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Abstract 
 
The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector 
exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital 
quantum number l and dimensional space D. The relativistic/non-relativistic energy spectrum formula and 
the corresponding un-normalized radial wave functions, expressed in terms of the Jacobi polynomials 

   , ,nP z  1, 1      and  or the generalized hypergeometric functions  1, 1z     2 1 , ; ;F a b c z  

have been obtained. A short-cut of the Nikiforov-Uvarov (NU) method is used in the solution. A unified 
treatment of the Eckart, Rosen-Morse, Hulthén and Woods-Saxon potential models can be easily derived 
from our general solution. The present calculations are found to be identical with those ones appearing in the 
literature. Further, based on the PT-symmetry, the bound state solutions of the trigonometric Rosen-Morse 
potential can be easily obtained. 
 
Keywords: Approximation Scheme, Eckart-Type Potentials, Rosen-Morse-Type Potentials, Trigonometric 

Rosen-Morse Potential, Hulthén Potential and Woods-Saxon Potential, Klein-Gordon Equation, 
NU Method 

1. Introduction 
 
The exact solutions of the wave equations (non-relativ- 
istic or relativistic) are very important since they contain 
all the necessary information regarding the quantum sys-
tem under consideration. However, analytical solutions are 
possible only in a few simple cases such as the hydrogen 
atom and the harmonic oscillator [1,2]. Most quantum sys- 
tems could be solved only by using approximation sche- 
mes like rotating Morse potential via Pekeris approxima-
tion [3-5] and the generalized Morse potential by means of 
an improved approximation scheme [6]. Recently, the 
study of exponential-type potentials has attracted much 
attention from many authors (for example, cf, [7-39]). 
These physical potentials include the Woods- Saxon [7,8], 
Hulthén [9-22], modified hyperbolic-type [23], Manning- 
Rosen [24-31], the Eckart [32-37], the Pöschl-Teller [38] 
and the Rosen-Morse [39,40] potentials. 

The spherically symmetric Eckart-type potential model 
[41] is a molecular potential model which has been widely 
applied in physics [42] and chemical physics [43,44] and 
is generally expressed as 

   2
1 2, cos cothq qV r q V ech r V r     ,  

1 2,   0,   1 0  or  0V V q q                (1) 

where the coupling parameters 1  and 2V  describe the 
depth of the potential well, while the screening parameter 

V

  is related to the range of the potential. It is a special 
case of the five-parameter exponential-type potential 
model [45,46]. The range of parameter  was taken as 

 in [47] and has been extended to  or 
 or even complex in [46]. The deformed hyper-

bolic functions given in (1) have been introduced for the 
first time by Arai [48] for real  values. When  is 
complex, the functions in (1) are called the generalized 
deformed hyperbolic functions. The Eckart-type poten-
tials (1) can also be written in the exponential form as 
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The study of both bound and scattering states for the 
Eckart-type potential has raised a great deal of interest in 
the non-relativistic as well as in relativistic quantum 
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mechanics. The s-wave  bound-state solution of 
the Schrödinger equation for the Eckart potential has 
been widely investigated by using various methods, such 
as the supersymmetric (SUSY) shape invariance tech-
nology [49], point canonical transformation (PCT) me- 
thod [50] and SUSY Wentzel-Kramers-Brillouin (WKB) 
approximation approach [51]. The bound state solutions 
of the s-wave Klein-Gordon (KG) equation with equally 
mixed Rosen-Morse-type (Eckart and Rosen--Morse well) 
potentials have been studied [52]. The bound state solu-
tions of the s-wave Dirac equation with equal vector and 
scalar Eckart-type potentials in terms of the basic con-
cepts of the shape-invariance approach in the SUSYQM 
have also been studied [34-37]. The spin symmetry and 
pseudospin symmetry in the relativistic Eckart potential 
have been investigated by solving the Dirac equation for 
mixed potentials [38]. Unfortunately, the wave equations 
for the Eckart-type potential can only be solved analyti-
cally for zero angular momentum states because of the 
centrifugal potential term. Some authors [32-38] studied 
the analytical approximations to the bound state solutions 
of the Schrödinger equation with Eckart potential by 
using the usual existing approximation scheme proposed 
by Greene and Aldrich [53] for the centrifugal potential 
term. This approximation has also been used to study 
analytically the arbitrary l -wave scattering state solu-
tions of the Schrödinger equation for the Eckart potential 
[54,55]. The same approximation scheme for the spin- 
orbit coupling term has been used to study the spin 
symmetry and pseudospin symmetry analytical solutions 
of the Dirac equation with the Eckart potential using the 
AIM [56]. Furthermore, the pseudospin symmetry ana-
lytical solutions of the Dirac equation for the Eckart po-
tential have been found by using the SUSY WKB for-
malism [57]. Recently, for the first time, the approxima-
tion scheme for the centrifugal potential term has also 
been used in [58] to obtain the approximate analytical 
solution of the KG equation for equal scalar and vector 
Eckart potentials for arbitrary -states by means of the 
functional analysis method. 

