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ABSTRACT 

The distribution of biodiversity at multiple sites 
of a region has been traditionally investigated 
through the additive partitioning of the regional 
biodiversity, called γ-diversity, into the average 
within-site biodiversity or α-diversity, and the 
biodiversity among sites, or β-diversity. The 
standard additive partitioning of diversity re- 
quires the use of a measure of diversity which is 
a concave function of the relative abundance of 
species, like the Shannon entropy or the Gini- 
Simpson index, for instance. When a phyloge- 
netic distance between species is also taken 
into account, Rao’s quadratic index has been 
used as a measure of dissimilarity. Rao’s index, 
however, is not a concave function of the dis- 
tribution of relative abundance of either indivi- 
dual species or pairs of species and, conse- 
quently, only some nonstandard additive parti- 
tionings of diversity have been given using this 
index. The objective of this paper is to show that 
the weighted quadratic index of biodiversity, a 
generalization of the weighted Gini-Simpson in- 
dex to the pairs of species, is a concave function 
of the joint distribution of the relative abun- 
dance of pairs of species and, therefore, may be 
used in the standard additive partitioning of di- 
versity instead of Rao’s index. The replication 
property of this new measure is also discussed. 

Keywords: Additive Partitioning of Biodiversity; 
Biodiversity Measures; Rao’s Index of Dissimilarity; 
Replication Property; Weighted Alpha-, Beta-, and 
Gamma-Diversities; Weighted Gini-Simpson Index 

1. INTRODUCTION 

The amount of turnover among species assemblages is 

an important component for the conservation of biodi- 
versity. The diversity turnover is called β-diversity while 
the regional diversity and the mean of the local diversi- 
ties are called γ-diversity and α-diversity, respectively. 
Unlike the α-diversity and the γ-diversity, there is no 
consensus about how to interpret and calculate the β- 
diversity. According to Whittaker [1,2] who introduced 
the terminology, β-diversity is the ratio between γ-diver- 
sity and α-diversity. This is the multiplicative partition- 
ing of diversity. According to MacArthur [3], MacArthur 
and Wilson [4], and Lande [5], β-diversity is the diffe- 
rence between γ-diversity and α-diversity. This is the 
additive partitioning of diversity. Initially, the diversity 
measures used in the partitioning of diversity (such as the 
classic Shannon’s entropy [6] and the Gini-Simpson in- 
dex [7,8]) depended only on the relative abundance of 
species. Later, Rao [9] introduced a dissimilarity mea- 
sure that takes into account both the relative abundance 
of species and an arbitrary distance between species (for 
example, the phylogenetic distance). When Rao’s index 
is used as a measure in the additive partitioning of bio- 
diversity, β-diversity reflects the dissimilarity between 
the diversities of the sites of the respective region. 

Within the last decade or so, many published studies 
attempted to use Rao’s index in the additive partitioning 
of biodiversity. Some papers have looked for special 
types of distance matrices for which Rao’s index is a 
concave function of the distribution of the relative abun- 
dance of individual species. Other papers have looked for 
nonstandard, particular additive partitioning of diversity 
in α-, β-, and γ-diversities. The main difficulty comes 
from the fact that, for an arbitrary distance between spe- 
cies, Rao’s index is a quadratic, but not concave, func- 
tion of the distribution of the relative abundance of indi- 
vidual species and a linear, but not quadratic, function of 
the joint distribution of the relative abundance of distinct 
pairs of species and, as a consequence, it is not suited for 
the general standard additive partitioning into α-, β-, and 
γ-diversities. The present paper proposes the use of a 
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weighted quadratic indicator instead of Rao’s index. The 
weighted quadratic indicator, a generalization of the 
weighted Gini-Simpson index to the pairs of species, 
proves to be a concave function of the joint distribution 
of the relative abundance of pairs of species and is suit- 
able for use in the additive partitioning of biodiversity 
induced by the pairs of species when a distance between 
species is taken into account. The formula for calculating 
the β-diversity, as a measure of dissimilarity among the 
diversities of the sites, is given. A numerical example is 
presented in order to illustrate how the mathematical 
formalism may be applied. In Section 4, a simple alge-
braic transformation is presented, which allows the use 
of the weighted quadratic index in the multiplicative par-
titioning of biodiversity, and the corresponding replica-
tion property is discussed. 

