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Abstract 
There are many works (i.e. [1]) aiming to find out numerically how positive 
feedback affects the formation of invadopodia and invasion of cancer cells; 
however, studies on the cancer cell invasion model with free boundary are 
fairly rare. In this paper, we study modified cancer cell invasion model with 
free boundary, where, free boundary stands for cancer cell membrane, so that 
we can more precisely describe the positive feedback affects. Firstly, we sim-
plized the model by means of characteristic curve and semi-groups’ property, 
and obtained the Stefan-like problem by introducing Gaussian Kernel and 
Green function. Secondly, based on the classical Stefan problem, we derived 
the integral solution of simplified model, which could lead us a further step to 
find the solution of modified cancer cell invasion model. 
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1. Introduction 

As well known, cancer disease is one of the leading causes of death worldwide. 
Many natural and man-made factors (for example, smoking, car exhaust fumes, 
ultraviolet rays, air pollution and radiations, etc.) are the main risks for cancer 
disease. Metastasis is a leading death process, in which two processes are crucial 
from the viewpoint of cancer therapy. The first one is angiogenesis, nucleation of 
new blood vessels, which can provide enough nutrients to further development 
of tumor cells. The other one is tissue invasion. After the vascular growth of the 
tumor, cells become more aggressive that it can invade into the extracellular ma-
trix, even into blood vessels, to complete the metastasis. Tissue invasion is a 
process in which cells can migrate and establish a new colony in new organs. 

There are many studies about angiogenesis inhibition, because cancer cells 
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have a certain size and cannot grow further without nutrients from blood vessels. 
Signaling molecule VEGF (vascular endothelial growth factor) can be secreted by 
cancer cells and can bind the normal endothelial cells to form new blood vessels. 
Scientists found inhibitors, such as bevacizumab, to block VEGF [2]. Bevacizu-
mab binds to and disables VEGF to activate endothelial cells to create new blood 
vessels. This therapy is already applied clinically. 

To reduce the ability of invasion is also one way to prevent metastasis. Cancer 
cells can spread by degrading ECMs. ECMs are degraded by the assembly of the 
actin cytoskeleton in invadopodia—the invasive feet of cancer cells. In fact, 
MMPs (matrix metalloproteinase), the family of ECM degrading enzymes [3], 
are up-regulated by signals from growth factors [4]. Then, after up-regulation of 
MMPs, actin assembly delivers it to the invasive site of cancer cells [5]. At the 
invasive site MT1-MMP (membrane-type MMP), part of MMPs, are responsible 
to cut laminin-5 [6]. 2 chains of laminin-5 after cleavage can bind to receptor 
molecules and send signals to drive actin assembly and MMP up-regulation. 

Mathematical medicine and biology have become one of the popular topics in 
the study of modern applied mathematics. Where, cancer cell invasion models 
have received much attention in recent years [1] [7] [8] [9] [10] [11]. Research [7] 
has introduced a PDE model to observe the tissue invasion and tumor growth. 
Then research [8], based on the discrete-continuum hybrid simulation, pro-
moted the study in [7] by considering the interactions, cell-cell adhesion and 
other essential functions of cells. There are many other studies relating to the 
growth of the tumor. For example, in [1], the authors are aiming to find out nu-
merically how positive feedback affects the formation of invadopodia and inva-
sion of cancer cells. They considered a model for the formation of invadopodia 
and reaction between proteins, such as act in monomers, ECM (extracellular 
matrix), signals and MMP (matrix metalloproteinases), which are playing signif-
icant role in cancer cell invasion. In the numerical simulation, the authors ex-
amined the effects of the molecules by varying the rate constants, and success-
fully reproduced invadopodia-like small protrusions, which have a similar scale 
of the real phenomenon, eventually, investigated the leading source of invadopo-
dia; however, they did not study a boundary for cell body, which leads actins 
diffused into extracellular area. 

To the best of our knowledge, studies on the cancer cell invasion model with 
free boundary are fairly rare. For that reasons, in this paper, we study a modified 
cancer cell invasion model with free boundary problem. The method used in this 
paper is motivated by Stefan problem. 

In order to obtain cancer cell invasion model with free moving boundary, we 
need to consider the biological background of the problem. For the reader’s con-
venience, we will introduce the process of invadopodia formation. Invadopodia 
are the invasive feet (as shown in Figure 1) of cancer cells which can degrade the 
surrounding matrix (mainly ECMs), and cause metastasis [12]. Invadopodia are 
enriched in act in filaments, which are cytoskeletal structures and pushing cell 
membrane to drive invadopodia. 
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Figure 1. Invadopodia formation [8]. 

 

 
Figure 2. Cleavage of laminin 5 by MT1-MMP at juxtamembrane produce laminin-γ2 
which can bind to the receptor and can send signals. 

 
ECM fragments are decreased by the reorganization of actin cytoskeleton in-

directly [13]. Actins can transport MMPs to the invasive site of cancer cells, top 
of the invadopodia. MMPs can break and degrade the ECMs, broken ECM frag-
ments in return bind with receptors on the cell membrane, and induce signals to 
reorganize actins and MMPs. Again, MMPs can break more ECMs, and become 
a positive feedback loop. We summarize the interactions as shown in Figure 2. 