 0l 

l

This approximation for the centrifugal potential term 
[9,19,53] has also been used to solve the Schrödinger 
equation [9,19], KG [10-12,20-22] and Dirac equation 
[20-22] for the Hulthén potential. Recently, the KG and 
Dirac equations have been solved in the presence of the 
Hulthén potential, where the energy spectrum and the 
scattering wave functions were obtained for spin-0 and 
spin-  1 2  particles, using a more general approxima-
tion scheme for the centrifugal potential [20-22]. They 
found that the good approximation, however, occurs 
when the screening parameter   and the dimensionless 
parameter   are taken as 0.1   and 1,   respec-
tively, which is simply the case of the usual approxima-

tion [9,19]. Also, other authors have recently proposed 
an alternative approximation scheme for the centrifugal 
potential to solve the Schrödinger equation for the 
Hulthén potential [59]. Taking 1,   their approxima-
tion can be reduced to the usual approximation [9,19]. 
Quite recently, we have also proposed a new approxima-
tion scheme for the centrifugal term [13,14]. 

The Nikiforov-Uvarov (NU) method [60] and other 
methods have also been used to solve the D-dimensional 
Schrödinger equation [61] and relativistic D-dimensional 
KG equation [62], Dirac equation [6,15,39,40,63] and 
spinless Salpeter equation [64]. 

Our aim is to employ the usual approximation scheme 
[53,58] in order to solve the D-dimensional radial KG 
equation for any orbital angular momentum number l for 
the scalar and vector Eckart-type potentials using a gen-
eral mathematical model of the NU method. This offers a 
simple, accurate and efficient scheme for the exponen-
tial-type potential models in quantum mechanics. We 
consider the following relationship between the scalar 
and vector potentials:   0V     ,V r S r  where 0  
and 

V
  are arbitrary constants [51]. Under the restriction 

of equally mixed potentials  the KG equa-
tion turns into a Schrödinger-like equation and thus the 
bound state solutions are very easily obtained through 
the well-known methods developed in the non-relativis- 
tic quantum mechanics. It is interesting to note that, this 
restriction include the case where  when both 
constants vanish, the situation where the potentials are 
equal 

 S r V

V r

  ,r

  0

 0 0; 1V    and also the case where the poten-
tials are proportional [66] when 0  and 0V  1,    
which provide the equally-mixed scalar and vector po-
tential case    .rV r  Further, we have obtained 
an approximate analytic solution of the KG equation in 
the presence of equal scalar and vector generalized de-
formed hyperbolic potential functions by means of pa-
rameteric generalization of the NU method. Furthermore, 
for the equally-mixed scalar and vector potential case 

S 

    ,S r 

1,

V r  we have obtained the approximate 
bound state rotational-vibrational (ro-vibrational) energy 
levels and the corresponding normalized wave functions 
expressed in terms of the Jacobi polynomial n  
where 