2. RAO’S INDEX OF DISSIMILARITY  

If there are n species, let  1, , np p    be a vector 
such that: 

 0, 1, , ; 1,i ii
p i n p    

where ip  is the relative abundance of species i. The 
classic measures of biodiversity are the Shannon en-
tropy ([6]): 

  ln ,i ii
H p p    

(where 0 ln 0 0,  extending by continuity the function 
lnx x  to be equal to zero at the origin), and the 

Gini-Simpson index ([7,8]): 

  21 .ii
GS p    

Recently, Jost [10,11], and Jost et al. [12] gave some 
examples showing that both the Shannon entropy and the 
Gini-Simpson index do not behave well when the num-
ber of species n is very large. Guiasu and Guiasu [13] 
showed, however, that the Rich-Gini-Simpson index:  

   1i ii
RGS n p p   , 

which depends explicitly on the number of species (spe-
cies richness), preserves all the properties of the classic 
Gini-Simpson index GS but, unlike GS, behaves very 
well when n is large. Another measure of diversity is the 
weighted Gini-Simpson index (Guiasu and Guiasu [14]): 

   1w i i ii
GS w p p   , 

where  1, , nw w w   is the vector whose components 
are some nonnegative weights assigned to the species, 
such as the conservation values of the respective species, 
for instance. Obviously, GSw becomes RGS if iw n  
for each 1, , .i n   

Let ijd   D  be a square matrix whose entries are 

the distances between species, such as the phylogenetic 
distances, for instance. Then, we have: 

 0, 0, , 1, ,ij iid d i j n     

Rao’s index [9], also called quadratic entropy or dis-
similarity measure, is: 

  .D ij i jij
R d p p    

Let us assume that in a certain region there are n spe-
cies and m sites. In what follows, the subscripts i and j 
refer to species (i, j = 1, ,n) and the subscripts k and r 
refer to sites, (k, r = 1, ,m).  

Let  1, ,, ,k k n kp p    be the vector whose compo-
nents are the relative abundances of the individual spe-
cies within site k, such that: 

 , ,0, 1, , ; 1,i k i ki
p i n p    

for each 1, ,  .k m   A measure of diversity μ may be 
used in the standard additive partioning of diversity in-
duced by individual species if it is a concave function, 
which means that it satisfies the inequality: 

   k k k kk k
              (1) 

for arbitrary parameters such that: 

 0, 1, , , 1.k kk
k m          (2) 

In such a case, as pointed out by Lande [5], the right- 
hand side of (1) is the α-diversity, denoted by α, measur- 
ing the average local diversity, and the left-hand side of 
(1) is the γ-diversity, denoted by γ, measuring the re-
gional or global diversity. In the additive partitioning of 
diversity, the β-diversity is the diference between the 
γ-diversity and the α-diversity, ,     representing 
the variation, changes and dissimilarity between the di-
versities of the sites within the given region.  

The measures of biodiversity H, GS, RGS, and GSW 
are concave functions and satisfy the inequality (1), for 
arbitrary parameters (2), and, therefore, are suitable to be 
used in the additive partioning of diversity induced by 
individual species. 

Viewed as a function of the relative abundance of in-
dividual species, RD is a quadratic function of the relative 
abundance of individual species. Unfortunately, if the 
distance matrix D is arbitrary, Rao’s index RD, taken as a 
diversity measure μ, does not satisfy the inequality (1) 
for arbitrary parameters (2) and, therefore, cannot be 
used in a standard additive partitioning of the diversity. 
There is a vast recent literature (Pavoine et al. [15], Ri-
cotta [16], Ricotta and Szeidel [17], Hardy and Senterre 
[18], Villéger and Mouillot [19], Hardy and Jost [20], 
Ricotta and Szeidel [21], Sherwin [22], De Bello et al. 
[23], and Tuomisto [24,25] about how to use Rao’s index 
RD in the additive partioning of diversity. Some research 
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focused on finding special kinds of distance matrices D 
for which the corresponding Rao’s index RD is a concave 
function, such as the matrix D  assumed to be Euc- 
lidean, for instance. Some other research focused on how 
to use Rao’s index for getting a nonstandard additive 
partitioning of diversity, which means determining whe- 
ther some special parameters (2) could be used in order 
to define analog α-, β-, and γ-diversities corresponding to 
these particular parameters.  

For instance, Hardy and Senterre [18] proposed the 
following nonstandard statistical framework for parti- 
tioning the phylogenetic γ-diversity into α- and β-com- 
ponents using Rao’s index. 