We improved the model considered in [1] by introduce a new variable σ  
which stands for the signal droved by the connection of ECM fragments and re-
ceptors. ECM fragments are created near the membrane by degradation of ECMs. 
Hence, the corresponding mathematical model is described as follows: 

* * o Γ ,nt c
t

t c

c v c fc
c v c fc

κ
κ

+ ⋅∇ = −
+ ⋅∇ =                     

(1) 

where, tΓ  stands for the free moving boundary, v  stands for the boundary 
velocity, ( ),c c x t= , ( )* * ,c c x t=  and f  are stand for the concentration of 
ECM, ECM fragments and MMPs, respectively. ECM fragments (laminin γ2 
chains) bind to cell membrane receptors and send signals to the actin reorgani-
zation, where signals have random motility. Hence, we have 
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where, ( ),x tσ σ=  represents signal concentration. The first equation of (2) 
describes the random motility and self decation of signals. The second equation 
of (2) describes ECM fragments bind to cell membrane and derive signals. 

Free boundary tΓ  is defined as 

( ){ }| , 0 ,t x x tψΓ = ∈Ω =                     (3) 

where, ψ  is the level set function, and demands level set equation 

0.t vψ ψ+ ⋅∇ =                         (4) 

Since the membrane pushed by the F-actin which is reorganized by signals 
from cell receptors, therefore, the velocity of the membrane depends on the gra-
dient of signals which cause F-actin polymerization. Hence, boundary velocity 
defined as follows: 

 .nv γ σ= ∇                           (5) 

Finally, we derived the modified cancer cell invasion model with cell boundary 
described as (1-5), our main purpose is to generalize this model into Stefan 
problem, then analytically discuss its solution. 

The organization of this paper is as follows. In section 2 we present some basic 
definitions, assumptions and related properties, such as characteristic curve of 
the problem, Greens functions etc., to simplify the problem. In section 3, the 
main results, related theorem and its proof, of our paper was stated. Finally, the 
detailed calculation from (48) to (49) and (50) is given in Appendix A, B, C. 

2. Preliminaries 

The previous section, we stated the biological background and modified cancer 
cell invasion model with free moving boundary (1 - 5). In this section, we will 
introduce some basic definitions and related preliminaries, such as Gaussian 
Kernel, Green function and derivation of Stefan problem etc., which would be 
useful in proving main results and solutions of Stefan problem (27) in section 3. 

2.1. Characteristic Curve 

In this paper, for simplicity, we take 1f ≡ , and discuss the model in 1 dimen-
sion. Hence, the level set Equation (4) is rewritten in the following form 

( ) ( )( )d , 0,
d

x t v x t t
t ± ±+ =                     (6) 

where, ( )x t±  stand for the right and left side boundary positions, which de-
pends on time t , ( )( ),v v x t t± ±=  stand for the velocity of right and left side 
boundaries (Figure 3). 

Take ( ),y U t s x= , which satisfies 

( )d , , |
d t s
y v y t y x
t == =  

where ( ),U t s  satisfies semi-group property: 

( ) ( ) ( ), , , .U t U s U t sτ τ =                      (7) 
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Figure 3. The positions of boundaries at time t. 

 
Consider the following equation of c, 

( )on .t xc v c c x t±+ ⋅ = −  

One can write 

( )( ) ( )( )d , , .
d

c y t t c y t t
t

= −  

Then we easily have the solution 

( )( ), e ,tc y t t C −=                        (8) 

where C  is arbitrary constant. We take t s= , then we have 

( )( ), e .sC c y s s=  

By (8), it follows that 

( )( ) ( )( ), , e .s tc y t t c y s s −=
                    

(9) 

By ( ),y U t s x=  and (9), we have 

( )( ) ( )( ), , , , e .s tc U t s x t c U s s x s −=  

When 0,s =  

( )( ) ( )0, 0 , e .tc U t x t c x −=  

Now we take 

( ) ( ), 0 0, ,U t x z U t z x= ⇔ =  

and finally we can get 

( )( ) ( ) ( )( )0, 0, e .tc x t t c U t x t −
± ±=  

By using an argument similar to the above, from the equation 

( )* * on ,t xc v c c x t±+ ⋅ =  

we have the solution 

( )( ) ( ) ( ) ( )( ) ( ) ( )( )* *
0 0, 1 e 0, 0, .tc x t t c U t x t c U t x t−

± ± ±= − +  

Then signals σ  on boundary satisfies 

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )* *
0 0, , 1 e 0, 0, .tx t t c x t t c U t x t c U t x tσ −

± ± ± ±= = − +  

Finally we have, 

( ) ( )( ), in ,t xx x t x tσ σ σ − += −                  (10) 
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with 

( )( ) ( ) ( ) ( )( )( ) ( ) ( )( )* *
0 0, 1 e 0, 0, .tx t t c U t x t c U t x tσ −

± ± ±= − +
     

(11) 

