
Journal of Software Engineering and Applications, 2017, 10, 734-753
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

From Mechatronic Components to Industrial
Automation Things: An IoT Model for
Cyber-Physical Manufacturing Systems

Theodoros Foradis, Kleanthis Thramboulidis

Electrical and Computer Engineering, University of Patras, Patras, Greece

Abstract
IoT is considered as one of the key enabling technologies for the fourth in-
dustrial revolution that is known as Industry 4.0. In this paper, we consider
the mechatronic component as the lowest level in the system composition
hierarchy that tightly integrates mechanics with the electronics and software
required to convert the mechanics to intelligent (smart) object offering well
defined services to its environment. For this mechatronic component to be
integrated in the IoT-based industrial automation environment, a software
layer is required on top of it to convert its conventional interface to an IoT
compliant one. This layer, which we call IoT wrapper, transforms the conven-
tional mechatronic component to an Industrial Automation Thing (IAT). The
IAT is the key element of an IoT model specifically developed in the context
of this work for the manufacturing domain. The model is compared to exist-
ing IoT models and its main differences are discussed. A model-to-model
transformer is presented to automatically transform the legacy mechatronic
component to an IAT ready to be integrated in the IoT-based industrial au-
tomation environment. The UML4IoT profile is used in the form of a Do-
main Specific Modelling Language to automate this transformation. A pro-
totype implementation of an Industrial Automation Thing using C and the
Contiki operating system demonstrates the effectiveness of the proposed
approach.

Keywords
Mechatronics, Cyber-Physical Systems, Internet of Things (IoT), Contiki,
UML4IoT Profile

1. Introduction

Based on one of the most commonly used definitions, the term Mechatronics

How to cite this paper: Foradis, T. and
Thramboulidis, K. (2017) From Mechatro-
nic Components to Industrial Automation
Things: An IoT Model for Cyber-Physical
Manufacturing Systems. Journal of Soft-
ware Engineering and Applications, 10,
734-753.
https://doi.org/10.4236/jsea.2017.108040

Received: May 4, 2017
Accepted: July 9, 2017
Published: July 12, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jsea.2017.108040 July 12, 2017

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.108040
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.108040
http://creativecommons.org/licenses/by/4.0/

T. Foradis, K. Thramboulidis

emphasizes on the synergistic integration of the three discipline areas, i.e., me-
chanical engineering, electronics and intelligent computer control, in the design
and manufacture of products and processes [1], i.e., it emphasizes on synergy.
What is not clear by this definition is the level at which this integration should
be performed, i.e., at the system level, which is the traditional approach, or at
the subsystem or even at the mechanical unit (component) level. The latter is
proposed in Model Integrated Mechatronics [2] and refined with the
3+1SysML-view model [3] [4]. This approach defines the Mechatronic compo-
nent as the main building block that abstracts the mechanical object to the soft-
ware level, and transforms it to a smart object by adding additional functionality
to the one offered by the mechanical part. The so constructed mechatronic
components are integrated with cyber components and humans to construct the
industrial automation system. This approach slightly finds its road to production
in the context of Industry 4.0, e.g., [5], since it greatly reduces the coupling be-
tween the system components compared to the traditional one, which considers
the integration of the three disciplines at the system integration level.

A substantial number of communication mechanisms and middleware are
used for the integration of the constituent components of industrial automation
systems (IAS). DPWS [6], one of the most recent, is the result of extensive re-
search based on the service-oriented architecture (SOA). It is based on SOAP
which was the dominating technology used in SOA implementations. However,
the REST paradigm is gaining more attention in manufacturing the past few
years [7] [8]. A comparison of REST with SOAP in the context of the manufac-
turing domain can be found in [7]. Cloud computing has also attracted the in-
terest of researchers. Cloud manufacturing defines a new service-oriented man-
ufacturing model where cloud computing and IoT deeply influence the devel-
opment process of manufacturing systems [9]. IoT technologies greatly reduce
the time for decision-making that is very critical in modern manufacturing en-
vironments [10]. Both, cloud computing and IoT, have been moving from
buzzwords and hypes to tangible practical technologies that subtly influence and
change our world [11]. A state-of-the-art survey in cloud manufacturing is given
in [9], which considers IoT as a technology that deeply influences the develop-
ment of cloud manufacturing.

IoT is aligned well with the architecture of a manufacturing enterprise and it
is able to provide “vital solutions to planning, scheduling, and controlling of
manufacturing systems at all levels” [12]. Several approaches consider IoT as a
technology that can be utilized as an integration mechanism to be used down to
the sensor and actuator level of the industrial automation system. Others con-
sider IoT as the new logical transition from the automation and connectivity
concepts that exist in the IAS domain for many years. Bradley et al. [13], in an
article with title “The Internet of Things—The future or the end of mechatron-
ics”, argue that many of the smart components associated with the IoT will be
essentially mechatronic in nature, and will be constructed as far as it regards
their interaction with the physical world on the conventional hierarchical model.

735

T. Foradis, K. Thramboulidis

This model considers the controller of the mechatronic component in the loop
with the controlled physical unit through sensors and actuators.

For the conventional mechatronic component to be integrated in the IoT-
based industrial environment a software layer is required on top of it to convert
its conventional interface to an IoT-compliant one. Thus, the adoption of the
IoT as integration technology for the system, transforms the conventional me-
chatronic component to an Industrial Automation Thing (IAT). This transfor-
mation is more likely, as authors also argue in [13], to bring significant changes
to the way mechatronic, and related, systems are designed and configured. There
is already an increasing complexity in the job of the industrial engineer in the
task of transferring the functionality of the physical world in the software world
in the level of the IAT. To this, the complexity of adding an extra layer to trans-
form the conventional mechatronic component to an IAT is added. New proto-
cols, languages, environments and architectural paradigms should be used and
successfully integrated with the already used conventional architectures and this
complicates the job of the industrial engineer. To this direction, authors in [14]
present UML4IoT with focus on the modeling of the IAT. UML4IoT is a
UML-based approach that realizes the model driven engineering paradigm to
exploit IoT in the manufacturing domain.