Let Aik be the abundance (number of individuals) of 
species i within site k. The relative abundance of species 
i within site k is: 

 ,i k ik iki
p A A  , 

and the relative abundance of species i over all sites is 
defined as: 

 ,i ik ikk i k
p A A   . 

Let ijd  be the distance between the species i and j. 
Using Rao’s index, Hardy and Senterre [18] defined the 
γ-diversity to be:  

,
,T ij i ji j

E d p p   

measuring the total or regional diversity. The diversity 
within-site k is: 

, ,,k ij i k j ki j
E d p p  . 

The average within-site diversity: 

 1S kk
E m E    

is called α-diversity. According to the additive partition- 
ing of diversity, β-diversity is defined by them to be: 

.T SE E       

Villéger and Mouillot [19] generalized the model pro- 
posed by Hardy and Senterre, following an approach 
outlined by Ricotta [16]. They kept TE  and kE  un- 
changed but replaced SE  by the new:  

S k kk
E E  , 

where 

   ,
, 1, , ,k ik iki i k

A A k m      

which is also a particular case of parameters 1, , m   
satisfying (2). 

According to Hardy and Jost [20], the approaches 
proposed by Hardy and Senterre [18] and by Villégere 
and Mouillot [19] are both adequate in their specific 

contexts but they provide, however, only a nonstandard 
additive partitioning of biodiversity. 

3. WEIGHTED QUADRATIC INDEX 

Rao’s index is important because it measures diversity 
taking into account both the dissimilarity between spe- 
cies, as induced by a distance between them, such as a 
phylogenetic distance for instance, and the relative abun- 
dance of species. Let ijD d     be an arbitrary matrix 
whose entries are the distances between the pairs of n 
species. Let  1, ,, ,k k n kp p    be the vector whose 
components are the relative abundances of the individual 
species within site k, such that: 

 , ,0, 1, , ; 1,i k i ki
p i n p    

for each 1, , .k m   
As mentioned in the previous section, Rao’s index RD 

is a quadratic function of the relative abundances of the 
individual species. It, however, may be also viewed as 
being a linear function of the joint distribution of the 
relative abundance of the pairs of species. Indeed, let us 
take the joint distribution of the pairs of species within 
site k, induced by the distribution of the relative abun-
dance of the individual species k  within site, namely, 

,πk ij k     , where: 

 , , ,π , , 1, , .ij k i k j kp p i j n         (3) 

In such a case, Rao’s index for site k is: 

  , , ,, ,
πD k ij i k j k ij ij ki j i j

R d p p d        (4) 

and it is indeed a linear function of the joint distribution 

,πk ij k      of the relative abundance of pairs of spe- 
cies. 

In dealing with species diversity, a good measure of 
the difference or dissimilarity among the sites in a certain 
region has to be nonnegative and equal to zero if and 
only if there is no such difference. Dealing with pairs of 
species, a measure of diversity μ may be used in the 
standard additive partitioning of diversity if it is a con- 
cave function, which means that it satisfies the inequa- 
lity: 

   k k k kk k
               (5) 

for arbitrary parameters 1, , m   satisfying (2). In 
dealing with the diversity induced by the pairs of species, 
the right-hand side of (5) is the α-diversity, denoted by α, 
the left-hand side of (5) is the γ-diversity, denoted by γ, 
and the β-diversity is     . As DR  is a linear 
function of k , if we take DR  , (5) becomes an 
equality. But in such a case the corresponding β-diversity 
induced by the pairs of species is equal to zero, for any 
distance matrix D and any relative abundance of species. 
Therefore, Rao’s index is not suitable for use in the addi- 
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tive partitioning of diversity induced by pairs of species 
when a dissimilarity distance between species is taken 
into account.  

The solution proposed here is to replace Rao’s index 
(4) by the weighted Gini-Simpson quadratic index for 
pairs of species:  

   , , , ,,
1D k ij i k j k i k j ki j

GS d p p p p      (6) 

This is a quadratic function of ,πk ij k      defined 

by (3), which satisfies the inequality (5) for arbitrary 
parameters 1, , m   for which (2) holds. Therefore, 

DGS  is suitable for use in the additive partitioning of 
diversity induced by the pairs of species when both a 
distance between species and the relative abundance of 
species are taken into account. 

