
Circuits and Systems, 2017, 8, 134-147
http://www.scirp.org/journal/cs

ISSN Online: 2153-1293
ISSN Print: 2153-1285

DOI: 10.4236/cs.2017.85009 May 19, 2017

A High Performance and Energy Efficient
Microprocessor with a Novel Restricted
Dynamically Reconfigurable Accelerator

Itaru Hida, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Masato Motomura, Tetsuya Asai

Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Abstract
In the era of Internet of Things, the battery life of edge devices must be ex-
tended for sensing connection to the Internet. We aim to reduce the power
consumption of the microprocessor embedded in such devices by using a
novel dynamically reconfigurable accelerator. Conventional microprocessors
consume a large amount of power for memory access, in registers, and for the
control of the processor itself rather than computation; this decreases the
energy efficiency. Dynamically reconfigurable accelerators reduce such re-
dundant power by computing in parallel on reconfigurable switches and
processing element arrays (often consisting of an arithmetic logic unit (ALU)
and registers). We propose a novel dynamically reconfigurable accelerator
“DYNaSTA” composed of a dynamically reconfigurable data path and static
ALU arrays. The static ALU arrays process instructions in parallel without
registers and improve energy efficiency. The dynamically reconfigurable data
path includes registers and many switches dynamically reconfigured to resolve
operand dependencies between instructions mapped on the static ALU array,
and forwards appropriate operands to the static ALU array. Therefore, the
DYNaSTA accelerator has more flexibility while improving the energy effi-
ciency compared with the conventional dynamically reconfigurable accelera-
tors. We simulated the power consumption of the proposed DYNaSTA acce-
lerator and measured the fabricated chip. As a result, the power consumption
was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13
times compared to a general RISC microprocessor.

Keywords
Embedded Microprocessor, Reconfigurable, Low-Power, Accelerator,
Digital Circuit, Architecture

How to cite this paper: Hida, I., Taka-
maeda-Yamazaki, S., Ikebe, M., Motomura,
M. and Asai, T. (2017) A High Performance
and Energy Efficient Microprocessor with a
Novel Restricted Dynamically Reconfigur-
able Accelerator. Circuits and Systems, 8,
134-147.
https://doi.org/10.4236/cs.2017.85009

Received: April 2, 2017
Accepted: May 16, 2017
Published: May 19, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/cs
https://doi.org/10.4236/cs.2017.85009
http://www.scirp.org
https://doi.org/10.4236/cs.2017.85009
http://creativecommons.org/licenses/by/4.0/

I. Hida et al.

135

1. Introduction

The overwhelming trend toward Internet of Things explains why low-energy
embedded microprocessors (EMPs) are becoming increasingly important. Sources
of energy inefficiency in EMP architectures are fairly well understood: the need
to 1) fetch/decode every instruction from memory; 2) write/read register files to
acquire/store operands per every instruction, and 3) clock numerous numbers of
F/Fs for pipelining multiple instructions on a data path. The power consumption
generated by these factors is not directly involved in computation.

Among the power consumption of general EMP, the proportion occupied by
the ALU responsible for computation is approximately 10%, and the remaining
90% is occupied by redundant power irrelevant to computation (Figure 1). That
is, by reducing such redundant power, we can improve the power efficiency of
the EMP without degrading the computing performance. Thus, we may choose
to “statically” map those instructions in heavily executed “recursive codes” to an
array of ALUs prior to their execution. By running the codes only as combina-
tory data paths with no registers, 1)-3) redundancies can be drastically reduced.

Although this “reconfigurable accelerator” solution looks straightforward and
attractive, there is an inherent drawback: it is hard to cope with complex control
flows (i.e., lots of branches) typically in embedded applications, which explain
why previous proposals have focused on simple code segments that do not have
a branch. Green Droid [2] is a configurable processor for mobile devices with
Android OS. The processor improves power efficiency by processing the hot
path (most recursive code) of Android OS in hardware, but it has no versatility
to other operating systems. ADRES [3] is a processor in which dynamically re-
configurable function units (FU) are coupled to a very long instruction word
(VLIW) processor. The processor improves performance by complementarily
computing the hot path with the VLIW processor and FU array. However, the
FU array cannot handle hot paths including multiple branch instructions, caus-
ing a decrease in energy efficiency. CMA [4] is a reconfigurable processor with a
processing element (PE) array consisting only of combinational circuits and it
can be customized but cannot be dynamically reconfigured during execution.
Therefore, although CMA is superior to conventional dynamically reconfigurable

Figure 1. Example of EMP power consumption breakdown [1].