In this paper, 1) we extend the model of the IoT introduced in [14], and 2) de-
fine a model-to-model transformer to automate the construction of IATs based
on the Contiki OS [15] and the C language. In the extended IoT model, the IAT
is still the key artifact for the adoption of the IoT infrastructure in the manufac-
turing domain. Based on this model the manufacturing system is considered as a
composition of cyber-physical and cyber components along with humans [16].
All these components are considered as Things, either permanent or on demand,
that collaborate exploiting an IoT communication infrastructure to realize a
higher level of behavior, i.e., the one of the system level.

The presented approach is discussed in comparison with other approaches
and mainly the IoT-A reference architecture that has been adopted by the Papy-
rus for IoT project [17], which is building a platform for the design of IoT sys-
tems in general. This project has many similarities with our project; both
projects use UML and SysML as modeling languages, and Papyrus as tool to
provide a modeling solution for IoT. Our approach focuses on manufacturing
systems. More specifically, it focuses on the case that a high-level design specifi-
cation for the mechatronic component is not available. Specific annotations were
defined to annotate the C source code specification of the mechatronic compo-
nent so as to automatically transform the mechatronic component to an IAT.
The approach is presented using as case study the Liqueur production laboratory
system. The LWM2M IoT application protocol [18] running on top of CoAP
[19] is used as the IoT protocol stack.

The remainder of this paper is structured as follows. Section 2 positions this
research against related work. In Section 3, the proposed extension to the IoT
model which is used in the UML4IoT approach is presented and discussed in

736

T. Foradis, K. Thramboulidis

comparison with existing IoT models. In Section 4, the Contiki based Industrial
Automation Thing is presented along with the case study. The model-to-model
transformer for the C language and the Contiki operating system is presented in
section 5 and the paper is concluded in the last section.

2. Related Work

IoT offers new levels of connectivity in the industrial domain that may lead to
higher efficiency, flexibility, and interoperability among industries [20]. Howev-
er, not only many definitions exist for the IoT but also several models. These
models, e.g., ETSI, IETF, SENSEI, have been developed to capture the key con-
cepts of the domain and provide the infrastructure to develop frameworks and
architectures for the systems based on IoT. Fei et al. [21] claim that even though
IoT has been used in various application domains there is still no clear and uni-
form definition and architecture about it. Therefore, the IoT domain suffers
from an inconsistent usage and understanding of the meaning of several key
terms, as also claimed in [22]. The definition of an IoT domain model is a pre-
requisite for defining IoT Architectures. A detailed discussion on the IoT models
can be found in [23], where the IoT-A reference model for IoT is presented and
validated. Authors in [24] present and discuss applications of IoT in Manufac-
turing and describe a five-layer architecture for manufacturing based on IoT.

Authors in [25] focus on the device nature of Thing and consider sensors, ac-
tuators and controllers as IoT devices, i.e., things. They focus on the data field
structures and evaluate the benefit of using an IP smart gateway as the decentra-
lized peripheral to integrated sensors, actuators and the controller and claim that
this may improve the performance of IoT devices. We do not agree with the use
of sensors and actuators as first-class model elements in the high-level design
specification of the system. Sensors and actuators are just technology artefacts
used to integrate the physical with the cyber world so they have no place in the
high-level design spec of the system. In our approach, the IAT, which encapsu-
lates sensors, actuators and the controller, plays the role of the Thing and
represents the key construct in the IoT manufacturing environment.

MDD becomes more and more popular in the development of embedded
software systems and various reports refer efficiency gains, from up to 50%, for
example, in the development in the car industry [26], with high error reductions
and a rapid increase of the maturity level of developed products. MDD is consi-
dered as a promising solution to address the complexity of software develop-
ment in IoT [27] and improve quality characteristics of the produced software.
Malavolta and Muccini [28] argue that MDD is the right tools to address the
complexity of wireless Sensor Networks development exploiting abstraction,
reuse, separation of concerns and automation. They present a framework to sys-
tematically study, classify and compare existing MDA approaches in this area
[28]. Several works publish results that exploit the MDD paradigm in IoT based
systems to improve their quality characteristics but also the ones of their devel-
opment process.

737

T. Foradis, K. Thramboulidis

Thang et al. [27] present FRASAD, a framework based on MDA to manage
the complexity of IoT applications. They present a rule based model and a do-
main specific language to describe the application, using the sensor node as key
concept. The primary objective is to model the sensor node software. Contiki is
also supported among other OSs by this framework. Authors assume that the
application logic of the sensor node program is captured in a Platform Indepen-
dent Model (PIM), which is constructed using a set of rules they have defined to
describe behavior of the sensor node programs. This PIM is next mapped
through a Domain Specific Language to the specific platform where it is in-
dented to be executed. However, the approach focuses more on the message dis-
semination compared to the processing which is considered as an optional part
of a sensor node. Our approach focuses on the interface of the Industrial Auto-
mation Thing; the behaviour which is very complicated compared to one of a
sensor node is defined using another DSML we have defined for structuring the
cyber-physical component.

Authors in [29] present the software architecture of a platform developed to
address issues, among which the lack of development toolkits, that limit the dif-
fusion of IoT within industrial environments. They also describe an innovative,
IoT oriented, model-driven development toolkit that focuses on the seamless in-
tegration of heterogeneous industrial devices and sensors, into existing legacy
systems by transforming them into web services. The proposed toolkit allows
inexperienced developers to discover and compose distributed devices and ser-
vices into mashups using a modelling tool. Thus, the use of the MDD approach
is mainly on the generation of the mashups and does not focus on the modelling
of a mechatronic component as is the case of our approach. Furthermore, au-
thors do not refer or describe the domain modelling language that they use in
their MDD approach.