In order to prove that DGS  satisfies the inequality (5), 
which mathematically means that it is a concave function 
of k , we move to a more general context which, how- 
ever, makes the proof simpler and more elegant. Thus, let 

,πk ij k      be an arbitrary joint probability distribution 
of the pairs of species, where ,πij k  is the probability of 
the pair of species  ,i j  within site k, such that:  

 , ,,
π 0, , 1, , ; π 1.ij k ij ki j

i j n       (7)  

In a more general context, let ijW w     be a square 
matrix whose components are arbitrary nonnegative 
weights assigned to the pairs of species. Denote by: 

   , ,,
π 1 πW k ij ij k ij ki j

GS w         (8) 

the weighted quadratic index of site k. 
Remarks: 1) Let us note that if 1ijw  , for all i and j, 

then (8) becomes the classic Gini-Simpson index as-
signed to the pairs of species.  

2) If 2
ijw n , for all i and j, where 2n  is the number 

of pairs of n species, then (8) becomes the Rich-Gini- 
Simpson index assigned to the pairs of species. 

3) If the weights are the distances between species, 

ij ijw d , and the species are independent, , , ,πij k i k j kp p , 
then  W kGS   from (8) becomes  D kGS   from 
(6).  

4) Another case of interest is when the species are in-
dependent, namely , , ,π ,ij k i k j kp p  and the weights are 

 1

2ij i j ijw v v d  , where ijd  is the distance between 

the species  ,i j  and vi is the value, such as the con- 
servation value for instance, of species i, in which case 
(8) becomes:  

     , , , , ,,

1
1 .

2v D k i j ij i k j k i k j ki j
GS v v d p p p p     

If vi = 1 for all i, then  ,v D kGS   becomes 
 D kGS   given by (6). 

The weighted quadratic index  W kGS   given by (8) 
is a concave function of the joint probability distribution 

,πk ij k      given by (7). Indeed, let: 

 0, 1, , ; 1k kk
k m     

be arbitrary parameters. Taking into account that: 

 
 

 

2 2 2 2
, , ,

2
1 1 1 ,

2
1 1 1 ,

π π 1 π

π

π ,

k ij k k ij k k k ij k

k k k m ij k

k k k k k k m ij k

   

    

       
 

 

   

     

     

 

 

 

for every 1 ,k m   we get:  

   

  
 

  
 

 

, ,,

, ,,

2
, , ,,

2 2
, , , ,,

2

, ,,

1 π

π 1 π

1 π

π 2π π

π π .

W k k k W kk k

ij k ij k k ij ki j k k

k ij ij k ij kk i j

ij k k ij k k r ij k ij ri j k k r

ij k r ij k ij k ij r ij ri j k r

ij k r ij k ij ri j k r

GS GS

w

w

w

w

w

    

  



     

  

 







     

 

 

  

  

 

 
 

 
  
 
  
 

 

  (9) 

We can see that β ≥ 0 and β is equal to zero if and only 
if the sites have identical joint relative distribution, 
namely, ,π πij k ij , for all 1, , .k m    

If the weight is the distance between species and the 
species are independent as far as their relative abundance 
is concerned, namely: 

, , ,,π ,ij ij ij k i k j kw d p p   

for all , 1, ,i j n   and 1, ,k m  , where ,i kp  is the 
relative abundance of species i within site k, then the 
corresponding α-, γ- and β-diversities, with respect to the 
parameters 1, , m  , become: 

 
 , , , ,,

 1 ,

k D kk

k ij i k j k i k j kk i j

GS

d p p p p

 



 

 


 

     (10) 

 
   , , , ,, ,

 1 ,

D k kk

ij k i k j k k i k j ki j i j k

GS

d p p p p

 

 

 

 


  

 (11) 

where, according to (9), we have: 

 2

, , , ,, ij k r i k j k i r j ri j k r
d p p p p    


      (12) 

We have β ≥ 0 and β = 0 if and only if the relative 
abundance of the pairs of species , ,i k j kp p  is the same 
for each site k. 

Numerical example: Let ikA  be the abundance (num-
ber of individuals) of species i within site k. Using an 
example given by Villéger and Mouillot [19], let us as-
sume that there are three species (n = 3), three sites (m = 
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3), and the absolute frequences of the species are:  
A11 = 1,   A21 = 1,   A31 = 2, 

A12 = 28,   A22 = 1,   A32 = 1, 
A13 = 1,   A23 = 1,   A33 = 2. 