I. Hida et al.

136

processors such as MuCCRA [5] and DRP [6] in power consumption, it has low
flexibility and requires an external controller in order to execute a large-scale
program.

As mentioned example above, the conventional reconfigurable processor is
unable to combine power efficiency and flexibility. Based on this observation, we
recently proposed an abstract architecture for achieving both energy efficiency
and versatility in control-rich embedded applications [7]. The architecture we
proposed consists of a static arithmetic logic unit (ALU) array without registers
and data paths that contains dynamically reconfigurable switches and registers,
where the ALU array improves power efficiency and dynamically reconfigurable
data paths ensure versatility. The contribution of this paper is to materialize the
concept into executable micro-architecture, design/verify it in a silicon chip, and
evaluate its energy efficiency.

In Section 2, we describe the architecture of the proposed DYNaSTA accele-
rator. The accelerator consists of a static data path, a dynamically reconfigurable
data path, and circuits for controlling them. In Section 3, we show the simula-
tion results for the DYNaSTA accelerator and the measurement results of the
fabricated chip. The processor with the DYNaSTA accelerator showed reduced
power consumption by 69% to 86% compared to general processors. In Section
4, we will summarize the study.

2. Architecture

The key innovation in our proposal, a DYNaSTA reconfigurable accelerator,
shown in Figure 2, is to combine two distinctive array structures different in
nature, namely, a dynamic operand forwarding matrix (DYN) and a static ALU
array (STA). STA computes an instruction sequence in parallel and plays a key
role in achieving high-energy efficiency, where DYN is dynamically reconfigured
while the accelerator is running and plays a key role to achieve versatility.

The DYNaSTA accelerator executes instructions by the method shown in
Figure 3. When an instruction sequence to be executed by DYNaSTA is ex-
tracted, each instruction is mapped on the STA based on the data flow between

Figure 2. The reconfigurable datapath in the proposed DYNaSTA accelerator consists of
a dynamic operand-forwarding matrix and static ALU array.

I. Hida et al.

137

Figure 3. Code mapping policy: (a) an example code, (b) extracted data flow, (c) ex-
tracted operand dependency, and (d) mapping on DYN and STA.

the instructions, that is, the operand dependency, and the STA operates the in-
structions in parallel. If the data flow changes during operation because of the
execution of a branch instruction, the switches of DYN are dynamically recon-
figured and an appropriate data flow is constructed.

In the following subsection, we will describe in detail the architecture of each
circuit included in the DYNaSTA accelerator.

2.1. Static ALU Array

STA features a non-fixed number of stages, where each stage has several ALUs
sharing a set of source/destination lines (Figure 4). To reduce the number of
switches, hence improving energy efficiency, only parallel instructions are mapped
onto a same stage, where branch/jump and load/store instructions go to the first
and last ALUs, respectively (Figure 3(b) and Figure 3(d)). The instructions de-
pendent on preceding ones are mapped onto the next stage. Conditional execu-
tion is supported for discarding short forward branches. An appropriate number
of STA stages is dependent on the sizes of the target codes, whereas that of ALUs
per stage will range from 2 to 8, as in superscalar/VLIW architectures. Note
there are no registers and hence no clocks in STA.

The difficulty in serving branches in a reconfigurable accelerator lies in that
their outcome can never be known a priori: for example (Figure 3(c)), the “r4”
operand in #2 may be produced by #3 instead of #1 when the #4 branch is taken.
Efforts to accommodate this dynamic nature in ALU arrays such as STA un-
avoidably degrade its simplicity and regularity, hence incurring energy ineffi-
ciency.

I. Hida et al.

138

Figure 4. Block diagram of static ALU array (STA).