A very early approach to model complex IoT systems with UML and then
generate RESTful interfaces from these models is presented by Prehofer [30].
Authors do not define any DSML but they construct class diagrams and state
charts using only primitive UML model elements. Authors in [31] describe an
approach to define a visual DSML for the IoT based on UML. They model the
Thing, which they consider as key construct for building an IoT system, using
the UML component construct and its interface using provided and required in-
terfaces. Authors do not address the mapping of the conventional object-
oriented (OO) interfaces of the Thing with the ones of the REST paradigm.

Yingfeng Zhang et al. [32] present a real-time information capturing and in-
tegration architecture of the internet of manufacturing things (IoMT) to provide
a new paradigm by extending the techniques of IoT to the manufacturing field.
They use the term manufacturing thing but they do not focus on its structure
and its development process. Instead, they focus on the overall architecture for a
manufacturing system and describe a framework with focus on real-time track-
ing and tracing for the dynamic monitoring of the manufacturing process.

To the best of our knowledge there is no other work that focuses on the auto-

738

T. Foradis, K. Thramboulidis

mation of the transformation process of the conventional mechatronic compo-
nent to an IoT compliant one, i.e., to an Industrial Automation Thing ready to
be integrated into the IoT-based industrial environment.

3. Towards an IoT Model for Manufacturing
3.1. The IoT-A Reference Model

De et al. [33] describe the key concepts of the IoT-A reference architecture that
is a result of an EU funded IoT project. These concepts and their interrelations
are depicted in Figure 1. Based on this, device is attached to entity, which is as-
sociated with resource that is accessed through service. In more detail, authors
consider the entity as the “thing” in the IoT, i.e., the focus of interactions by
humans and/or software agents. The device represents the hardware component
that is either attached to an entity or it exists in its environment and monitors it.
The resource is the actual software component that provides information on the
entity or enables the controlling of the device. A service exposes the functionality
of a device by accessing its hosted resources.

3.2. The Proposed IoT Model

Figure 2 captures the high-level key concepts of our IoT model. Based on this,
the IoT is defined as a composition of Things and a processing and communica-
tion (IPV6-based) infrastructure. Any artifact that is able to communicate with
other Things using the processing and IPV6-based communication infrastruc-
ture (Proc&ComnInfr) is considered as Thing. Things collaborate to achieve

Figure 1. Example key concepts and interac-
tion in the IoT-A model (De et al. 2011).

Figure 2. High level key concepts in IoT.

739

T. Foradis, K. Thramboulidis

higher level of behavior compared to the one offered by each one of the collabo-
rating Things. Collaborating Things form a new Thing of type SystemAsThing
that represents a system of Things.

A Thing may be either a system of Things (SystemAsThing) or a component
(ComponentAsThing). A ComponentAsThing is a Thing that does not utilize
IoT for the integration of its constituent components. This type of Thing is used
to represent in the IoT world conventional systems or components that have
been transformed to Things (ComponentAsThing) by adding on top of their
conventional interface an IoT-compliant one. The smallest Thing of this type is a
sensor or actuator. The Proc&ComnInfr is a composition of: 1) processing nodes
and 2) communication devices, i.e., gateways, bridges, switches, routers, etc.
Proc&ComnInfr is modelled as a composition of Things (ComponentAsThing)
assuming that these devices are IoT enabled; this will be the case in the near fu-
ture. The Cloud is considered part of the Proc&ComnInfr.

3.3. The Model of Thing in Manufacturing

Figure 3 presents the proposed model for the Thing. Based on this, a Thing is
either real, cyber or virtual. A RealThing is either permanent or on demand
Thing. A permanent Thing is a composition of a cyber-physical object (CpOb-
ject) and a cyber IoT enabler (CyberIotEnabler). An OnDemandThing is an ag-
gregation of a PhysicalObject and a cyber-physical IoT enabler (CpIotEnabler).
As cyber-physical IoT enabler we model any device such as laptop, tablet, mobile
phone, wearable, RFID reader, that provides an IoT like interface and is able to
interact with a physical object. As physical object we consider a human, an in-
animate object or even animal with an embedded or attached tag. A human in-
teracts with an app, i.e., application specific IoT wrapper and is temporarily
transformed to a Thing. Physical objects of type animals or inanimate objects

Figure 3. The model of thing in IoT.

740

T. Foradis, K. Thramboulidis

with an embedded or attached tag interact with an RFID reader with IoT like in-
terface for the same reason. A cyber-physical object is any physical object that: 1)
implements a kind of functionality, i.e., material and/or energy transformations
and 2) has been transformed to a smart object by appending on it information
processing functionality. A mechatronic component is an example of cyber-
physical object. A cyber IoT enabler integrated with virtual objects and deployed
on a processing unit constructs a virtual Thing (virtualThing). The IoTwrapper
of the UML4IoT approach is an example of cyber IoT enabler. A cyberThing is
defined as a composition of one CpIotEnabler and one-to-many cyberObjects.
This allows the developer to optionally group cyber objects of the system design
model and map these to one cyberThing.

A Thing may expose to its environment: 1) part of its structure in terms of
properties and/or 2) part of its processing or storage functionalities. These func-
tionalities are exposed as services. Services are discriminated to: a) IoT infra-
structure services (IotService), b) application domain services and c) application
specific services. All types of services may be managed (activated, configured,
updated, etc.) through the IoT communication infrastructure. Communication
infrastructure services may be considered similar to the Industrial Automation
Thing services with the remark that Industrial Automation Things perform ma-
terial, energy and information processing while communication infrastructure
Things perform only energy and information processing. For example, device
management services, defined by the OMA LWM2M [18] are IotServices. Native
services are services that would be defined for a specific application domain, e.g.,
home automation, manufacturing, or system specific services, such as the gener-
ate LiqueurTypeA service of the Liqueur Plant laboratory production system
[14]. Device management is implemented by the management interface of the
LWM2M. On the other side, Thing management is domain or application spe-
cific and should be implemented by specific cyber components on top of the de-
vice management and service interface, e.g., the one of LWM2M.