Therefore, the respective relative frequencies are: 
P1,1 = 0.25,   P2,1 = 0.25,   P3,1 = 0.50, 

P1,2 = 0.934,   P2,2 = 0.033,   P3,2 = 0.033, 
P1,3 = 0.25,   P2,3 = 0.25,   P3,3 = 0.50. 

The distance between species is assumed to be defined 
by: 12 13 231, 2, 2.d d d    For the parameters: 

1 2 3 1/ 3,      

the Formulas (10)-(12) give: α = 0.361, γ = 0.678, β = 
0.317. 

Remark: If the species are independent, namely 
πij i jp p , where ip  is the relative abundance of spe- 

cies i, and the weights are  2 1

2ij i j ijw n v v d  , where 

ijd  is the distance between the species  ,i j  and vi is 
the value of species i, such as its conservation value for 
instance, in which case the weighted quadratic index: 

   ,
π 1 πW ij ij iji j

GS w    

becomes the weighted Rich-Gini-Simpson quadratic in-
dex:  

   2
, , , , ,,

1
2

i j
v D k ij i k j k i k j ki j

v v
RGS n d p p p p


   (13) 

a measure of diversity which depends not only on the 
distance between species, the relative abundance of the 
distinct pairs of species, and the value of the species, but 
also on the explicit number of distinct pairs of species 
(the richness induced by the pairs of species). If all spe-
cies have the same value,  1, 1, ,iv i n   , then (13) 
is the weighted Rich-Gini-Simpson version of the wei- 
ghted Gini-Simpson quadratic index (6). 

4. REPLICATION PROPERTY 

Dealing with the multiplicative partitioning of diver- 
sity, Whittaker ([1,2]) suggested the use of the exponen- 
tial of the Shannon entropy and the algebraic inverse of 
the Gini-Simpson index as measures of biodiversity. 
Following this line of thought and taking the exponential 
transformation of a general entropy studied by Rényi 
[26], Hill [27] introduced a unified index of diversity 
suitable to use in the multiplicative partitioning of diver- 
sity. Hill [27] and Jost [28] noticed that these multiplica- 
tive measures have the so-called doubling property (or 
replication property) according to which a measure of 
diversity should double when two identically distributed 
but distinct communities (with no shared species) are 
added together in equal proportions. In a personal corre- 
spondence, Professor C. Ricotta asked whether there is a 

reasonable index transformation of the weighted Gini- 
Simpson index that possesses this doubling property. The 
answer is yes. 

4.1. Dealing with Individual Species 

If in a community we have n species, such that the 
distribution of the relative abundance of these species is 

 1, , np p    and the weights assigned to these spe- 
cies are  1, , nw w w  , then the corresponding 
weighted Gini-Simpson index: 

   1w i i ii
GS w p p   , 

which can be used in the additive partitioning of diver-
sity induced by individual species, may be transformed 
into the measure of diversity: 

    121 i i w i ii i
w p GS w p


     ,   (14) 

which can be used in the multiplicative partitioning of 
diversity induced by the individual species. The measure 
(14) has the doubling property. Indeed, if we have two 
communities, A and B, having n species each, all being 
different but having the same distribution of the relative 
abundance  1, , np p    and the same qualitative 
weights  1, , ,nw w w   assigned to the individual 
species, then the union C of these two communities will 
have 2n species with the distribution of the correspond-
ing relative abundance of these species  1 2, , nq q , 
where 2i i n iq q p  , and the corresponding weights 
 1 2, , nu u , where i i n iu u w  .The diversity of C, as 
measured by (14), applied to the 2n species of C is: 

    112 22 ,i ii
u q w p


  

 where ( 1, , 2 )n  ; i.e. 

twice the diversity of A or B.  
Chao et al. [29] claim that the doubling property is “an 

important requirement for species-neutral diversity”. 
This replication property refers, however, to a very sin- 
gular situation because, practically, it is almost impossi- 
ble to see two communities having the same number of 
entirely different species with exactly the same relative 
abundance. But there is another problem here. Thus, Jost 
([10,28]) states that: “The diversity of a community (say 
community C) should double if every species is divided 
into two equal groups, say males (community A) and 
females (community B) and each group is considered to 
be a distinct species…A measure of diversity doubles 
when two identically distributed but distinct communi-
ties, with no shared species, (like communities A and B, 
respectively) are added together in equal proportions”. 
We notice, however, that the simple union of the identi-
cally diverse communities A and B does not reflect the 
diversity of community C, because C contains indeed the 
diversities of A and B, taken separately, but has now the 
additional gender diversity, which is missing in A and in 
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B. The diversity of the union (C) is more than the sum of 
the diversities of A and B, taken separately. 