2.2. Dynamic Operand-Forwarding Matrix

DYN is a multi-context, bidirectional operand-forwarding matrix for solving
this difficulty: it is dynamically reconfigured only when operand dependencies
among instructions are altered on a branch (Figure 3(c) and Figure 3(d)). DYN
is composed of temporary registers for storing operand values of each instruc-
tion and a large number of switches, as shown in Figure 5. When the data flow
of the program transits while the accelerator is running, the switches are dy-
namically switched and appropriate data flow is constructed.

Figure 6 represents an example in which fibonacci, used as one of the bench-
mark programs in the evaluation, is mapped to DYNaSTA. In Figure 6, it is
shown that the datapath on DYN changes according to each context, and the
appropriate operands are forwarded to the STA. Keeping power-consuming dy-
namic reconfiguration away from the massive ALU array (and leaving it static) is
a key for achieving energy efficiency in DYNaSTA architecture.

2.3. Context Controller

The context controller shown in Figure 7 controls the transition of the context
during execution. As the base processor starts executing the program, functions
or subroutines processed by DYNaSTA are loaded from the instruction memory,
and information of each context contained in them is stored in the configuration
memory and the context memory. The context information is embedded in the
executable file by recompiling the original executable file with the dedicated
compiler; the function to be accelerated is also decided.

The context information includes DYN’s switch configuration information
(configuration), the number of clock cycles required to execute the context (de-
lay), and a return address. When the next context is selected according to the

I. Hida et al.

139

Figure 5. Block diagram of dynamic operand-
forwarding matrix (DYN).

Figure 6. Assembly code of fibonacci and its mapping on DYNaSTA. When the context of the program transitions, DYN is dy-
namically reconfigured.

I. Hida et al.

140

Figure 7. Block diagrams for configuration loader and context controller. DYN is dynamically reconfigured by these circuits.

results of the branch instruction and the delay of the previous context is equal to
the value of the clock counter (meaning that the previous context has been
properly executed), the next context configuration information is sent to DYN.
After DYNaSTA finishes executing the function, the base processor resumes
program execution from the address of the instruction memory specified by the
return address.

2.4. Overall Architecture

We designed an EMP with this DYNaSTA accelerator into silicon (Figure 8).
The base EMP is Mico32 [8], which is chosen because of its typical RISC archi-
tecture and open-source RTL code. By treating “recursive codes” that are mapped
onto DYNaSTA as subroutines, the read/write path between Mico32’s RF and
DYN only needs to cover its arguments portion (four registers, Figure 8).

3. Evaluation
3.1. Instruction-Level Parallelism

Before simulating power consumption, we analyzed the optimal number of
ALUs included in one stage of STA. If there are numerous unused ALUs, they
generate unnecessary static power; in contrast, if there are only a few ALUs, in-
struction-level parallelism is reduced and computing performance is degraded.
Therefore, we examined the relationship between the ALU occupancy and in-
struction-level parallelism through some programs containing many instructions
from the benchmark set employed in the power-consumption simulation.

Figure 9 represents the result, in which the solid line represents the ALU oc-
cupancy, the dashed line represents the instruction-level parallelism, and the
x-axis represents the number of ALUs per stage. The ALU occupancy depends
linearly on the number of ALUs, whereas the instruction-level parallelism for
crc32 and sbox is constant regardless of the number of ALUs. However, the in-
struction-level parallelism for sepia filter decreases when the number of ALUs is
four. Therefore, we set the number of ALUs per stage to be five.

I. Hida et al.

141

Figure 8. Tight integration of Mico32 (base EMP) and the DYNaSTA accelerator.

Figure 9. ALU utilization and instruction-level parallelism.

3.2. Power Simulation

Then, the number of stages of the STA is set to 10, the performance and power
consumption of the DYNaSTA accelerator were evaluated using sample applica-

I. Hida et al.

142

tions (Table 1) based on the synthesized netlist. Figure 10 is a comparison of
the power consumption when Mico32 and DYNaSTA execute the hot path of
each application, that is, the most recursive code. As shown in the figure, the
power consumption reduced by 69% to 86% due mainly to discarded instruction
memory access. While Mico32 sequentially reads instructions from the instruc-
tion memory during program execution, DYNaSTA accesses the instruction
memory only when generating configuration information (configuration phase)
and does not access it during execution (running phase). Therefore, the power
consumption to access the instruction memory has been greatly reduced. Logic
power consumption is also reduced, as shown in Figure 10, whose detailed
breakdown is shown in Figure 11 for the case of fibonacci.