The IoT processing and communication infrastructure (Proc&ComnInfr)
should provide an environment for a service-based collaboration of Things. Each
Thing implements functionalities offered to the environment as services with
negotiated QoS that should be discovered and exploited by other Things. It may
also utilize services of other Things to realize its behavior. The cyber compo-
nents of the manufacturing system model are deployed during the deployment
time on Things of type ComponentAsThing (see Figure 2). UML/SysML design
models of the system are marked with the IoT model elements using the
UML4IoT profile to automatically transform the system to an IoT-compliant
one.

3.4. Discussion on the Proposed IoT Model

Our definition for the Thing is different from a widely accepted one, described
by De et al. [33], which defines the thing and its relations to devices, resources
and services. Device, Resource, Service and Thing are also model elements in the

741

T. Foradis, K. Thramboulidis

IoT model presented by Stephan [34]. In our approach, the ComponentAsThing
encapsulates and hides how sensing of its physical part as well as actuation are
realized, since this is an implementation issue. Based on this, we do not consider
sensors and actuators first class model elements in our model and we do not
capture these artifacts in the design model of the system. Thus, actors of the OO
approach or terminators of the SA approach are modeled either as Industrial
Automation Things or as human Things.

This definition of Thing satisfies the requirement set by Zhuming et al. [12]
according to which all interactions among the system constituent components,
which may be humans, machines and products should be performed under the
same umbrella. This allows the developers to focus on the system’s functionality
and not worry about interactions, thus increasing the productivity.

In the design model of the system we do not capture resources. A resource is a
technology artifact used: 1) to represent the exposed properties and services of a
Thing, and 2) to access these through a well-defined set of operations to achieve
low coupling between collaborating Things. The LWM2M defines a set of such
operations, i.e., READ, EXECUTE, WRITE, etc., implemented on top of the http
operations.

The RESTful as well as the SOAP paradigms can be utilized for accessing the
services offered by Things. Thus, we adopt a different meaning for service from
the widely accepted and described, e.g., [18], where access to resources from the
outside world finally happens through services. IoT-A [23] which is a result of
the IoT-A EU project, consider the service as an entity that accesses a Resource
which is associated with an Entity that has attached a Device. It should also be
noted that while a resource is defined in IoT-A as the core software component
that represents an entity in the digital world, a Device is attached to a Resource.
We do not adopt this model because it is technology driven. Our model focuses
on the system modeling level and its objective is to offer a platform independent
modeling of the target system. In our model, a Thing has structural (attributes)
and behavioral properties (functions/methods). Those properties that are ac-
cessible from its environment are represented as resources. The RESTful para-
digm is adopted for accessing the resources. In this context and to exploit the
benefits of IoT, the networking entities of the IoT Proc&ComnInfr are also con-
sidered as Things (IoT-Thing NetworkingThing) that provide their own set of
information processing services required to establish the communication infra-
structure of the IoT.

Plant processes as well as other functionalities of the plant are assigned to cy-
ber objects of the system’s design model. These cyber objects may be marked as
cyberThings. Alternatively, cyber objects may be deployed on other cyberThings
or on Things of the Proc&ComunInfr. In both cases the corresponding services
are mapped to resources of the corresponding Thing.

Our approach differs from the one of the ebb its platform [20] that identifies
the following four layers which are considered required to bind the physical
world with software services:

742

T. Foradis, K. Thramboulidis

1) Physical-world layer, where devices, sensors and physical-objects are cap-
tured,

2) The IoT layer,
3) The internet-of-services layer and,
4) The business system mediation and product life cycle layer.
Pramudianto et al. [35] capture sensors and actuators as first-class model ele-

ments in their IoT meta model and use the term virtual object to refer to the
software entity that acts as a proxy of the real-world object. In our model, the
meaning of the virtual Thing is completely different. We use the term software
representative (SR) to refer to what authors in [35] call virtual object.

4. A Contiki Based Industrial Automation Thing
4.1. The Liqueur Production Laboratory System

The my Liqueur production mechatronic system, used as case study in this work,
is composed of the following mechatronic components: smartSilo1, smartSilo2,
smartSilo3, smartSilo4 and smartPipe (see Figure 4). The system is based on the
case study initially used by Basile et al. [36] and then extended by Thramboulidis
[16] to be compliant with the mechatronic component concept. The smartSilo
mechatronic components are reserved in couples to produce specific types of li-
queurs. SmartSilos 1 and 4 form one couple; smartSilos 2 and 3 form the other
couple. A mechatronic component has a well-defined interface through which
exposes its behavior to be used by the liqueur production processes. This inter-
face exposes the functionalities offered by the silo such as fill, empty, mix and
heat. Using the common pipe at the same time for liquid transfer among the si-
los is not allowed. Moreover, mixing the liquid in two silos at the same time is
not permitted due to a constraint in power consumption. Implementation issues
regarding the physical silo are encapsulated and hidden from the mechatronic
component’s environment.

Our intention is to integrate the components of this conventional mechatron-
ic system using IoT and gain from the low coupling that this technology intro-
duces among the interacting components. The use of the IoT will also enable the
system to exploit the benefits of this technology regarding the user interaction by
allowing end users to produce custom types of liqueur. The end user would be
able to define, through an app (myLiqueurApp), the production parameters of
the desired type of liqueur, as shown in Figure 4.

4.2. The Cyber-Physical Component

The legacy smartSilo Mechatronic/cyber-physical component is composed of the
physical silo (physical part), a processing, storage and communication unit and
the low-level control software (cyber part) required for the smartSilo to provide
a higher level of abstraction functionality compared to the one provided by the
physical silo. As shown in Figure 5, which presents the high-level architecture
of the cyber-physical component, the software part is composed of two main
parts. The first part is the software representation of the physical object, i.e., the

743

T. Foradis, K. Thramboulidis

Figure 4. The Liqueur production system used as
case study.

Figure 5. The architecture of the cyber-
physical component.

mechanical unit, into the software domain. This part does not add any extra
functionality; it only encapsulates the details of the integration of the physical
world with the cyber world. On top of this, another part, the controller in Figure
5, transforms the physical object to a smart one adding extra functionality. This
part encapsulates the low-level control of the physical object required to trans-
form the physical world object into a smart cyber-physical component that pro-
vides its functionality through a well-defined interface.

