,  
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Its value for a solid ball with 2 5γ =  is, 1
4 2
7

hr e
g

ω . Without proof this is  

mentioned in [3]. 
Having considered the aforementioned information we derive analytic equa-

tions describing the trajectories of a spinning bouncing ball. In the coordinate 
system depicted in Figure 2, after the first bounce because the gravity is the only 
active force the center of the ball traces a parabolic trajectory [2],  
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In these equations g is the gravity, the takeoff speed after the first impact is v2, 
the projectile (reflected) angle is θ, h is the initial height and the restitution fac-
tor is, e.  

Utilizing this information we craft a Mathematica code simulating the features 
of a spinning bouncing elastic ball. Accordingly, as shown in Figure 3 for two 
chosen values; h = 3.0 m, and e = 0.7 with two control sliders we adjust the ini-
tial spin, ω, and the number of the bounces with the t-slider. A real-life anima-
tion of this program traces the bounces according to the running “ω clock” de-
picted with the pink disk-clock and its single arm. This figure shows the charac-
ters of a bouncing ball with e = 0.7. Running the program with e = 1 results mul-
tiple parabolas with the same heights. 

Auxiliary information about the quantities of interest such as range, Equation 
(9), for a chosen initial spin ω vs. the number of the bounces is shown in Figure 
4. With this program one has the capability of simulating the sensitivity of the 
range as a function of ω. 

For instance as shown, a spinning ball with ω = 9 rad/s dropped form a 3.0 m 
height drifts 27.9 cm between the first and the second impact; 19.6 cm between 
the second and the third and etc. 

Figure 5 shows the variation of the reflecting angle θ vs. spin value ω. Equa-
tion (12) is used plotting this graph. One might have intuitively expected this; 
however, this graph quantifies the output. The initial heighth, e factor and γ 
used in this plot are, 3 m, 0.7 and 2/5, respectively.  

Figure 5 shows the fast spin corresponds to a smaller reflection angle and vi-
sa-versa. For instance, a slow spinning ball with ω = 10 rad/s ~ 100 rev/min 
bounces almost vertically. Yet, a fast spinning ball with ω = 100 rad/s ~ 1000 
rev/min reflects at 62˚ with respect to horizontal. 
 

 
Figure 3. Snap shot of characteristics of a spinning ball dropped 
freely from a height h = 3.0 m. 



H. Sarafian, N. Lobe   
 

182 

 
Figure 4. Plot of the range vs. number of the bounces for a 
chosen e value; here e = 0.7. 

 

 
Figure 5. Display of the bounced angle θ vs. the spin ω. 

3. Conclusion 

Linear impulse and angular impulse are useful applied mechanical quantities, yet 
their applied mathematical models quantifying their applications are somewhat 
hindered in the literature. In a real-life situation one may encounter cases such 
as, dribbling a spinning basketball or throwing a spinning tennis ball on a floor. 
Mathematical challenges analyzing these kind of problems stem mainly from the 
size of the object. In elementary scenarios, the size is ignored suppressing the 
degrees of freedom reducing the problem to analysis of point-like objects. Ref-
erence [3] has posted the problem of a spinning ball as a challenging problem 
with no solution. The scope of the posted problem is limited to only one bounce! 
In our investigation we augmented the problem by considering multiple 
bounces. First we are posting the solution, and in addition have crafted a simula-
tion applying a Computer Algebra System, specifically Mathematica animating 
the process. The program is robust allowing selecting 1) the spin value ω, 2) the 
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restitution factor e and 3) the number of the bounces. Additional auxiliary quan-
tities such as the reflection angle, range and etc. are also quantified. All the 
graphs and quantified values reported here in our investigation are produced 
using Mathematica [1] software and its accompanied text [4] and guidelines ex-
plained in a recently published book [5]. 
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