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Abstract 
Bayesian inference is applied in this study to evaluate the posterior distribu-
tion of rate consents for a thermal isomerization of α-pinene by considering 
the uncertainty associated with rate constant parameters and kinetic model 
structural error. The kinetic model of the thermal isomerization of α-pinene is 
shown to have a mathematically ill-conditioned system that makes it difficult 
to apply gradient-based optimization methods for rate constant evaluation. 
The Bayesian inference relates the posterior probability distribution of the rate 
constants to the likelihood probability of modeled concentration of reaction 
products meeting the experimentally measured concentration and the prior 
probability distribution of the parameters. A Markov chain Monte Carlo 
(MCMC) is used to draw samples from posterior distribution while the Baye-
sian inference relationship is considered. Multinomial random walk Metropo-
lis-Hastings is applied in this study to construct the histograms of rate con-
stants as well as the confidence intervals and the correlation coefficient ma-
trix. Results showed that the Bayesian approach can successfully apply to es-
timate the confidence interval of rate constants of reaction model by taking 
into consideration the uncertainty. 
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1. Introduction 

Isomerization of α-pinene is to produce other monoterpene hydrocarbons that 
have wide application in the cosmetic, perfume, aromatic polymer, and other 
domestic chemicals industries [1]. Thermal isomerization of α-pinene in liq-
uid-phase [2], gas-phase [3], and supercritical solvents-fluids [1] is studied to 
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obtain higher production yields and selectivity. Reaction kinetic modeling is a 
vital tool for the simulation of the thermal isomerization of α-pinene and for 
industrial reactor design. Reaction modeling consists of two main steps: first is 
to model the reaction pathways known as a kinetic model that needs an insight 
understanding of mechanisms in the reaction background and second is to cali-
brating the kinetic model by using experimental data [4]. 

Kinetic models often involve a number of rate constants to be estimated. The 
value of these parameters is heavily dependent on the reaction conditions such 
as temperature, pressure, reaction media, the assumed reaction pathway, and the 
quantity and quality of the measured experimental data. These are called uncer-
tainty sources and can significantly affect the estimated value of the reaction 
rates. 

Least-square regressions are extensively used to find the best-fitted curve to 
the experimental data with a given kinetic model. Classical gradient-based opti-
mization methods such as gradient descent and evolutionary algorithms (EA) 
and Genetic algorithm are applied to minimize the square error between the 
measured and modeled data points. In an ill-conditioned system of equations, 
the gradient-based algorithms can trap in local minimums and are usually failed 
to find the global minimum error [5]. However, the EA methods result in a 
global optimum. Kinetic model of the thermal isomerization of α-pinene is stu-
died by Tjoa et al. [6] who applied local estimator methods for the rate constant 
estimation and found that these local methods need good initial guesses to be 
able to find the optimum rate constants. Yermakova et al. [1] applied gradient- 
based Gauss-Marquardt iteration method for the kinetic model identification of 
the thermal isomerization of α-pinene and in order to overcome to the ill-con- 
ditioning conditions, they applied regularization techniques that can result in a 
biased estimation of reaction constants. Rodriguez-Fernandez et al. [5] studied 
the same reaction system and successfully applied a global optimization based on 
the Scatter Search method and obtained the point estimate of rate constants and 
the global minimum of the least-square objective function. However, these ap-
proaches result in a point estimate of reaction rates without taking into account 
the uncertainty. Therefore, other statistical techniques such as analysis of va-
riance (ANOVA), t-distribution tests, Fisher Information Matrix, jackknifing, 
and bootstrapping methods need to be used as complementary methods to ob-
tain the parameter covariance matrix. 

Bayesian inference is a logical statistical framework that applies experimental 
measured data as evidence points to increase the degree of confidence for the 
targeted parameters with a given prior knowledge. In the kinetic model calibra-
tion, the Bayesian inference can be used to quantify the uncertainty associated 
with the rate constant values as well as model structural error. Markov chain 
Monte Carlo (MCMC) methods such as Metropolis-Hastings algorithm are 
usually used to construct the posterior distribution of the Bayesian inference. 
This method results in an evidence base confidence interval of the rate constants 
while the correlation between parameters is taken into consideration. MCMC 
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methods need to take large enough samples from the posterior distribution to 
result in a converged histogram of parameters. Therefore, applying MCMC me-
thods are computationally expensive. Galagali et al. [7] proposed an adaptive 
MCMC to alleviate a portion of this computational burdensome. High-perfor- 
mance computing can largely enhance the performance of MCMC sampling 
methods to deal with uncertainties. For example, Alikhani et al. [8] [9] showed 
an application of adaptive ODE solution algorithm in parallel-based GPU to ac-
celerate the solution of mass balance rate equations in the kinetic models. They 
showed that applying these improvements can reduce the overall computation 
time by up to 50%. Altogether, the nowadays high-speed computers plus high- 
performance computing algorithms made it more feasible to use MCMC me-
thods in the uncertainty evaluation. 