4.2. Dealing with Pairs of Species 

If there are n species in a community with the joint 
distribution of relative abundance πij      of the 

pairs of species and the weights ijW w     assigned 

to the pairs of species, then the corresponding weighted 
Gini-Simpson index : 

   ,
π 1 π ,W ij ij iji j

GS w    

which can be used in the additive partitioning of diver-
sity induced by pairs of species, may be transformed into 
the measure of diversity: 

    1
2

, ,
1 π π ,ij ij w ij iji j i j

w GS w


        (15) 

which can be used in the multiplicative partitioning of 
diversity induced by the pairs of species. The measure 
(15) has the quadrupling property. Indeed, assume that 
we have two communities, A and B, with n species each, 
all being different (only males  1, , nM M  in A and 
only females  1, , nF F  in B, for instance) with the 
same joint distribution   of the relative abundance of 
the pairs of species and the same weights W  assigned 
to the pairs of species. Thus ijw  is the same weight as-
signed to the pairs      , , , , ,i j i j i jM M M F F M ,  
 ,i jF F , which happens, for instance, when the distance 

ijd  between species i and j, taken as the weight ijw , 
assigned to the pair of species  ,i j , does not depend on 
sex. Let C be the union of communities A and B. It has 
2n species  1 1, , , , ,n nM M F F   with the joint  
2 2n n  distribution of the relative abundance of the 
pairs of species from C: 

   
4 4

, , 1, , 2 ,
4 4s s n

  
     
π    

and the 2 2n n  matrix of the weights assigned to the 
the pairs of species from C: 

   , , 1, , 2s

W W
s n

W W

 
   

 
  W w . 

Then, the diversity of C, as measured by (15), is:  

    112 2

,
4 πs s ij ijs i j

w


 π 
w , 

which shows that the community C has a diversity four 
times larger than the diversity of A or B. But the same 
comment may be made as above: community C, the un-
ion of identical communities A and B, has not only four 
times the diversity of A or B (which is the quadrupling 
replication property for the pairs of species), but also has 

the supplemental gender diversity which is missing in A 
or B.  

5. CONCLUSIONS 

Rao [9] introduced a dissimilarity measure (4) that 
takes into account both the relative abundance of species 
and an arbitrary distance between species. When Rao’s 
index is used in the additive partitioning of diversity, the 
β-diversity reflects the dissimilarity between the diversi-
ties of the sites of the respective region. 

Rao’s dissimilarity measure takes into account both 
the relative abundance of species and an arbitrary dis- 
tance between species (for example, the phylogenetic 
distance). There is a large number of papers published in 
the last decade dealing with different attempts at using 
Rao’s index in the additive partitioning of biodiversity. 
Some papers have looked for special types of distance 
matrices for which Rao’s index is a concave function of 
the distribution of the relative abundance of individual 
species. Other papers have looked for nonstandard, par- 
ticular additive partitioning of diversity into analog α-, β-, 
and γ-diversities. The main difficulty comes from the fact 
that, for an arbitrary distance between species, Rao’s 
index is a quadratic, but not concave, function of the 
distribution of the relative abundance of the individual 
species and a linear, but not quadratic, function of the 
joint distribution of the relative abundance of the distinct 
pairs of species and, as a consequence, it is not suitable 
for use in the general standard additive partitioning of 
diversity into α-, β-, and γ-diversities. The present paper 
proposes the use of a weighted quadratic indicator (6) 
instead of Rao’s index (4). The weighted quadratic indi- 
cator, a generalization of the weighted Gini-Simpson 
index to the pairs of species, proves to be a concave 
function of the joint distribution of the relative abun- 
dance of the pairs of species and is suitable for use in the 
additive partitioning of biodiversity induced by the pairs 
of species when a distance between species is taken into 
account. There is a simple Formula (12) for calculating 
the β-diversity, as a measure of dissimilarity among the 
diversities of the sites. A simple algebraic transformation 
is given which allows the use of the weighted Gini- 
Simpson index in the multiplicative partitioning of bio- 
diversity induced by the individual species (13) or by the 
pairs of species (14), and the corresponding replication 
properties are discussed. 
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