The Equation ((10) with (11)) is our key problem for the solution of (1-5). If 
we can get the solution of sigma from (10) and (11), then we can easily find the 
solution v  from the following equation 

( )( ) ( )( ), , .xv x t t x t tσ± ±=
                   

(12) 

2.2. Gaussian Kernel 

First, consider initial condition problem 

( ) ( )
( ) ( )0

in 0 ,
0 in .

t xx x x x t T
l x l

σ σ σ
σ σ

− +

− +

 = − < < × < ≤
 = ≤ ≤            

(13) 

Now, we multiply et  to both sides of (13), and take ˆ e ,tσ σ=  then we have 

( ) ( )
( ) ( )0

ˆ ˆ in 0 ,

ˆ 0 in ,
xx x x x t T

l x l

σ σ

σ σ
− +

+
−

= < < × < ≤


= ≤ ≤             
(14) 

If σ̂  defined in the whole domain ( ),−∞ +∞ , then the solution of (14) 
would be 

( ) ( ) ( )0ˆ , , d ,x t G x y t y yσ σ
+∞

−∞
= −∫                 

(15) 

where,  

( )
2

41, e .
2 π

x
tG x t

t
−

=
                     

(16) 

However, σ̂  (or σ ) is defined in bounded domain ( ) ( )( ), ,x t x t− +  there-
fore we cannot have the solution (15) for our case. But, at least we can see that 
the Gaussian function G  is differentiable against x  and t , and satisfies heat 
equation 

( ) ( ), , .t xxG x t G x t=  

Thus, we can say that G  is can be a fundamental solution for the heat equa-
tion. 

Next, consider parameters ( ),ξ τ  in Gaussian function G . Define a new 
function 

( ) ( )

( )
( )

2

41 e ,
2 π, ; ,
0 ,
0 ,

x
t t

tU x t
t
x t

ξ
τ τ

τξ τ
τ
ξ τ

−
−

−

 >
 −= 
 <


≠ =           

(17) 

U  is differentiable for all x and t except ( ) ( ), , ,x t ξ τ=  and satisfies 

0.xx tU U− =                         (18) 

If we consider U  is the function of ( ),ξ τ  with parameters ( ),x t , then U  
is differentiable for all ξ  and τ  except ( ) ( ), ,x tξ τ = , and satisfies 
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0.U Uξξ τ+ =                         (19) 

Note that 

( ) ( )
( ) ( )
( ) ( )

, ; , , ; , ,
, ; , , ; , ,

, ; , , ; , .

x

t

U x t U x t
U x t U x t
U x t U x t

ξ

τ

ξ τ ξ τ
ξ τ ξ τ
ξ τ ξ τ

= −
 = −
 − = −                  

(20) 

U  is also be a fundamental solution for the heat equation. Next we apply this 
fundamental solution U  to express the solution for the initial value problem 
(14). 

2.3. Green’s Function 

In order to find the solution of (14), we need to introduce new function as fol-
lows 

( ) ( ) ( ), ; , , ; , , ; , ,g x t U x t U x tξ τ ξ τ ξ τ= − −              (21) 

( ) ( ) ( ), ; , , ; , , ; , .G x t U x t U x tξ τ ξ τ ξ τ= + −              (22) 

Clearly, we can see that g  and G  are differentiable for all x and t except 
( ) ( ), ,x t ξ τ=  and ( ) ( ), , ,x t ξ τ= −  and satisfies 

0, 0,xx tLg g g LG= − = =                    (23) 

and g  and G  are differentiable for all ξ  and τ  except ( ) ( ), ,x tξ τ = − , 
therefore satisfies 

* *0, 0.L g g g L Gξξ τ= + = =                   (24) 

Since, 

( ) ( ) ( ) ( ), ; , , ; , , ; , , ; , ,xx t xx xx t tLg g g U x t U x t U x t U x tξ τ ξ τ ξ τ ξ τ= − = − − − + −  

by (18), we can easily prove (23) and (24). Using the third property of U  in 
(20), we can get 

0 0| | 0,xg g ξ= == =                       (25) 

0 0| | 0,x xG Gξ ξ= == =                       (26) 

where, g  and G  are called Green’s first type function and second type func-
tion, respectively. 

2.4. Free Moving Boundary Problem 

Now, we consider free moving boundary ( )x x t± ±=  as in Figure 4 with the 
following system: 

( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )
( )

0

, 0 ,

, 0 ,

, 0 0 ,
, 0 ,

0 ,

t xx

x

x t x x t t T

x t t t t T

x x l x l
x t x t t t T

x l

σ σ σ

σ σ

σ σ
σ

− +

± ±

− +

± ±

± ±

 = − < < < ≤


= < ≤


= ≥ < <
 ′ = − < ≤
 =       

(27) 

where, 
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Figure 4. Free moving boundary of (27). 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )*
0 01 e 0, 0, .tt c U t x t c U t x tσ −

± ± ±= − +  

Similar to (13), we have the following system 

( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )
( )