Moles et al. [4] studied a non-linear biochemical model and applied different 
optimization method to estimate 36 model parameters and concluded that only 
stochastic algorithms were able to successfully solve the problem. Sathyamoor-
thy et al. [10] applied the Generalized Uncertainty Estimation (GLUE) technique 
for the uncertainty evaluation of a biological nitrification model. Sun et al. [11] 
applied the Bayesian inference with MCMC to obtain rate constants of Phytate 
(an organic phosphorus compound in agricultural soils) degradation in three 
different pathways. The Bayesian inference is applied in other studies in different 
fields for uncertainty analysis and parameter estimation [12] [13] [14] [15] [16]. 

This study is aiming at applying the Bayesian inference to numerically eva-
luate the uncertainty associated with the reaction rate constants and their corre-
lation matrix for the thermal isomerization of α-pinene over the experimental 
data obtained from Fuguitt et al. [2]. The obtained results are compared with the 
results in other studies obtained by using other methods to demonstrate the 
strength of proposed method. 

2. Materials and Methods 
Kinetic Model 

Experimental data of liquid-phase thermal isomerization of α-pinene in 189.5°C 
obtained by Fuguitt et al. [2] is presented in Table 1. This reaction produces 
four products that are presented in weight fraction in eight intervals each with 
duplicated results. Hunter et al. [17] proposed a kinetic model for this reaction 
as it is shown in Figure 1 followed by Equations (1) to (5). In this scheme 
α-pinene (C1) converts to dipentene (C2) and allo-ocimen (C3) in two parallel 
paths; dipentene is the end-point component but allo-ocimen yields α- and 
β-pyronene (C4) and involves in an equilibrium reaction with other dimer com-
pounds (C5). 

In this kinetic model, each reaction pathway follows by a first order reaction. 

( )1
1 2 1

d
d
c p p c
t
= − +                        (1) 

1 1
2d

d
c p c
t
=                            (2) 
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Figure 1. Kinetic model of the thermal isomerization of α-pinene where C1 is α-pinene, 
C2 is dipenetene, C3 is allo-ocimene, C4 is pyrone, and C5 denotes for other dimer com-
pounds [5]. 
 
Table 1. Experimental data of thermal isomerization of α-pinene at 189.5 °C [2]. 

t (min) α-pinene dipenetene allo-ocimene pyrone dimer 

0 100.0 0.0 0.0 0.0 0.0 

1230 88.4 7.1 1.6 0.8 2.3 

1230 88.3 6.7 3.0 0.8 1.3 

3060 76.5 15.3 4.1 1.1 3.0 

3060 76.3 15.1 4.9 1.1 2.6 

4920 65.7 22.2 5.0 1.4 5.7 

4920 64.2 23.1 5.5 1.4 5.8 

7800 50.5 32.5 5.8 1.7 9.4 

7800 50.2 32.9 6.1 1.7 9.2 

10680 37.7 42.4 5.6 2.1 12.2 

10680 37.2 42.6 6.4 2.1 11.7 

15030 25.9 48.8 6.0 2.4 16.9 

15030 25.8 49.0 5.8 2.4 17.0 

22620 13.9 57.3 5.2 2.6 21.0 

22620 14.0 57.4 5.0 2.6 21.0 

36420 3.9 63.4 3.9 2.9 25.8 

36420 5.0 62.9 3.7 2.9 25.5 
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The kinetic model can be simplified to show the system of ordinary differen-
tial equations (ODEs): 
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where j denotes each reaction pathway and ijz  is the stoichiometery of com-
ponent i in path j. By introducing 0

1

i
i

cy
c

=  as normalized concentration where  
0
1c  is the initial concentration of C1 (α-pinene), the Equation (6) can be rewrit-

ten as [1]: 

5
1

d
d

i
ij j jj

y z p y
t =
= ∑                       (7) 

With the following initial conditions: 0
1 1y = , and other 0

iy  equal to zero. 
Model calibration is determining the numerical value of rate constants ( jp ) 

considering the experimental data. 