 ,    ,P x
    1    and  1,x  1  for a spin- 

zero particle in a closed form [67]. 
The paper is structured as follows. In Section 2, we 

derive a general model of the NU method valid for any 
central or non-central potential. In Section 3, the ap-
proximate analytical solutions of the D-dimensional ra-
dial KG equation with arbitrary l-states for equally- 
mixed scalar and vector Eckart-type potentials and other 
typical potentials are obtained by means of the NU 
method. Also, the exact s-wave KG equation has also 
been solved for the Rosen-Morse-type potentials and 
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other typical potentials. The relative convenience of the 
Eckart-type potential (Rosen-Morse-type potential) with 
the Hulthén potential (Woods-Saxon potential) has been 
studied, respectively. We make some remarks on the 
energy equations and the corresponding wave functions 
for the Eckart and Rosen-Morse well potentials in vari-
ous dimensions and their non-relativistic limits in Section 
4. Section 5 contains the conclusions and the outlook. 
 
2. Method of Analysis 
 
The method of analysis is briefly outlined here and the 
details can be found in [60]. This method was proposed 
to solve the second-order differential wave equation of 
the hypergeometric-type: 

             2 0n n nz z z z z z z          

z



z

 (3) 

where  and are at most second-degree 
polynomials and  is a first-degree polynomial. The 
prime denotes the differentiation with respect to z. In 
finding a particular solution to (3), one needs to decom-
pose the wave function  as 

 z  z
 z

n



 z

     n n nz z y               (4) 

yielding the following hypergeometric type equation 

          0n n nz y z z y z y z            (5) 

where 

 πk                      (6) 

and  ny z  satisfying the Rodrigues relation 

       d

d

n
nn

n n

A
y z z z

z z
 


            (7) 

In the above equation, nA  is a constant related to the 
normalization and  is the weight function satisfy-
ing the condition 

 z

          0z z z z z              (8) 
with 

       2π ,  0z z z z               (9) 

Since  and  the derivative of 
 should be negative [60] which is the essential 

condition for a proper choice of solution. The other part 
of the wave function in (4) can be defined as 

  0z    0,z 
 z

       π 0z z z z                (10) 

where 

     1
π

2
z z    

       21
4 4

2
z z z k          z     (11) 

The determination of the root k is the essential point in 
the calculation of  π ,z  for which the discriminator of 
the square root in the last equation is being set to zero. 
The results in the polynomial  which is dependent 
on the transformation function  Also, the parameter 

 π z
 .z r

  defined in (6) takes the following form 

     1
1 ,  0,1,2,

2n n z n n z n            (12) 

We may construct a general recipe of the NU method 
valid for any central and non-central potential model. 
This can be achieved by comparing the following hyper-
geometric equation 

       
   

2

3 3 1 2

2

1 1

0

n n

n

z c z z z c z c c z z

Az Bz C z

 



          

    
(13) 

with its counterpart (3) to obtain [67] 

        2
1 2 3, 1 ,z c c z z z c z z Az Bz C            

(14) 

Further, substituting (14) into (11) gives 

      1 22
4 5 6 3 , 7 , 8π z c c z c c k z c k z c             

(15) 

with parametric constants 

    2
4 1 5 2 3 6 5

2
7 4 5 8 4

1 1
1 ,  2 ,

2 2

2 ,  

c c c c c c c

c c c B c c C

A     

   
     (16) 

The discriminant under the square root sign must be 
set to zero and the resulting equation must be solved for 
k, it yields 

 , 7 3 8 82 2k c c c c c      9         (17) 

where 

 9 3 7 3 8c c c c c c6                 (18) 

Inserting (17) into (15) and solving the resulting equa-
tion, we make the following choice of parameters: 

   4 5 9 3 8 8π z c c z c c c z c             (19) 

 7 3 8 82 2k c c c c c     9                   (20) 

Equation (9) gives 

     2 5 9 3 8 81 2 2z c c z c c c z c         (21) z  

whose derivative must be negative: 
*The shortcut is simple and straightforward procedure helping to avoid 
the difficulty in choosing the physical polynomial  and the root 
k. 