0

ˆ ˆ , 0 ,
ˆ ˆ, e 0 ,
ˆ ˆ, 0 0 ,

ˆe , 0 ,

0 ,

t xx
t

t
x

x t x x t t T

x t t t t T

x x l x l
x t x t t t T

x l

σ σ

σ σ

σ σ
σ

− +

± ±

− +
−

± ±

± ±

 = < < < ≤


= < ≤


= ≥ < <
 ′ = − < ≤
 =       

(28) 

where, 

( ) ( )ˆ , e , in .tx t x t Dσ σ=  

Define a domain D as (Figure 4) 

( ) ( ) ( ){ }, | , 0 .D x x tξ τ τ ξ τ τ− += < < < <  

Take ( )ˆ ,σ ξ τ  as, 

ˆ ˆ 0.ξξ τσ σ− =                         (29) 

Furthermore, from (24), we know 

0g gξξ τ+ =                          (30) 

in D. Combining (29) and (30), we have 

( ) ( )ˆ ˆ ˆ d d 0.
D

g g gξξ τ ξξ τσ σ σ ξ τ − − + = ∫∫              (31) 

According to Green’s formula, the left side of the Equation (31) becomes 

( ) ( )
( )

( )

ˆ ˆ ˆ d d

ˆ ˆ ˆ ˆ d d

ˆ ˆ ˆ ˆd d d .

D

D

QP PABQ

g g g

g g g g

g g g g

ξξ τ ξξ τ

ξξ ξξ τ τ

ξ ξ

σ σ σ ξ τ

σ σ σ σ ξ τ

σ ξ σ ξ σ σ τ

 − − + 
= − − +

= + + −

∫∫
∫∫
∫ ∫ 

 

Finally, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ, ; , , d , ; , , d

ˆ ˆ, ; , , , , ; , d ,
PQ PABQ

g x t h t t g x t h

g x t h g x t hξ ξ

ξ σ ξ ξ ξ τ σ ξ τ ξ

ξ τ σ ξ τ σ ξ τ ξ τ τ

+ = +

 + + − + 

∫ ∫ 

   

 (32) 

since, 
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ˆ ˆd d .
QP PQ

g gσ ξ σ ξ= −∫ ∫   

When 0h → , the left side of (32) equals to  

( ) ( )( )
( ) ( ) ( )( )

( )

0 0
ˆ ˆlim , ; , , d lim , ; , , d .

x t x t

x t x th h
U x t h t t U x t h t tξ σ ξ ξ ξ σ ξ ξ+ +

− −→ →
+ − + −∫ ∫

 
(33) 

3. Main Results 

In this section we will state the main results, for convenience we will divide this 
section into two parts. In the first part, we will give three propositions and one 
theorem. Where, Proposition 1 and Proposition 2 are useful in proving Proposi-
tion 3, and Proposition 3 proves Theorem 1. Theorem 1 represents the solution 
of σ  in free boundary problem (27). In the second part, we will derive the so-
lution of boundary velocity ( )v t±  and boundary position ( )x t±  by using con-
dition (12) and Theorem 1. 

3.1. Solution for Free Boundary Problem 

In order to prove Theorem 1, we need to prove following three propositions. 
Proposition 1. Suppose that, ( )ˆ ,x tσ  is continuous for x  on PQ



, when 
( ) ( )0, ,p x t h p x t+ → , then  

( ) ( )
2

4
0

ˆ ,
ˆlim e d ,

2 π
x x h
x xh

x t
x t

h

ησ
η σ+

−

−−

−→
=∫                 (34) 

holds. 
Proof. We consider the left side of (34), 

( ) ( ) ( ) ( )2
2 22 24

2 2

ˆ ˆ ˆ, , ,
e d e d 2 e d .

2 π 2 π π

x x x x
x x h hh

x x x xx x
h h

x t x t x t
h

h h

η
ζ ζσ σ σ

η ζ ζ
+ +

+

− −−

− −
−− − −

− −−
= =∫ ∫ ∫  

Since, 

0 0
lim , lim ,

2 2h h

x x x x
h h

− +

→ →

− −
= −∞ = +∞  

hence, 

( ) ( ) ( )
2

2
4

0

ˆ ˆ, ,
ˆlim e d e d , .

2 π
x x h
x xh

x t x t
x t

h

η
ζσ σ

η ζ σ
π

+

−

−− +∞ −

− −∞→
= =∫ ∫  

This completes the proof of Proposition 1. 
Proposition 2. Suppose that, ( )ˆ ,x tσ  is continuous for x  on PQ



, when 
( ) ( )0, , ,p x t h p x t+ →  then 

( ) ( )
2

4
0

ˆ ˆlim , , e d 0
x x h
x xh

x t x t
η

σ η σ η+

−

−−

−→
+ − ≡  ∫              (35) 

holds. 
Proof. We consider the left side of (35), 

( ) ( )
2

4
1 2 3ˆ ˆ, , e d ,

x x h
x x

x t x t H H H
η

σ η σ η+

−

−−

−
+ − ≤ + +  ∫  

where, 
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( ) ( )

( ) ( )

( ) ( )