3. Model Calibration 

The idea of applying the Bayesian inference in the rate constant evaluation of a 
kinetic model is based on recent work by Alikhani et al. [18], which they pro-
posed a systematic way to apply the Bayesian inference for parameter estimation 
and uncertainty quantification of a large-sized kinetic model. 

Alikhani et al. [18] introduced a general form of the kinetic model in a vector 
form: 

( ) ( )( )d , ,
d

f t t
t
=

C C U Θ                      (8) 

where f represents the interactions between species by applying mass balance 
equation while ( )tC  is the concentrations of all the species, ( )tU  is the ex-
ternal forcing input, and Θ  is the model parameters. In the batch reactor sys-
tem there is no external forcing input and therefore the concentration of each spe-
cies becomes only a function of model parameters and the initial concentrations. 

( ) ( )0,t F=C Θ C                          (9) 

In the normalized form followed by Equation (7), the model output concen-
trations become only a function of model parameters: 

( )=Y Y Θ                             (10) 

By using this notation, model calibration defines as estimating the values of 
Θ  values approaching a maximum likelihood of modeled ( Y ) versus experi-
mental concentrations �Y . Assuming a normal distribution for likelihood func-
tion with constant error standard deviation (ESD), eσ , the likelihood probabil-
ity distribution can be define as [18]: 

( )
( )

( )2
1

2 22

1| exp
22π

n
i ii

n
ee

y y
p

σσ
=

 − −
 =
 
 

∑ ��Y Y            (11) 

where iy  and iy�  are the individual points of Y  and �Y  vectors, respective-
ly, and n is the total number of experimental data. According to Equation (10), 
Y  is only a function of Θ  in a given initial conditions and therefore 

( )|p �Y Θ  is equivalent term for the likelihood probability function. 
By this assumption (normal distribution for errors and a constant indepen-

dent standard error), the square error minimization becomes a specific case of 
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maximum likelihood method as minimizing the numerator of the exponential in 
Equation (11) maximizes the ( )|p �Y Y . This is referred to as deterministic ap-
proach when the ESD assumes to be constant; otherwise, it is called stochastic 
approach when ESD treats as an unknown variable resulting in a distribution of 
valid parameters instead of a point estimate. Therefore, in the stochastic ap-
proach the likelihood function can be defined as ( )|p �Y X  where X  is the 
union of rate constants and the ESD as { }1 2 5, , , , ep p p σ= �X . Estimating the 
numerical value of the ESD is referred to as uncertainty quantification. 

Stochastic model calibration is to find all set of rate constants that meet the 
experimental data. In order to find the ( )|p �X Y , we can use the Bayesian infe-
rence [7] [18] [19]: 

( ) ( ) ( )
( )

|
|

p p
p

p
=

�
�

�
Y X X

X Y
Y

                   (12) 

where ( )p X  is the prior distribution of parameters, ( )|p �X Y  is the posterior 
distribution of parameters that is deemed to be estimated, and ( )p �Y  is the 
probability distribution of experimental data that is unknown and makes direct 
application of the Bayesian inference impossible. 

The prior distribution can take a uniform distribution within the lower and 
upper range of parameters, a normal distribution with its prior mean and stan-
dard deviation, or another type of distributions. For example, Alikhani et al. [18] 
assumed that log-normal distribution is a better representation of the prior dis-
tribution of the parameters in their kinetic model. In this study, to be consistent 
with the likelihood distribution, all the prior distributions are assumed to be a 
normal distribution. 