 π z    3 9 3 82 2z c c c c  0                 (22) 
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in accordance with essential requirement of the method 
[60]. Solving (6) and (12), we get the energy equation: 

   
  

2
2 3 3 5 7 3

9 3 8 8 9

2 1 2

2 1 2 0

c c n c n n c c c c

n c c c c c

     

    

8



     (23) 

for the potential model under consideration. 
In regards of the wave functions. We firstly obtain the 

solution of the differential equation (8) for the weight 
function  as  z

    1110
31

ccz z c z               (24) 

and hence from (7), the first part of the wave functions 
can be expressed in the form of the Jacobi polynomials as 

    10 11,
31 2c c

n ny z P c z           (25) 

where  and    10 11Re 1,   Re 1c c   

10 1 4 8

11 1 4 9 3
3

2 2 1,

2
1 2 ,  0

c c c c

c c c c c
c

   

    
   (26) 

The second part of the wave functions (4) can be found 
from the solution of the differential equation (10) as 

    1312
31

ccz z c z               (27) 

where 

12 4 8 13 4 9 5
3

1
,  c c c c c c c

c
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2

     (28) 

Hence, the general wave functions (4) read as 

      13 10 1112 ,
3 31 1

c c cc
l nl nu z N z c z P c z     (29) 

where  is the normalization constant nlN
 
3. Bound-State Solutions 
 
The D-dimensional time-independent arbitrary l-state 
radial KG equation with scalar and vector potentials 

 and respectively, where  S r   ,V r r r  describ-
ing a spineless particle takes the general form [3,62]: 
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where  M and ,nlE 2
D  stand for KG energy, mass and 

D-dimensional Laplacian, respectively. In addition, x is a 

D-dimensional position vector. Let us decompose the 
radial wave function  lR r

 
 as follows: 

   1 2D
l r  lR r u r             (31) 

we, then, reduce (30a) into the D-dimensional radial 
Schrödinger-like equation with arbitrary orbital angular 
momentum number l as 
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(32) 

where we have set  2
1 2 1 4M   

l l   


 and 
2M D l   where 0,1l , 2, .   Under the equally 

mixed potentials  S r     ,V r  the KG turns into a 
Schrödinger-like equation and thus the bound state solu-
tions are very easily obtained with the help of the well- 
known methods developed in the non-relativistic quan-
tum mechanics. We use the existing approximation for 
the centrifugal potential term in the non-relativistic 
model [9,19] which is valid only for  value [62, 
68]: 

1q 
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in the limit of small   and  .l
 
3.1. The Eckart-Type Model 
 
At first, let us rewrite Equation (2) in a form to include 
the Hulthén potential, 

 
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and then follow the model used in [62,68,69] by inserting 
the above equation and the approximate potential term 
(33) into (32), we obtain 

 

   

 
 

 


 

     

2

2 2 2

2 2 2 2 2

22

2 2
2 3

2

2 2

d 1

d

1 e
   

1 e
   

2 e
       

1
,  0 0

l

r
nl

r

r
nl

l

l

u r

r c

E M c l l

q

E M qV
u r

Mc r u
c







 






 




1

2

2 2

8 4

1 e r

nl l

c V

c V

q

E u



          
  

 
    
       







(35) 
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which is now amenable to the NU solution. We further 
use the following ansätze in order to make the above 
differential equation more compact 

 

   

 

2

22 2 2

nl 2

1

2 3

,                2 ,

,   
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       (36) 

Notice that 2 .nlE Mc  The KG equation can then 
be reduced to 
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where    0, 0,1 .r z   

 ,  or 0 0z  

 Before proceeding, the 
boundary conditions on the radial wave functions are: 

l  and  is 
finite. Comparing (37) with (13), we obtain values for 
the set of parameters given in Section 2: 
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and also the energy equation through (23) as 
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Making use of (36), the above equation can be rewrit-
ten as 
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(40) 

The energy nl  is defined implicitly by (40) which is 
a rather complicated transcendental equation having 
many solutions for given values of n and l In the above 
equation, let us remark that it is not difficult to conclude 
that bound-states appear in four energy solutions; only 
two energy solutions are valid for the particle 