We use the Interface construct of UML to specify the cyber interface of a cy-
ber-physical component. The Interface is used in UML to declare a set of public
features and obligations that together constitute a coherent service [37]. In this
sense, an Interface specifies a contract that any instance of the mechatronic
component shall fulfil. The UML class diagram of Figure 6 presents the interface
of the smartSilo Mechatronic component in terms of provided and required in-
terfaces. The SmartSiloUsageIf represents the provided interface while the
SmartSiloUserIf represents the required one. In the required interface, we show
how to model the interaction between SmartSilo and its client with the Signal and
Reception constructs of UML in order to represent the possibly asynchronous
nature of this interaction. Thus, the heatingCompleted and mixingCompleted

744

T. Foradis, K. Thramboulidis

Figure 6. The cyber interface of the SmartSilo mechatronic component.

signals sent by the SmartSilo will trigger an asynchronous without a reply reac-
tion to the SmartSilo client, e.g., the type A liqueur generation process, through
the corresponding Receptions captured in the SmartSiloUserIf.

4.3. Towards a Contiki-Based Industrial Automation Thing

The 6LoWPAN IoT gateway of Weptech electronic Gmbh running the Contiki
operating system is used to host the controller of the smartSilo mechatronic
component. The 6LoWPAN IoT gateway, which is based on an ARM®Cortex®–
M3 SoC with 512 kB Flash and 32 kB RAM, functions as a border router in a
6LoWPAN network. It connects a wireless IPv6 network, over an 802.15.4 com-
pliant radio interface in the 2.4 GHz band, to the Internet via a 10BASE-T
Ethernet interface.

Contiki is a lightweight operating system ported to various microcontroller
architectures on resource constraint devices. It was selected mainly for its
event-driven kernel that guaranties fast response times to events and to its ability
for dynamic loading and replacement of individual programs and services that
leads to very flexible Mechatronic components whose behaviour may be mod-
ified during run-time. The interfacing of the cyber part with the physical one,
has been developed using the event-driven handling mechanism of Contiki to
get a better response time compared to the traditional scan cycle approach
mainly used in industry. Sensor signals generate interrupts which are handled by
Contiki and transformed to asynchronous software events. These Events are
broadcasted and captured by the corresponding event handling routines. Thus,
the high-level sensor signal is transformed to the highLevelReached asynchron-
ous event. This event is handled by the corresponding event handling routine,
which is responsible to implement the sensor data handling algorithm. The data
handling algorithm sends among others a close signal to the inValve and acti-

745

T. Foradis, K. Thramboulidis

vates the sending of a fillingCompleted event to the client of the mechatronic
component, i.e., the liqueur generation process.

The response of the system from the time that the sensor generates the signal
to the time that the signal arrives to the inValve actuator has an average value of
39.20 μs. Listing 1 presents a part of the object-based C implementation of the
smart silo cyber part that is related with the interface of the component with its
environment. This implementation is for the case that the required interface will
be modelled by call back functions instead of signals and receptions. It is evident
that both alternatives, i.e., signals or call back functions, imply a tight coupling
among the smartSilo and the components that use its behaviour, in the sense
that these interfaces should be known in advance for the development of the
component’s clients.

A model-to-model transformer is required to automate the process of gene-
rating the IAT. This transformer will use as input the properly annotated with
the DSML conventional mechatronic component. One approach is to mark the
UML design specification of the mechatronic component with the stereotypes
defined by the UML4IoT profile. If a UML design is not available then the
source code of the cyber part of the mechatronic component is properly anno-
tated with specific annotations that have been defined based on the UML profile.
An example of annotated code with Java-like annotations is given in Listing 2,

Listing 1. Part of the C object-based implementation of the cyber part of the
mechatronic component.

Listing 2. Part of the C object-based implementation of the cyber part of the mechatronic component annotated with the
UML4IoT java-like annotations.

746

T. Foradis, K. Thramboulidis

where objects and object types of the cyber-physical component as well as their
properties that should be exported to the IoT environment are properly anno-
tated.

In Figure 7, the Contiki-based silo industrial automation thing developed
with the proposed approach is shown. In the current implementation, the Wep-
tech embedded board is used as processing unit while a hardware simulator is
used for the silo. The Raspberry Pi and the XDK of Robert Bosch are alternative
supported platforms.

4.3. The Interfaces of the Industrial Automation Thing

Adopting the OMA LWM2M application protocol, the interface of the Industrial
Automation Thing is well defined and independent of the behavior that is im-
plemented by the component. This interface is defined using UML provided and
required interfaces as shown in Figure 8. Based on this figure the IAT has three
provided interfaces and three required that are independent of the nature of the
component. This feature combined with the ability of Contiki to dynamically
load and replace individual services, results to a completely flexible component

Figure 7. The silo industrial automation thing based on a hardware silo si-
mulator.

Figure 8. Industrial automation thing interfaces (provided and required).

747

T. Foradis, K. Thramboulidis

regarding its behavior. New or replaced behavior can be activated by the same
well-defined REST interface of the Industrial Automation Thing.

A comparison with Figure 6 that captures the conventional mechatronic
component interface points out the flexibility of the AIT compared to the con-
ventional one. Through this REST interface, resources may be created and used
on demand based on requirements assuming that the physical part supports the
requested new behavior. Resources, Resource Instances, Objects, Object In-
stances which are exposed by the IAT as well as their attributes, are accessed by
the clients of the IAT through the device management and service enablement
interface (DM&SE If). IPSO smart objects [38] have been adopted in this work
to satisfy the requirement for interoperability.

5. Automating the Generation Process of IAT

For the automation of the generation process of the IAT a model-to-model
transformer has been implemented. This transformer accepts as input the anno-
tated legacy source code and applies a set of transformation rules properly de-
fined to get the source code of the IAT.