2

2

2

4
1

4
2

4
3

ˆ ˆ, , e d ,

ˆ ˆ, , e d ,

ˆ ˆ, , e d .

h
x x

h

x x h

H x t x t

H x t x t

H x t x t

η
ε

η
ε

ε

η

ε

σ η σ η

σ η σ η

σ η σ η

−

+

−

−

−

−

−−

−
= + −  

= + −  

= + −  

∫

∫

∫

 

Since ε  is small enough, then, we have 

20
lim 0.
h

H
→

=  

Next, from the continuity of ( )ˆ xσ , for any small δ , there exists 
( )0 x xγ γ +< < − , for x xε η +< < − , we have 

( ) ( )ˆ ˆ, , ,x t x tσ η σ δ+ − <  

therefore, 

( ) ( )

( ) ( )

2

2 2

4
3

4 4

ˆ ˆ, , e d

e d e 0 0 .

x x h

x x h h

H x t x t

x x h

η

ε

η ε

ε

σ η σ η

η ε

+

+

−−

− −−

+

= + −  

≤ ≤ − − → →

∫

∫

 

Similarly we can get 

10
lim 0.
h

H
→

=  

Therefore, (35) follows. 
Proposition 3. Suppose that, ( )ˆ ,x tσ  is continuous for x  on PQ



 and 
when ( ) ( )0, ,p x t h p x t+ → , then  

( ) ( ) ( )( )
( )

( )
0

ˆ ˆlim , ; , , , d

ˆ , .

x t

x th
U x t h t t t

x t

ξ σ ξ σ ξ ξ

σ

+

−→
+

=

∫              (36) 

Proof. From the assumption of Proposition 3, we have 

( ) ( )( )
( )

( ) ( )

( )
( )

( )

( )

( ) ( )

2

2

2 2

4

4

4 4

ˆ, ; , , d

ˆ, ; , , d

ˆ ,
e d

2 π

1 ˆ , e d
2 π

1 1 ˆ ˆe d , , e d .
2 π 2 π

x t

x t

x x

x x

x x t h t

x x

x x h
x x

x x x xh h
x x x x

U x t h t

U x t h x t x t

x

t h t

x t
h

x t x t
h h

η

η

η η

ξ σ ξ τ ξ

η σ η η

σ η τ
η

σ η η

η σ η σ η

+

−

+

−

+

−

+

−

+ +

− −

−

−

−− + −

−

−−

−

− −− −

− −

+

= + + +

+
=

+ −

= +

= + + −  

∫

∫

∫

∫

∫ ∫

 

By Proposition 1 and Proposition 2, we can prove Proposition 3. This com-
pletes the proof. 

Theorem 1. Suppose that ( )ˆ ,x tσ  is continuous for x  on PQ


, then we 
have 
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( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

0 0

0

, e , ; , 0 d , ; , e d

, ; , e d , ; , e d

, ; , e d .

l tt
l

t t

t

x t g x t g x t x v

g x t x g x t x v

g x t x

τ

τ τ
ξ

τ
ξ

σ ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− − + +

+ +

= −

+ +

− 

∫ ∫

∫ ∫

∫

 (37) 

Proof. Proposition 3 gives the calculation of the first term of form (33). Re-
garding to the second term of (33), we are using the third property of U  in 
(20), 

( ) ( )( )
( ) ( ) ( )( )

( )ˆ ˆ, ; , , d , ; , , d ,
x t x t

x t x t
U x t h t t U x t h t tξ σ ξ ξ ξ σ ξ ξ+ +

− −
+ − = − +∫ ∫  

for ( ) ( )x t x tξ− +< < . Similarly to (36), we have 

( ) ( )( )
( ) ( )

0
ˆ ˆlim , ; , , d , ,

x t

x th
U x t h t t x tξ σ ξ ξ σ+

−→
− + = −∫  

since x−  not belongs to ( ) ( )x t x tξ− +< < , therefore, ( )ˆ , 0x tσ − ≡ , and the 
second term of (33) equivalent to 0. 

The above results show that the left side of Equation (32) satisfies 

( ) ( ) ( )
0

ˆ ˆlim , ; , , d , .
PQh

g x t h t t x tξ σ ξ ξ σ
→

+ =∫             (38) 

Then, we have 

( ) ( ) ( )

( ) ( ) ( ) ( )
0

ˆ ˆ, lim , ; , , d

ˆ ˆ, ; , , , , ; , d .
PABQh

x t g x t h

g x t h g x t hξ ξ

σ ξ τ σ ξ τ ξ

ξ τ σ ξ τ σ ξ τ ξ τ τ
→

= +

 + + − + 

∫
   (39) 

For the right side of (39), it is clear that point ( ),x t h+  is separated from 
PABQ


, and ( ), ; ,g x t h ξ τ+  and ( )ˆ ,σ ξ τ  is continuous for h  on PABQ


, 
since, 

( ) ( )

( )
( )

( )
( ) ( )

( )

( )
( )

( ) ( )