E

p
nlE E  

and the second one corresponds to the anti-particle en-
ergy a

nlE E  in the Eckart-type field. 
Referring to the general parametric model in Section 2, 

we turn to the calculation of the corresponding wave 
functions. The explicit form of the weight function be-
comes 
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  (41) 

which gives the first part of the wave functions in the 
form of the Jacobi polynomials: 

    2 ,2 1 1 2p w
n ny z P qz  

1 2



         (42) 

Further, the second part of the wave functions can be 
found as 

   1
wpz z qz                  (43) 

Hence, the un-normalized wave functions expressed in 
terms of the Jacobi polynomials read 
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w p wp

l nl nu z N z qz P qz        (44) 

and consequently the total radial part of the wave func-
tions expressed in terms of the hypergeometric functions 
are 
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where nl  is a constant related to the normalization. 
The relationship between the Jacobi polynomials and the 
hypergeometric functions is given by 

N
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2 11 2 , 1; 1;a b
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where 
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Now, in taking 2 3 ,V V  the energy Equation (40) 
satisfying nl  for the equally-mixed scalar and vector 
Eckart-type potentials becomes 

E
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(46) 
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and the wave functions: 
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    (47) 

or the total radial wave functions in (45) are 
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where nl  is a normalization factor. The results given 
in (46) and (47) are consistent with those given in (15) 
and (18) of [58]. 

N

Taking  1,q  2 ,   1 2  and 30V V  0,V   
(34) has become the Hulthén potential. Hence, we find 
bound state solutions for equally-mixed scalar and vector 
   S r V r  Hulthén potentials in the KG theory with 

any orbital angular quantum number  and an arbitrary 
dimension D, 

l

    
   

2
02 4 2 1

,
2

2 1

2

nl

nl

E Mc Vc n
M c E

c n

D l

 
 




  



 



  

(49) 
and 
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  (50) 

The Jacobi polynomial in the above equation can be 
expressed in terms of the hypergeometric function: 
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where nl  is a constant related to the normalization. 
The above results are identical to those found recently by 
[62,70]. 

N

In the non-relativistic limit, inserting the equally 
mixed Eckart-type potentials (1) into the Schrödinger 
equation gives 
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and further making use of the following definitions: 
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 (53) 

lead us to obtain the set of parameters and energy equa-
tion given before in (38) and (39) with .   Incorpo-
rating the above equation and using (39), we find the 
following energy eigenvalues: 
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In addition, following procedures indicated in (41) - 
(45), we obtain expressions for the radial wave functions: 

       
   

1 1

1 1

1 2 2 2

2 ,2 1 2

e 1 e

           1 2e ,

p wD r r
l nl

p w r
n

R r N r

P

 



   

 

 

 
 

 

 

1 2

2
1 2

1

1
2

2

1 1
   

2

nlp M E V

MV
n w

n w





  

 
   

  





           (55) 

 
3.2. The Rosen-Morse-Type Model 
 
Under the replacement of q by  the Eckart-type 
potential model (1) will become the Rosen-Morse-type 
potential model given in (2) of Ref. [52]: 
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or alternatively [39,40,72] 
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We may rewrite the above equation in a form to in-
clude the Woods-Saxon potential, 

 
 

2

1 22 22

2

3 2

e 1
, 4

1 e1 e

e
               

1 e

r

rr

r

r

V r q V V
qq

q
V

q

















 





     (58) 

Defining the parameters: 
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we can easily write the s-wave KG equation with  S r   
 for the potential (58) as  V r
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Following the steps of solution mentioned in the pre-
vious subsection, we may obtain values for the parame-
ters given in Section 2: 
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and the energy equation 
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Inserting (59) in the above equation, we obtain energy 
equation satisfying  0 ,nE
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(63) 

The corresponding un-normalized wave functions can 

be calculated as before. The explicit form of the weight 
function reads 
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which gives the Jacobi polynomials 
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as the first part of the wave function. The second part of 
the wave function can be found as 
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Hence, the un-normalized wave function reads 
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and thus the total radial part of the radial wave functions 
in (30) can be expressed in terms of the hypergeometric 
functions as 
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where  is a normalization factor. n

Taking 2 3

N
V V  in (63), we find the equation for the 

potential in (56) satisfying  in the s-wave KG the-
ory, 
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and the wave functions take the form 
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where n  is a normalization constant. After the fol-
lowing mapping on the potential parameter: 1 1V V  
in (56), the results in (69) and (70) become identical with 
(13) and (14) of [52]. 