5.1. The Model-to-Model Transformer

Α prototype model-to-model transformer was developed based on Autogen and
GNU Guile. Autogen (https://www.gnu.org/software/autogen/) is a GNU tool
that supports creation and maintenance of source code. As shown in Figure 9,
Autogen takes as input the annotated legacy code of the smart object, a template
file and the definitions file. The template file implements the set of transforma-
tion rules. It actually defines the structure of the textual output of Autogen, i.e.,
the structure of the IAT source code, making use of autogen’s macro-type for-
mat and embedded scheme code. The definitions file provides the information
required to instantiate the template file. More specifically, it includes the
LWM2M object/resource/instance properties and other source-level informa-
tion. The definitions file can be generated by the appropriate scheme procedures

Figure 9. Transformation process of the IAT.

748

https://www.gnu.org/software/autogen/

T. Foradis, K. Thramboulidis

of the c-parser Guile module that uses as input the annotated legacy source code,
as shown in Figure 9. The Guile module that implements the c-parser scheme
procedures was developed as a high-level recursive descent parser, based on the
guile-parser-combinators module
(https://git.dthompson.us/guile-parser-combinators.git). GNU Guile is an im-
plementation of the Scheme programming language
(https://www.gnu.org/software/guile/). Autogen collaborates with the Guile VM
through guile procedure calls embedded in the template file. The output of the
transformation process is the source code of the IAT in a format ready to be
compiled with the Contiki operating system and then deployed.

5.2. Transformation Rules

The following rules that apply for each object of the lwm2m client have been de-
fined.

Rule 1:Create wrapper functions for annotated behaviors.
For each function with the BehaviorResource annotation create a wrapper

function with input parameters:
lwm2m_context_t *ctx, const uint8_t *arg, size_targsize, uint8_t *outbuf,

size_t outsize
E.g., Source:static int fill(void);
Target: static intfill(lwm2m_context_t *ctx, const uint8_t *arg, size_targsize,

uint8_t *outbuf, size_t outsize);
Rule 2:Create getters/setters functions for each property annotated with the

PrimitiveRes annotation.
For each attribute annotated with the PrimitiveRes annotation create the cor-

responding read and write function depending on the applied operations on the
attribute defined in the annotation.

E.g., for the silo_state property
staticintget_silo_state(lwm2m_context_t *ctx, uint8_t *outbuf, size_t outsize)

{
char *value;
 value = get_silo_state_inString(silo->state);
returnctx->writer->write_string(ctx, outbuf, outsize, value, strlen(value));}
Rule 3:Construct the Resource model.
For each annotated attribute or function create an entry using the

LWM2M_RESOURCE_CALLBACK macro of the lwm2m implementation
which is integrated into the Contiki OS. E.g., for the silo_state

LWM2M_RESOURCE_CALLBACK(0,{get_silo_state, NULL, NULL}),
Append this entry to a list of resources, i.e., silo_resources, using the

LWM2M_RESOURCES macro.
Create the corresponding object instance using the LWM2M_INSTANCE

macro and register the resources. E.g., LWM2M_INSTANCE(0, silo_resources)
Append it to the list of silo instances using the LWM2M_INSTANCES.
E.g.,LWM2M_INSTANCES(silo_instances, ….);

749

https://git.dthompson.us/guile-parser-combinators.git
https://www.gnu.org/software/guile/

T. Foradis, K. Thramboulidis

Create the Object and registers its instances using the LWM2M_OBJECT ma-
cro. E.g.,

LWM2M_OBJECT(silo_obj, 1663, silo_instances);
Rule 4:Modify setter functions.
For each attribute annotated with the ObservableResource annotation, modify

its setter function (set_<attribute name>())by appending a call to the
lwm2m_object_notify_observersfunction.

Assumption: For each observable attribute a setter function exists. E..g.,
Source: void set_filling_completed(){
 silo->filling_completed = 1;}
Target: void set_filling_completed(){
 silo->filling_completed = 1;
lwm2m_object_notify_observers(&silo_obj, "/0/7"); }
Rule 5:Generate and handle the initialize function for the object.
5.1 Generate an initialize function to initialize the legacy object and register it

to lwm2m by a call to thelwm2m_ engine_register_object function.
The legacy initialize function of the object should be properly annotated. E.g.,
void ipso_ silo_init(void) {
 silo_init(); // legacy object initialization function
 lwm2m_engine_register_object(&silo_obj); }
5.2 Append the initialize function prototype to theipso-objects.hfile. E.g.
void ipso_silo_init(void);
5.3 Append a call statement to the initialize function of each object to theip-

so_objects_init()function body of theipso-objects.cfile. E.g.,
void ipso_objects_init(void) {
ipso_silo_init();

6. Conclusion

In this paper, we consider the tight integration of the physical world with the
cyber one at the mechatronic component level. A mechatronic component offers
its functionality through well-defined mechanical, electrical and software inter-
faces. In this sense the industrial automation system is a composition of mecha-
tronic components along with cyber components and humans. IoT is adopted
for the integration of these components to exploit the benefit of this technology
and UML4IoT is utilized to automatically transform the conventional mecha-
tronic component into an IoT compliant cyber-physical one, i.e., to an Industrial
Automation Thing. The IoT model used in the UML4IoT approach is extended
towards a complete IoT model for the manufacturing domain. The transforma-
tion rules required for the development of the model-to-model transformer have
been developed and validated through a prototype implementation of the li-
queur production laboratory system. The prototype implementation of the silo
industrial automation thing based on a Contiki enabled embedded board and
the C language is used to demonstrate the applicability and the effectiveness of
the proposed approach.

750

T. Foradis, K. Thramboulidis

References
[1] UNESCO Chair (2016) Home Page. On Mechatronics and Mechatronics Research

and Application Center. http://mecha.ee.boun.edu.tr/

[2] Thramboulidis, K. (2005) Model Integrated Mechatronics—Towards a new Para-
digm in the Development of Manufacturing Systems. IEEE Transactions on Indus-
trial Informatics, 1, 54-61. https://doi.org/10.1109/TII.2005.844427

[3] Thramboulidis, K. and Scholz, S. (2010) Integrating the 3+1 SysML View Model
with Safety Engineering. 2010 IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), Bilbao, Spain, 13-16 September 2010, 1-8.
https://doi.org/10.1109/etfa.2010.5641353

[4] Thramboulidis, K. (2012) Overcoming Mechatronic Design Challenges: The 3+1
SysML-View Model. The Computing Science and Technology International Journal,
2, 6-14.