2 2

0

4 4

0

ˆlim , ; , ,

ˆ ˆ, ,
lim e e

2 π 2 π

ˆ, ; , , ,

h

x x
t h t

h

U x t h

t h t

U x t

ξ ξ
τ τ

ξ τ σ ξ τ

σ ξ τ σ ξ τ

τ τ

ξ τ σ ξ τ

→

− −
− −

+ − −

→

+

 
 = = + − − 
 

=

 

and 

( ) ( ) ( )
( ) ( ) ( )

0 0 0
lim , ; , lim , ; , lim , ; ,

, ; , , ; , , ; , .
h h h

g x t h U x t h U x t h

U x t U x t g x t

ξ τ ξ τ ξ τ

ξ τ ξ τ ξ τ
→ → →

+ = + − + −

= − − =
 

Moreover, note g  is continuous for all ξ  and τ  on PABQ


. Hence from 
the bounded convergence theorem we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

ˆ ˆ ˆlim , ; , , d , ; , , ; , d

ˆ ˆ ˆ, ; , , d , ; , , ; , d
PABQh

PABQ

g x t h g x t h g x t h

g x t g x t g x t

ξ ξ

ξ ξ

ξ τ σ ξ τ ξ ξ τ σ σ ξ τ τ

ξ τ σ ξ τ ξ ξ τ σ σ ξ τ τ
→

 + + + − + 

 = + − 

∫
∫





(40) 

for ( ) ( )( )x t x x t− +< < . Now, take together (38) and (40), we have 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, , ; , , d , ; , , ; , d .
PABQ

x t g x t g x t g x tξ ξσ ξ τ σ ξ τ ξ ξ τ σ σ ξ τ τ = + − ∫  (41) 

Equation (41) is useful to prove Theorem 1, which can be written as, 
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( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

00 0

0

, e , ; , 0 d , ; , e d

, ; , e d , ; , e d

, ; , e d .

l tt
l

t t

t

x t g x t g x t x v

g x t x g x t x v

g x t x

τ

τ τ
ξ

τ
ξ

σ ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− + +

+ +

= −

+ +

− 

∫ ∫

∫ ∫

∫

 (42) 

This completes the proof of Theorem 1. 

3.2. Solution for Velocity 

In the above result (37) in Theorem 1, all variables are known except 
( )( ),xξσ τ τ± . From the Equation (6) and last condition of (28), we can write 

( ) ( ) ,x t v t± ±′ = −                        (43) 

( )
( ) ( )

0
lim , ,xx x t

x t v tσ
±

±→
=



                    (44) 

where, ( ) ( )( ),v t v x t t± ±=  is velocity of ( )x t± . To define ( )v t±  we first diffe-
rentiate the both side of (42), thereupon, 

( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

0 0

0

, e , ; , 0 d , ; , e d

, ; , e d , ; , e d

, ; , e d .

l tt
x x xl

t t
x x

t
x

x t g x t g x t x v

g x t x g x t x v

g x t x

τ

τ τ
ξ

τ
ξ

σ ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− − + +

+ +

= −

+ +

− 

∫ ∫

∫ ∫

∫

 (45) 

From the definition of ( ), ; ,U x t ξ τ  one can easily get 

( ) ( ), ; , , ; , ,xU x t U tξ τ ξ ξ τ= −                   (46) 

then, 

( ) ( ) ( )
( ) ( )

( ) ( )

( )

, ; , , ; , , ; ,

, ; , , ; ,

, ; , , ; ,

, ; , .

x x xg x t U x t U x t

U x t U x t

U x t U x t

G x t

ξ ξ

ξ

ξ τ ξ τ ξ τ

ξ τ ξ τ

ξ τ ξ τ
ξ

ξ τ

= − −

= − + −

∂
= − + −  ∂

= −

 

If we use above property, (45) becomes, 

( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

0 0

0

, e , ; , 0 d , ; , d

, ; , e d , ; , e d

, ; , e d .

l tt
x l

t t

t

x t G x t G x t x e v

G x t x G x t x v

G x t x

τ
ξ ξ

τ τ
ξξ ξ

τ
ξξ

σ ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− − + +

+ +

= − −

+ +

− 

∫ ∫

∫ ∫

∫

 (47) 

Next, from (23), we have G Gξξ τ= − , thus, (47) becomes 

( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0 0

0 0

0

, e , ; , 0 d , ; , e d

, ; , e d , ; , e d

, ; , e d .

l tt
x l

t t

t

x t G x t G x t x v

G x t x G x t x v

G x t x

τ
ξ ξ

τ τ
τ ξ

τ
τ

σ ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− − + +

+ +

= − −

+ +

− 

∫ ∫

∫ ∫

∫

 (48) 

When x  tends to ( )x t−  from the left, 
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( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

0

0

0

0

0
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1, ; , e d e
2

, ; , e d

, ; , e d

, ; , e d .
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l

t t

t

t

t

v t G x t t

G x t t x v v t

G x t t x

G x t t x v

G x t t x

ξ

τ
ξ

τ
τ

τ
ξ

τ
τ

ξ σ ξ ξ

τ τ τ τ

τ τ σ τ τ

τ τ τ τ

τ τ σ τ τ

+

−

−
− −

− − − −

− − −

− + +

− + +

= − 
 − + 
 

+

+

+ 

∫

∫

∫

∫

∫
      

(49) 