N


Also, taking 1,q   2 ,    and 1 2 0V V  3 0 ,V V   
(58) turns to become the Woods-Saxon potential. Hence, 
we can find bound state solutions in the s-wave KG the-
ory with equally-mixed scalar and vector    S r V r  
for Woods-Saxon potentials as 
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 
 

2
02 4 2 0

0 2 2 2
,   ,

2

n

n

E Mc Vn
M c E c p p

nc





    


 (71) 

and wave functions: 

      2 22 , 1e 1 2
p pr r

n n nu r N P   
  e ,

e r

   (72) 

or alternatively, it can be expressed in terms of the hy-
pergeometric function as 

    2

2 1 2 2e , 2 ;  2 1;  
pr

n nR r N F n n p p   


  (73) 

where n  is a constant related to the normalization. 
Under appropriate parameter replacements, we obtain the 
non-relativistic limit of the energy eigenvalues and ei-
genfunctions of the above two equations are 

N

0
0

21 1
,  0,

2 2n

MVn
E

M n




      




n      (74) 

and 

     

 

3

2 1 2 2

0
3 2

e , 2 ;  2 1;  

2 1
,

2

pr r
n nu r N F n n p p

MVn
p

nc

 



    

 


 




e ,

(75) 

respectively, which is simply the solution of the 
Schrödinger equation for the potential    r V r   

 The above results are identical to those 
found before in [8]. 

   2S r V r  .

2 

 
4. Discussions 
 
In this section, at first, we choose appropriate parameters 
in the Eckart-type potential model to construct the Eckart 
potential, Rosen-Morse well and their PT-symmetric 
versions, and then discuss their energy equations in the 
framework of KG theory with equally mixed potentials. 
 
4.1. Eckart Potential Model 
 
Taking  the potential (1) turns to the standard 
Eckart potential [41] 

1,q 

     2
1 2 1cos coth ,  , 0V r V ech r V r V V    (76) 

In natural units ( ), we can obtain the energy 
equation (46) for the Eckart potential in  space 
spinless KG theory as 

1c 
3D

   

     

22
2 22 2 2

2 2

2 1

2

,
( )

81
1 1 2 1

2

nl
nl

nl

V E M
M E n w

n w

E M V
w w q l







   



 
       
 


which is identical with those given in Equation (22) of 
[52] under the equally-mixed potential restriction given 
by    .S r V r   The unnormalized wave function 
corresponding to the energy levels is 

       
  

1 2 2 2

2
2 1

e 1 e

           , 2 ;  2 1;  e ,

v wD r r
l nl

r

R r N r

F n n v w v

 



   



 

    
  (78) 

where  is a normalization factor. nl

1) For s-wave case, the centrifugal term 
N

    22 1 2 3 4 0D l D l r      

and hence 

    22 2 22 1 2 3 e 1 0r rD l D l e          

too. Thus, the energy eigenvalues take the following 
simple form 

   

 

22
2 2 02 2 2

0 1 2 2
1

0 1
1 2

,
( )

81
1 1 .

2

n
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n

V E M
M E n w

n w

E M V
w







   



 
   
 
 

    (79) 

2) In the non-relativistic approximation of the KG en-
ergy equation (potential energies small compared to 

2Mc  and E Mc  Equation (32) reduces into the form 
[72] 

       

   

22 2

2 2

2

d ( 1)
   

2 d

.

l
l

nl l

u r l l
V r S r u r

M r r

E Mc u r

   
     

 

 

 
 

(80) 

When     ,V r S r  the energy spectrum obtained 
from (80) reduces to those energy spectrum obtained 
from the solution of the Schrödinger equation for the 
sum potential    2 r .r V   In other words, the non- 
relativistic limit is the Schrödinger-like equation for the 
potential 

 
 
 

22

1 22 22

1 ee
8 2

1 e1 e

rr

rr
V V













.  