[5] FESTO (2016) Industry 4.0: Efficient Engineering Processes with “OPAK”.
https://www.festo.com/net/en_corp/SupportPortal/MobilePressDetails.aspx?docum
entId=368146&q=

[6] OASIS (2016) Devices Profile for Web Services (DPWS) Specification.
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

[7] Angulo, P., Guzmán, C.C., Jiménez, G. and Romero, D. (2016) A Service-Oriented
Architecture and Its ICT-Infrastructure to Support Eco-Efficiency Performance
Monitoring in Manufacturing Enterprises. International Journal of Computer Inte-
grated Manufacturing, 30, 202-214. https://doi.org/10.1080/0951192X.2016.1145810

[8] Morgan, J. and O’Donnell, G.E. (2015) Enabling a Ubiquitous and Cloud Manufac-
turing Foundation with Field-Level Service-Oriented Architecture. International
Journal of Computer Integrated Manufacturing, 30, 442-458.

[9] He, W. and Xu, L. (2015) A State-of-the-Art Survey of Cloud Manufacturing. In-
ternational Journal of Computer Integrated Manufacturing, 28, 239-250.
https://doi.org/10.1080/0951192X.2013.874595

[10] Ghimire, S., Luis-Ferreira, F., Nodehi, T. and Jardim-Goncalves, R. (2016) IoT
Based Situational Awareness Framework for Real-Time Project Management. In-
ternational Journal of Computer Integrated Manufacturing, 30, 74-83.
https://doi.org/10.1080/0951192X.2015.1130242

[11] Ren, L., Zhang, L., Wang, L., Tao, F. and Chai, X. (2014) Cloud Manufacturing: Key
Characteristics and Applications. International Journal of Computer Integrated
Manufacturing, 30, 501-515. https://doi.org/10.1080/0951192X.2014.902105

[12] Bi, Z., Xu, L.D. and Wang, C. (2014) Internet of Things for Enterprise Systems of
Modern Manufacturing. IEEE Transactions on Industrial Informatics, 10, 1537-
1546. https://doi.org/10.1109/TII.2014.2300338

[13] Bradley, D., Russell, D., Ferguson, I., Isaacs, J., MacLeod, A. and White, R. (2015)
The Internet of Things—The Future or the End of Mechatronics. Mechatronics, 27,
57-74.

[14] Thramboulidis, K. and Christoulakis, F. (2016) UML4IoT—A UML Profile to Ex-
ploit IoT in Cyber-Physical Manufacturing Systems. Computers in Industry, 82,
259-272.

[15] Dunkels, A., Gronvall, B. and Voigt, T. (2004) Contiki—A Lightweight and Flexible
Operating System for Tiny Networked Sensors. 29th Annual IEEE International
Conference on Local Computer Networks, 16-18 November 2004, 455-462.
https://doi.org/10.1109/lcn.2004.38

751

http://mecha.ee.boun.edu.tr/
https://doi.org/10.1109/TII.2005.844427
https://doi.org/10.1109/etfa.2010.5641353
https://www.festo.com/net/en_corp/SupportPortal/MobilePressDetails.aspx?documentId=368146&q
https://www.festo.com/net/en_corp/SupportPortal/MobilePressDetails.aspx?documentId=368146&q
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
https://doi.org/10.1080/0951192X.2016.1145810
https://doi.org/10.1080/0951192X.2013.874595
https://doi.org/10.1080/0951192X.2015.1130242
https://doi.org/10.1080/0951192X.2014.902105
https://doi.org/10.1109/TII.2014.2300338
https://doi.org/10.1109/lcn.2004.38

T. Foradis, K. Thramboulidis

[16] Thramboulidis, K. (2015) A Cyber-Physical System-Based Approach for Industrial
Automation Systems. Computers in Industry, 72, 92-102.

[17] Eclipse (2016) Papyrus for IoT—A Modeling Solution for IoT.
https://www.eclipse.org/community/eclipse_newsletter/2016/april/article3.php

[18] Open Mobile Alliance (OMA) (2015) Lightweight Machine to Machine Technical
Specification. OMA-TS-LightweightM2M-V1_0-20151214-C, Candidate Version
1.0. 14 December 2015.

[19] Kovatsch, M., Duquennoy, S. and Dunkels, A. (2011) A Low-Power CoAP for Con-
tiki. 8th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems,
Valencia, Spain, 17-21 October 2011, 855-860.
https://doi.org/10.1109/MASS.2011.100

[20] Khaleel, H., Conzon, D., Kasinathan, P., Brizzi, P., Pastrone, C., et al. (2015) Hete-
rogeneous Applications, Tools, and Methodologies in the Car Manufacturing In-
dustry through an IoT Approach. IEEE Systems Journal, PP, 1.
https://doi.org/10.1109/JSYST.2015.2469681

[21] Tao, F., Cheng, Y., Xu, L.D., Zhang, L. and Li, B.H. (2014) CCIoT-CMfg: Cloud
Computing and Internet of Things-Based Cloud Manufacturing Service System.
IEEE Transactions on Industrial Informatics, 10, 1435-1442.
https://doi.org/10.1109/TII.2014.2306383

[22] Bauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettstrter, A., Stefa, J. and Walews-
ki, J. (2013) Iot Reference Model. In: Bassi, A., et al., Eds., Enabling Things to Talk,
Springer, Berlin, Heidelberg, 113-162. https://doi.org/10.1007/978-3-642-40403-0_7

[23] IoT-A (2016) Final Architectural Reference Model for the IoT.
http://www.meet-iot.eu/deliverables-IOTA/D1_5.pdf