(See appendix for specific information). 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0 0

0 0

0

2 e , ; , 0 d , ; , e d
3

, ; , e d , ; , e d

, ; , e d .

l tt
l

t t

t

v t G x t t G x t t x v

G x t t x G x t t x v

G x t t x

τ
ξ ξ

τ τ
τ ξ

τ
τ

ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− − − − −

− − − − + +

− + +

= − −

+ +

+ 

∫ ∫

∫ ∫

∫  

(50) 

When ( ) 0x x t+→ − , 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0 0

0 0

0

2e , ; , 0 d , ; , e d

, ; , e d , ; , e d

, ; , e d .

l tt
l

t t

t

v t G x t t G x t t x v

G x t t x G x t t x v

G x t t x

τ
ξ ξ

τ τ
τ ξ

τ
τ

ξ σ ξ ξ τ τ τ τ

τ τ σ τ τ τ τ τ τ

τ τ σ τ τ

+

−

−
− + + − −

+ − − + + +

+ + +

= − −

+ +

+ 

∫ ∫

∫ ∫

∫  

(51) 

Integrate both sides of (43) from 0 to t, we have 

( ) ( )
0 0

d d ,
t t
x t t v t t± ±′ = −∫ ∫  

therefore, we have 

( ) ( )
0

d .
t

x t l v t t± ± ±= − ∫                    
 (52) 

Refer appendix for specific information about how (49) and (51) are followed 
by (48) as ( ) 0x x t−→ +  and ( ) 0x x t+→ − , respectively. 

4. Conclusions 

Actin filaments are cytoskeleton in cytoplasm, which can drive cell deformation, 
migration [14], and even invasion to the surrounding matrix [15]. How actin fi-
laments are driving cancer cell invasion has been discussed in [1]. They consi-
dered four particles, actins, ECMs, MMPs and ECM fragments, where actins and 
MMPs act in intracellular area, ECMs and ECM fragments exist in extracellular 
area. Although, they had an excellent result which can describe the deformation 
of the cell membrane; however, they cannot control the actins, which should not 
be in extracellular area, diffused throughout the whole domain. To improve the 
work in [1], in this paper we added a free-boundary Γ , which is defined as (3), 
to separate the whole domain into two sub-domains, intracellular domain and 
extracellular domain. Where, the free-boundary Γ  is proportional to the cell 
membrane, which is considered to be pushed by actin assembly (n), and hence 
we took the boundary velocity v  depending on the assembly rate of actin pro-
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teins. 
Colin et al [16] introduced a model to describe endothelial cells’ migration on 

bioactive micro-patterned polymers. In their model, the chemotaxis term is con-
sidered as cell-cell interaction, therefore, they considered two domains, the adhe-
sive domain and the non-adhesive domain, where adhesive areas are surrounded 
by non-adhesive areas. By the motivation of the work in [16], we divided the 
domain into two parts; however, because of the high complexity of the model, it 
is difficult to deal with the solution. Thus, we simplified the model and turn the 
problem into Stefan problem (27), and then consider its solution in one-dimen- 
sional case. As a result, integral equations ( )x t±  and ( )v t±  were obtained. 
Therefore, problem of solving system (27) was turned to the problem of solving 
combination of (50), (51) and (52). The results are useful because the system (27) 
became more suitable to apply finite difference method or other methods, for 
example, Picard’s successive method. On the other hand, from the biological 
point of view, the results, in this paper, are not enough to explain the biological 
meaning; however, they will lead us to further step to discuss the solution of the 
modified model (1 - 5). 

We have more interesting topics which deserve further investigations, such as 
numerical simulations of the integral equations (48, 50 - 52) and how we can get 
the solution of the original modified model (1 - 4) based on integral solution. 
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Appendix 

This appendix provides specific information about how we get (49) from (48). 
a) Confirmation of  

( )
( ) ( ) ( )( ) ( )0 00

lim , ; , 0 d , ; , 0 d ,
l l

l lx x t
G x t G x t tξ ξξ σ ξ ξ ξ σ ξ ξ+ +

− −−
−→ +

=∫ ∫
  

 (53) 

where, ( )0σ ξ  is continuous in closed interval [ ],l l− + . 
Proof. From the definition of G , we have 

( ) ( ) ( ) ( ) ( ) ( )0 0 0, ; ,0 d , ; ,0 d , ; ,0 d .
l l l

l l l
G x t U x t U x tξ ξ ξξ σ ξ ξ ξ σ ξ ξ ξ σ ξ ξ+ + +

− − −
= − −∫ ∫ ∫  

Then, from the definition of U , 

( ) ( ) ( ) ( )
( )2

4
0 03

1, ; , 0 d e d ,
4 π

x
l l t
l l

U x t x
t

ξ

ξ ξ σ ξ ξ σ ξ ξ ξ+ +

− −

−
−

= −∫ ∫  

where, ( )0σ ξ  is continuous in [ ],l l− + , therefore, it is clear that  

( ) ( )
( )2

4
0 e

x
tx
ξ

σ ξ ξ
−

−
−  is continuous on [ ],l lξ − +∀ ∈ . Now, we prove there exist 

( )g ξ  such that ( ) ( )
( )

( )
2

4
03

1 e
4 π

x
tx g

t

ξ

σ ξ ξ ξ
−

−
− ≤ . 