MCMC is a class of techniques to sample from multidimensional joint proba-
bility distributions [7] [19] [20] [21]. Random walk Metropolis-Hastings (MH) 
algorithm [22] [23] is a subset of MCMC algorithms that is used in this study to 
estimate the probability histogram of parameters, defines as: 

if ( ) ( )*0,1 | ku A< X X 1 *k+ =X X  else 1k k+ =X X         (13) 

where ( )0,1u  is a uniform random number between 0 and 1, kX  is the 𝑘𝑘th 
set of sampled parameter set, and *X  is the proposed parameter set that can be 
accepted or rejected by the conditional relationship. The ( )* | tA X X  is the ac-
ceptance rate, and defines as: 

( ) ( )
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                (14) 

where ( )* | tg X X  is the proposal distribution that randomly proposes *X  by 
given tX . If the Metropolis-Hastings uses as random walk Monte Carlo then g 
must be symmetric [21] and the acceptance rate simplifies as: 
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where ( )|p �X Y  is the posterior probability of parameter X  that is unknown. 
However, by applying Bayesian inference the acceptance rate can be obtained as: 

( ) ( ) ( )
( ) ( )

* *
*

|
|

|
t

t t

p p
A

p p
=

�

�
Y X X

X X
Y X X

                 (16) 

where by given *X  and tX  all the terms in the right-hand side can be calcu-
lated. If g (the proposal distribution) is chosen to be a normal distribution then: 

( )* 0,1t Nρ= + σX X                          (17) 

where ( )0,1N  is a random number from the standard normal distribution, σ  
is the prior standard deviation of parameters, and ρ  is an adjustable factor 
that can take any positive value less than unity to adjust the convergence speed 
of the random walk. Convergence in the MCMC is defined as conditions that the 
change in the standard deviation of the posterior distribution becomes less than 
threshold when random walk sampling continued. 

4. Results and Discussion 

To obtain the posterior distribution of the parameters, Equation (13) was im-
plemented in MATLAB and the ODE equation set of Equation (7) was solved by 
ode45 built-in function. Alikhani et al. [18] suggested throwing away the initial 
portion of the random walk samples due to burn-in period. Therefore, after 5000 
samples as burn-in samples, the MCMC convergence was examined every 10,000 
samples, and it is found that after 180,000 samples the change in the standard 
deviation of posterior distributions is negligible. Histograms of the five rate con-
stants and the ESDn are shown in Figure 2. The 95% confidence interval of the 
rate constants is extracted from the posterior distribution and is shown in Table 
2. 

The deterministic point estimate of the parameters is also obtained by run-
ning Genetic algorithm (GA). Comparing the point estimate results shows a very 
good agreement between the point estimates and the median of the 95% post-
erior interval of the 5 rate constants. However, the value obtained for the ESD in 
the deterministic approach with the value of 0.77 is significantly different than 
its confidence interval of 1.73 - 2.35 obtained by using Bayesian inference appli-
cation. This is the main difference between the deterministic and the stochastic 
approaches which the ESD—the representative of the uncertainty—is missing in 
the deterministic calculations. Therefore, the ESD of the model is not true in the 
point estimate method. 

The ESD of the model is representing both the uncertainty associated with the 
measurements error and the uncertainty associated with the model structure. It 
should be noted that for each species in the kinetic model a separate ESD could 
be considered resulting in a more insight uncertainty assessment. However, 
adding more parameters to the random walk space needs more experimental data 
and larger sample size (resulting in higher computational cost) to be converged. 
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Figure 2. Histograms representing the posterior probability density of the thermal iso-
merization of α-pinene rate constants (105 min−1) and the error standard deviation. 
 

Rodriguez-Fernandez et al. [5] studied the same kinetic model for the isome-
rization of α-pinene and applied a global optimization based on the Scatter 
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Table 2. The confidence interval of the thermal isomerization of α-pinene rate constants 
(105 min−1) and the error standard deviation of the kinetic model. 