This can be achieved by making the parameter re-
placements 2RE M M   and ,R NRE M E   so 
the non-relativistic limit of our results in (46) reduces to 

,


(77)  
 

2 2
22 2

2 22
2

21
,

2NR

M V
E n w

M n w




 
    

  
   (81) 

and the corresponding wave functions in (48) become 
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       
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2 1 2 2 2
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e 1 e
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  
 

    
  

 (82) 

The above two equations are identical with the NU 
solution of the Schrödinger equation for a potential 
 V r  (cf. [68,69]). 

 
4.2. PT-Symmetric Trigonometric Rosen-Morse 

(tRM) Potential 
 
When we make the transformations of parameters as 

,i   2 2  and 1 1  and further using 
the relation between the trigonometric and the hyperbolic 
functions 

V iV 

sin( )i x

,V V 

),xsinh(i   the potential (1) turns 
to become the PT-symmetric tRM potential [73]: 

       2
1 2csc cot ,  Re 0V x V x V x V   1    (83) 

w h e r e   π 2 ,d    0, ,x d   1 1V a a   a n d 

2  This potential is displayed in Figure 1 which is 
nearly linear in 

2 .V  b
π 3 2π 3,x   Coulombic in π 90  

πx 30   and infinite walls at 0 and  So it might 
be a prime candidate for an effective QCD potential. For 
a potential  when one makes the transformation 
of 

π

  ,V x
x x  and if the relation ,i i    *V xV x   

exists, the potential  is said to be PT-symmetric, 
where P denotes parity operator (space reflection) and T 
denotes time reversal [8,74]. Our point here is that 

 interpolates between the Coulomb-and the infi-
nite wall potential [75] going through an intermediary 

V x

 V x

 

0 0.5 1 1.5 2 2.5 3
−400

−300

−200

−100

0

100

200

300

400

500

600

x (in units of fm)

V
(x

) 
(i

n 
un

its
 o

f 
M

eV
)

 

 

V
1
=0.75 MeV, V

2
=34.0 MeV

 

Figure 1. Plot of the tRM potential [see (83)] for a set of 
parameters a = 0.5 and b = 17.0. 

region of linear-x and harmonic-oscillator 2x depend-
ences. To see this it is quite instructive to expand the 
potential in a Taylor series which for appropriately small 
x takes the form of a Coulomb-like potential with a cen-
trifugal-barrier like term, provided by the  2ccs x  
part [76], 

 
 

2 1
2

,  1,
V V

V x x
x x


 

           (84) 

For π 2x   we can then take the potential (84) 
plus a linear like perturbation 

  1 2 ,
3 3

V V
V x x              (85) 

as an approximation of tRM potential. The potential (83) 
obviously evolves to an infinite wall as x  approaches 
the limits of the definition interval 0 π,x   due to 
the behavior of the cot x  and csc x  for 1  
The potential is essential for the QCD quark-gluon dy-
namics where the one gluon exchange gives rise to an 
effective Coulomb-like potential, while the self gluon 
interactions produce a linear potential as established by 
lattice QCD calculations of hadron properties (Cornell 
potential) [77]. Finally, the infinite wall piece of the tRM 
potential provides the regime suited for the asymptotical 
freedom of the quarks. Now, making the corresponding 
parameter replacements in (46), we end up with real en-
ergy equation for the above PT-symmetric version of the 
Eckart-type potentialş in the KG equation with equally 
mixed potentials, 

0.V 

   
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
(86) 

and the radial wave functions build up as 
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    (87) 