For further calculations, we introduce inequality 
2

e ,aR Rε −− <                         (54) 

where, R →∞ , and a  is positive constant. We can prove (54) by 
2

elim 0,
R

aR R

−

−→∞
=                         (55) 

then, by the definition of Function-limit, we have for any 0ε > , and 
2

e 0 ,
R

aR
ε

−

− − <  

then, 
2

e .R aRε− −<  

Therefore, applying (54) we can get 
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0 04
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2 π4 π 4 π
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ξ σ ξ ξ σ ξ
σ ξ ξ
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Take ( ) ( )0

2 π
g

t
σ ξ

ξ = , from the continuity of ( )0σ ξ  in closed set [ ],l l− +  we 

can say ( )0σ ξ  is bounded, and then there exist 0M > , such that 

( )0 .Mσ ξ <  

Hence, we have 
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4
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1 e d d ,
2 π 2 π4 π

x
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ξ
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−
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+ −− ≤ = −∫ ∫  
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which implies that ( ) ( )
( )2

4
03

1 e
4 π

x
tx

t

ξ

σ ξ ξ
−

−
−  is integrable for all [ ],x l l− +∈   

and continuous for all [ ],l lξ − +∈ . Finally applying continuity of integrals theo-
rem, it follows that 
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∫

∫

 

On the other hand, 

( )
( ) ( ) ( )( ) ( )0 00

lim , ; , 0 d , ; , 0 d .
l l
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U x t U x t tξ ξξ σ ξ ξ ξ σ ξ ξ+ +

− −−
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=∫ ∫  

Similarly, we can get 
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( ) ( ) ( )( ) ( )0 00
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l lx x t
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b) confirmation of 

( )
( )( ) ( )( )
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Proof. Set 
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From the definition of U , we have 
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Take α  is sufficiently close to t , and the absolute value of integration on 
the curve tαΓ  is  
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Since, α  is sufficiently close to t , and the absolute value of ( ),v x t  is suffi-
ciently small, hence, v  is uniformly converges on any point close to ( )x t− . 

Now, prove the continuity of v  near tαΓ . Especially, we want to prove that 
( ),v x t  is continuous on ( )( ),x t t− . We prove this using the Definition of Con-
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tinuity: ( )0, ,x x tδ δ−∃ > − <  if 

( )( ) ( )( ) ( ) ( )( ) ( )( )
0 0

ˆ ˆ, ; , , d , ; , , d
t t
U x t x x U x t t x xξ ξτ τ σ τ τ τ τ τ σ τ τ τ ε− − − − −− <∫ ∫ (58) 

holds for all 0ε > . If we can prove there exists δ  and (58) holds, then we can 
prove the continuity of ( ),v x t . Now, we divide the integrals, 

( )( ) ( )( ) ( ) ( )( ) ( )( )
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where α  is sufficiently close to t . ( t α−  is sufficiently small). Therefore, 
from the convergence of ( ),v x t , we can write, for very small t α− , it holds that 

( )( ) ( )( ) 1ˆ, ; , , d ,
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U x t x xξα

τ τ σ τ τ τ ε− − <∫  

( ) ( )( ) ( )( ) 1ˆ, ; , , d ,
t
U x t t x xξα

τ τ σ τ τ τ ε− − − <∫  

for all 1ε . Furthermore, when t α−  is sufficiently small, then ( )x x t−−  is 
sufficiently small. Next from the continuity of ( ), ; ,U x t ξ τ ,  
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Therefore (58) holds, which implies 
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c) Conformation of 
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where, ˆξσ  is bounded and lipschitz continuous. 
Proof. From the definition of U , we have 
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where, 
( )

2
x x

t
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−
. For simplicity, set ˆ 1ξσ ≡ , and 
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hence, 
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when ( ) 0x x t−→ + , we have 

( )
( )

( )
( ) ( ) ( )

2
00 10 0

2

1lim , lim , e d .
π

x t x
x x t x x t

t

w x t w x t δ δ− −
− −

+∞ −
−

→ + → +
+ = ∫

      
 (59) 

When ( )x x t−=  and tτ = , we have 
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next, from (59) and (60), we can get  
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since, 
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From the proof of Appendix B, one can know ( )1 ,w x t  is continuous near 
( )x t− , therefore, 
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where, ( )( )ˆ , 1xξσ τ τ− ≡ . From Appendix B, we have 
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Next, we can get 

( )( ) ( )( )ˆ, ; , , dU x t x xξ ξτ τ σ τ τ τ− −−  

since, ( )x τ−−  is away from ( )x t−  and the integral 
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is continuous on ( )x t− . 
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