Parameter Unit 
Point  

estimates 

Confidence Interval 
std 

2.5th 50th 97.5th 

P1 105 min−1 5.91420 5.82977 5.9055 5.98223 0.03868 

P2 105 min−1 2.98581 2.90245 2.97337 3.04765 0.03697 

P3 105 min−1 2.22161 1.70687 2.1558 2.68663 0.25107 

P4 105 min−1 26.49647 24.65202 28.10585 32.30955 1.99764 

P5 105 min−1 3.67925 2.83815 4.17182 5.7966 0.76017 

σ - 0.77214 1.7286 2.00393 2.35335 0.16409 

 
Search method for model calibration. They obtained the point estimates of p1 = 
5.9259, p2 = 2.9634, p3 = 2.0473, p4 = 27.449, and p5 = 3.9980 (values are times to 
105 to be consistent with the units in Table 2). The results of their study are in a 
close agreement with the results obtained in this study. However, this was not a 
surprising point because both studies are applied an evolutionary optimization 
technique on the same set of experimental data. But what distinguishes two stu-
dies is the significance evaluation of the parameter values. Rodriguez-Fernandez 
et al. [5] applied an approximation method based on a local linearization of the 
model output to evaluate the parameter covariance matrix based on the Fisher 
information matrix. They obtained the value of 0.07195, 0.06519, 0.33328, 
2.7657, and 0.9757 for the standard deviation of p1 to p5, respectively; where 
comparing with the standard deviation of parameters in Table 2, it shows 
roughly 86%, 76%, 33%, 38%, and 28% higher values. This point is also men-
tioned by Rodriguez-Fernandez et al. [5] that the confidence intervals obtained 
from the Fisher information matrix show a wider confidence interval. It can be 
concluded that the confidence interval of rate constants obtained by applying 
Bayesian inference concept is a better representation of uncertainty associated 
with the rate constants. 

The random walk Metropolis-Hastings took many samples from the posterior 
distribution of the rate constants. It is, therefore, is straightforward to find the 
real correlation between each pair of parameters as it is shown in Figure 3. Ex-
cept for the p4-p5 pair, the correlation between other rate constants is relatively 
low. The high correlation factor shows that the current kinetic model cannot be 
fully identified, and the values of p4 and p5 in Table 2 do not correctly represent 
the rate constants [18]. From chemistry point, the high correlation coefficient 
between p4-p5 makes sense because both parameters are belonging to one reac-
tion pathway with equilibrium conditions. In fact, in the equilibrium conditions, 
the ratio of the rate constants is important. This is why the rate constants of p4 
and p5 cannot be identified. This finding is also observed by Yermakova et al. [1] 
and they suggest for a reduction in the kinetic model by removing the fifth path. 

Following the method presented in [24], to show the level of uncertainty asso-
ciated with the kinetic model of the thermal isomerization of α-pinene, a Monte 
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Figure 3. Correlation matrix of the thermal isomerization of α-pinene rate constants. 
 
Carlo simulations performed on the posterior samples. 1000 parameters set were 
randomly selected from the pool of accepted X  and the kinetic model of Equa-
tion (7) was solved for each parameter set. The resulting 95% confidence interval 
for each component at each experimental time interval (Table 1, first column) is 
obtained where is shown in Figure 4. The value of ESD has no effect on the 
model output results as it is shown by blue region in Figure 4 that only includes 
the uncertainty associated with the parameter values. The blue floating bars 
show very narrow region for α-pinene (C1) and dipentene (C2) that is consistent 
with the low standard deviation of 0.039 and 0.037 for p1 and p2, respectively. To 
take into consideration the model structural error, the ESD of each sample is 
added to the model output showing the uncertainty associated with the model 
errors. Therefore, in Figure 4 the red bars are showing the combined uncertain-
ty of parameters as well as model structural. 

As it is seen in Figure 4, the duplicate experimental points are used in the pa-
rameter estimation without taking their average to take into consideration the 
real measurement errors. In this way, the experimental data provide better in-
formation about the parameter values. 

5. Conclusion 

In this study, Bayesian inference and random walk MCMC are applied to esti-
mate the confidence interval of the rate constants of a kinetic model. Thermal 
isomerization of α-pinene is considered as a case study and the performance of 
the proposed model is evaluated by obtaining the posterior distribution of its 
five rate constants plus the error standard deviation of the proposed kinetic 
model. The results showed that: 
1) The Bayesian inference solved by the random walk Metropolis-Hastings 

technique can successfully estimate the posterior distribution of the rate 
constants for a proposed kinetic model while experimental data are given.  
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Figure 4. The thermal isomerization of α-pinene model output confidence interval by 
considering the parameter and model structural uncertainties. 

 
2) The 95% confidence interval and standard deviation for each rate constants 

can be obtained from the posterior distribution and its range represents the 
uncertainty associated with that parameter. 

3) The error standard deviation in the likelihood function treated as an un-
known parameter in the stochastic model identification approach and its 
numerical value literally represents the quantified uncertainty of the model. 

4) Correlation between each pair of parameters is considered in the MCMC 
samples. The results of correlation matrix can provide useful information 
about the identifiability of the proposed kinetic model. 

It can be concluded that the confidence interval of rate constants obtained by 
applying the Bayesian inference concept is an acceptable representation of un-
certainties associated with the kinetic model. 
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