 
4.3. Standard Rosen-Morse Well 
 
Taking 1,q   1 1 ,V V      and  2 2 ,V V      
the potential (56) turns to the standard Rosen-Morse well 
[39,71] 
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  2
2 1 2sec tanh ,  ,  0.V r V h r V r V V         (88)  

 
0 2

1 1 2
1

1
,

2
nE M V

n
n

 
 

 
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  


             (90) 

This potential is useful in discussing polyatomic mo-
lecular vibrational energies. An example of its applica-
tion to the vibrational states of NH₃ was given by Rosen 
and Morse in [39,71]. Making the corresponding pa-
rameter replacements in Equation (69), we obtain the 
energy equation for the Rosen-Morse well in the s-wave 
KG theory with equally mixed potentials, 

where nN   is a normalization constant. The results 
given in (89) and (90) are consistent with those given in 
(19) and (20) of [52], respectively. The s-wave energy 
states of the KG equation for the Rosen-Morse potential 
are calculated for a set of selected values parameters in 
Table 1. 
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  (89) 

When 0 0 ,V S  the non-relativistic limit is the solu-
tion of the Schrödinger equation for the potential 
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In the non-relativistic limits, the energy spectrum is 
The un-normalized wave function corresponding to 

the energy levels is 
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         1 1 1 12 ,2 12 2 2e 1 e 1 2er r

n n nu r N P
         

  ,r  

 
Table 1. The s-wave energy spectrum of the equally mixed scalar and vector Rosen-Morse-type potentials. 

n α q V1 V2 M E1 E2 E3 E4 

1 1 1 1 1 4 1.8137a –1.9140a –3.3923a –3.9088a 

2      –2.2117 –3.6791   

3      –0.6606 –3.3105   

4      0.8879 –2.7697   

5      1.8766 –1.9765   

1 1 1 2 –2 5 0.9989 –3.7763 –4.7275 –4.9351 

2      –4.1746 –4.7795   

3      –3.3814 –4.5376   

4      –2.3989 –4.2008   

5      –1.3083 –3.7529   

1 0.5 1 1 –1 4 1.9558 –3.5288 –3.8460 –3.9773 

2      1.9608 –2.5367 –3.5326 –3.9216 

3      1.2294 –0.5126 –3.0732 –3.8358 

4      –2.4823 –3.7191   

5      –1.7822 –3.5695   

1 1 0.5 1 –1 4 1.5783 –3.2245 –3.6502 –3.9258 

2      1.9995 –1.5367 –2.9520 –3.7496 

3      –1.9529 –3.4736   

4      –0.7335 –3.0839   

5      0.5489 –2.5528   

aThe present results are identical to the ones given in [52]. 
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and the wave functions are 
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   (92) 

 
5. Conclusions and Outlook 
 
A parametric generalization short-cut derived from the 
NU have been used to carry out the analytic bound states 
(real energy spectrum and wave functions) of the KG 
equation with any orbital quantum number l for equally 
mixed scalar and vector Eckart-type potentials. The pre-
sent solutions include energy equation and un-normal- 
ized wave functions which have been expressed in terms 
of the Jacobi polynomials (or hypergeometric functions). 
Additionally, in making appropriate changes in the Eckart- 
type potential parameters, one can easily generate new 
energy spectrum formulas for various types of the well- 
known molecular potentials such as the Rosen-Morse 
well [39], the Eckart potential, the Hulthén potential [13], 
the Woods-Saxon potential [7] and the Manning-Rosen 
potential [31] and others. It is also noted that under the 
PT-symmetry property, the exponential potentials can be 
reduced to the trigonometric potentials with real bound 
state solutions. Also, the KG equation with equally 
mixed scalar and vector Rosen-Morse-type potentials can 
be solved exactly for s-wave bound states (  case). 
The calculated energy equations of these potentials are 
seen to be complicated transcendental equations in the 
relativistic model [39]. The non-relativistic limit can be 
easily reached by making a mapping on the parameters 
and/or solving the original Schrödinger equation. It is 
found that the relativistic and non-relativistic results are 
identical with those ones obtained in literature through 
the various methods. 

0l 
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