[24] Tao, F., Zuo, Y., Xu, L.D. and Zhang, L. (2014) IoT-Based Intelligent Perception
and Access of Manufacturing Resource toward Cloud Manufacturing. IEEE Trans-
actions on Industrial Informatics, 10, 1547-1557.
https://doi.org/10.1109/TII.2014.2306397

[25] Diaz-Cacho, M., Delgado, E., Falcon, P. and Barreiro, A. (2015) IoT Integration on
Industrial Environments. 2015 IEEE World Conference on Factory Communication
Systems (WFCS), Palma de Mallorca, 27-29 May 2015, 1-7.
https://doi.org/10.1109/wfcs.2015.7160553

[26] Broy, M., Kirstan, S., Krcmar, H., Schätz, B. and Zimmermann, J. (2013) What Is
the Benefit of a Model-Based Design of Embedded Software Systems in the Car In-
dustry? In: Software Design and Development: Concepts, Methodologies, Tools,
and Applications, IGI Global, 310-334.

[27] Nguyen, X.T., Tran, T., Baraki, H. and Geihs, K. (2015) FRASAD: A Framework for
Model-Driven IoT Application Development. 2015 IEEE 2nd World Forum on In-
ternet of Things (WF-IoT), Milan, 14-16 December 2015, 387-392.
https://doi.org/10.1109/WF-IoT.2015.7389085

[28] Malavolta, I. and Muccini, H. (2014) A Study on MDE Approaches for Engineering
Wireless Sensor Networks. 40th EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (SEAA), Verona, 27-29 August 2014, 149-157.
https://doi.org/10.1109/seaa.2014.61

[29] Conzon, D., Brizzi, P., Kasinathan, P., Pastrone, C., Pramudianto, F. and Cultrona,
P. (2015) Industrial Application Development Exploiting IoT Vision and Model
Driven Programming. 2015 18th International Conference on Intelligence in Next
Generation Networks (ICIN), Paris, 17-19 February 2015, 168-175.
https://doi.org/10.1109/icin.2015.7073828

752

https://www.eclipse.org/community/eclipse_newsletter/2016/april/article3.php
https://doi.org/10.1109/MASS.2011.100
https://doi.org/10.1109/JSYST.2015.2469681
https://doi.org/10.1109/TII.2014.2306383
https://doi.org/10.1007/978-3-642-40403-0_7
http://www.meet-iot.eu/deliverables-IOTA/D1_5.pdf
https://doi.org/10.1109/TII.2014.2306397
https://doi.org/10.1109/wfcs.2015.7160553
https://doi.org/10.1109/WF-IoT.2015.7389085
https://doi.org/10.1109/seaa.2014.61
https://doi.org/10.1109/icin.2015.7073828

T. Foradis, K. Thramboulidis

[30] Prehofer, C. (2015) Models at REST or Modelling RESTful Interfaces for the Inter-
net of Things. IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan,
14-16 December 2015, 251-255.

[31] Eterovic, T., Kaljic, E., Donko, D., Salihbegovic, A. and Ribic, S. (2015) An Internet
of Things Visual Domain Specific Modeling Language Based on UML. 2015 XXV
International Conference on Information, Communication and Automation Tech-
nologies (ICAT), Sarajevo, 29-31 October 2015, 1-5.
https://doi.org/10.1109/icat.2015.7340537

[32] Zhang, Y., Zhang, G., Wang, J., Sun, S., Si, S. and Yang, T. (2015) Real-Time Infor-
mation Capturing and Integration Framework of the Internet of Manufacturing
Things. International Journal of Computer Integrated Manufacturing, 28, 811-822.
https://doi.org/10.1080/0951192X.2014.900874

[33] De, S., Barnaghi, P., Bauer, M. and Meissner, S. (2011) Service Modelling for the
Internet of Things. 2011 Federated Conference on Computer Science and Informa-
tion Systems (FedCSIS), Szczecin, 18-21 September 2011, 949-955.

[34] Haller, S. (2010) The Things in the Internet of Things. Internet of Things Confe-
rence 2010, Tokyo, 29 November-1 December 2010.

[35] Ferry, P., et al. (2014) IoTLink: An Internet of Things Prototyping Toolkit. IEEE
International Conference on Ubiquitous Intelligence and Computing, Bali, 9-12
December 2014, 1-9.

[36] Basile, F., Chiacchio, P. and Gerbasio, D. (2013) On the Implementation of Indus-
trial Automation Systems Based on PLC. IEEE Transactions on Automation Science
and Engineering, 10, 990-1003. https://doi.org/10.1109/TASE.2012.2226578

[37] OMG (2015) Object Management Group, OMG Unified Modeling Language (OMG
UML), Version 2.5, OMG Document Number Formal/2015-03-01.
http://www.omg.org/spec/UML/2.5

[38] Internet Protocol for Smart Objects (IPSO) Alliance (2014) IPSO Smart Object
Guideline. IPSO Smart Object Committee, 21 September.
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interopera
bility/

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

753

https://doi.org/10.1109/icat.2015.7340537
https://doi.org/10.1080/0951192X.2014.900874
https://doi.org/10.1109/TASE.2012.2226578
http://www.omg.org/spec/UML/2.5
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
https://www.ipso-alliance.org/ipso-community/resources/smart-objects-interoperability/
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	From Mechatronic Components to Industrial Automation Things: An IoT Model for Cyber-Physical Manufacturing Systems
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Towards an IoT Model for Manufacturing
	3.1. The IoT-A Reference Model
	3.2. The Proposed IoT Model
	3.3. The Model of Thing in Manufacturing
	3.4. Discussion on the Proposed IoT Model

	4. A Contiki Based Industrial Automation Thing
	4.1. The Liqueur Production Laboratory System
	4.2. The Cyber-Physical Component
	4.3. Towards a Contiki-Based Industrial Automation Thing
	4.3. The Interfaces of the Industrial Automation Thing

	5. Automating the Generation Process of IAT
	5.1. The Model-to-Model Transformer
	5.2. Transformation Rules

	6. Conclusion
	References