From Figure 10 and Figure 11, it is clear that the 1) to 3) redundancies men-
tioned earlier were successfully removed. Since instructions are executed in pa-
rallel in STA, the proposed architecture not only reduces the power but also en-
hances the performance (Figure 12) at the same frequency (100 MHz). As a re-
sult, the energy efficiency was improved 4.5 to 13 times from Mico32 for these
sample codes.

3.3. Measurement of Fabricated Chip

We fabricated the proposed DYNaSTA using a UMC 0.18 µm process (see Fig-
ure 13 and Table 2). Because of the area constraint, four STA stages were

Table 1. Summary of sample applications.

Application # of instructions # of branches
ALU utilization

[%]
of contexts

fibonacci 12 3 24 5

sbox 25 2 50 5

crc32 18 2 36 5

sepia filter 22 1 44 3

Figure 10. Mico32 vs. DYNaSTA: total power consumption of sample applications.

I. Hida et al.

143

Figure 11. Mico32 vs. DYNaSTA: logic power consumption (fibonacci).

Figure 12. DYNaSTA/Mico32 performance and energy efficiency improvement.

Figure 13. Chip micrograph of proposed DYNaSTA (four stages).

I. Hida et al.

144

Table 2. Chip specifications.

Technology UMC 0.18 µm 1P6M CMOS

Package 48-pin DIL

Die area 1.5 mm × 1.5 mm

Gate count 86.5 K

Supply voltage 1.8 V core/3.3 V IO

Clock frequency 100 MHz

of stages 4

Register file 32 bit × 4 word

of ALUs/stage 5

of contexts 6

implemented. The register file is originally installed on Mico32, we implemented
it on DYNaSTA because we only designed the accelerator in this study. Al-
though the size of DYNaSTA is very small, extending it is quite straightforward
because of its regular array structure.

We measured the power consumptions of the fabricated chip during the con-
figuration and the running phases of the DYNaSTA with fibonacci. The experi-
mental setup is shown in Figure 14 and Figure 15. We implemented Mico32 on
the FPGA (field-programmable gate array) and sent the test vector and clock to
the fabricated DYNaSTA chip. Since DYNaSTA require 3.3 V power supply for
I/O and 1.8 V for core, we supplied each power to DYNaSTA using two power
supply units. Then, we connected the power analyzer to the core power supply
and measured the power consumption during running. Figure 16 shows the
measured power consumption versus clock frequencies for both the configura-
tion and the running phases. Because of the limitation of our FPGA-based pow-
er-measurement workbench, the maximum frequency for the measurement was
80 MHz. We then predicted the power consumption at 100 MHz by linear in-
terpolation of the measured data.

Table 3 shows a comparison of the simulated and measured (and interpo-
lated) power consumption for both phases at 100 MHz. We observed a slight
mismatch of approximately 2.6 mW for both phases between the simulated and
measured data. This mismatch resulted from circuit elements of the fabricated
chip that were not included in the power simulation model, such as the Mico32
register file. Table 4 reveals the reasons for this energy efficiency: although DY-
NaSTA consumes ×18.5 more gates than Mico32, its average toggle rate is as low
as ×0.06 of Mico32. Here, the average toggle rate represents the ratio of nodes
that toggled synchronously with the rising (or falling) edge of the clock among
all the nodes in the circuit per unit time. Specifically, gate-consuming STA fea-
tures only a 1.8% toggle rate, which accounts for its relatively low power occupa-
tion in Figure 11.

I. Hida et al.

145

Figure 14. Experimental configuration.

Figure 15. Photograph of our power-measurement workbench.

Figure 16. Measured power consumption vs. clock frequency for configuration and run-
ning phase.

I. Hida et al.

146

Table 3. Comparison between simulation results and measurement results at 100 MHz.

 Configuration [mW] Run [mW]

Simulation 4.03 8.57

Measurement
(interpolated)

6.63 11.20

Table 4. Mico32 vs. DYNaSTA: gate counts and average toggle rates (fibonacci).

 Gate count [k gates] Average toggle rate [%]

DYNaSTA

DYN 43.6 20.0

STA 322.9 1.8

Others 80.2 9.1

All 446.8 4.9

Mico32 24.1 76.8

Ratio (DYNaSTA/Mico32) 18.48 0.06

Figure 17. DYNaSTA SoC concept toward “Dark
Sillicon” era.

4. Conclusion

In this study, we proposed a novel dynamically reconfigurable accelerator “DY-
NaSTA”. The DYNaSTA accelerator is a restricted dynamically reconfigurable
accelerator composed of dynamically reconfigurable data paths called DYN and
a static ALU array called STA, and we processes the hot path of the program on
behalf of the base processor. The STA computes the instructions in parallel, and
DYN is dynamically reconfigured to solve the change in the operand dependen-
cy due to branch instructions. We designed the proposed DYNaSTA accelerator
to operate at a clock frequency of 100 MHz using UMC 0.18 μm process, and
simulated power consumption and measured the fabricated chip. Through the

I. Hida et al.

147

experiment, we obtained the results that power consumption reduced from 69%
to 86% and energy efficiency improved from 4.5 times to 13 times. Therefore,
the proposed DYNaSTA accelerator was proved to be a reconfigurable accelera-
tor combining flexibility and high-energy efficiency.

Filling a chip with simple, regular, and energy-efficient array like DYNaSTA
can become an interesting solution in the “Dark Silicon” [9] era (Figure 17).
Here, existing domain-oriented low-power-circuit techniques such as DVFS and
power gating can augment the architecture quite nicely. For instance, since only
a few active stages propagate like a “wave” on the array, remaining numerous
“silent” stages can be powered-off systematically to minimize the leak current
(Figure 17). Our next challenges include enhancing DYNaSTA with such low-
power-circuit techniques as well as establishing code mapping SW.

References
[1] Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B.C., Rich-

ardson, S., Kozyrakis, C. and Horowitz, M. (2010) Understanding Sources of Ineffi-
ciency in General-purpose Chips. ISCA’10 Proceedings of the 37th Annual Interna-
tional Symposium on Computer Architecture, Saint-Malo, 19-23 June 2010, 37-47.

[2] Swanson, S. and Tayelor, M.B. (2011) Greendroid: Exploring the Next Evolution in
Smartphone Application Processors. IEEE Communications Magazine, 49, 112-119.
https://doi.org/10.1109/MCOM.2011.5741155

[3] Veredas, F.J., Scheppler, M., Moffat, W. and Mei, B. (2005) Custom Implementation
of the Coarse-Grained Reconfigurable ADRES Architecture for Multimedia Pur-
poses. Proceedings of the 2005 International Conference on Field Programmable
Logic and Applications (FPL), Tampere, 24-26 August 2005, 106-111.
https://doi.org/10.1109/FPL.2005.1515707

[4] Ozaki, N., Yasuda, Y., Saito, Y., Ikebuchi, D., Kimura, M., Amano, H., Nakamura,
H., Usami, K., Namiki, M. and Kondo M. (2011) Cool Mega-Arrays: Ultralow-
Power Reconfigurable Accelerator Chips. IEEE Micro, 31, 6-18.
https://doi.org/10.1109/MM.2011.94

[5] Saito, Y., Sano, T., Kato, M., Tunbunheng, V., Yasuda, Y., Kimura, M. and Amano,
H. (2010) MuCCRA-3: A Low Power Dynamically Reconfigurable Processor Array.
Proceedings of the 2010 15th Asia and South Pacific Design Automation Confe-
rence (ASP-DAC), 18-21 January 2010, Taipei, 377-378.
https://doi.org/10.1109/ASPDAC.2010.5419853

[6] Motomura, M. (2002) A Dynamically Reconfigurable Processor Architecture. Mi-
croprocessor Forum, October 2002.

[7] Hirao, T., Kim, D., Hida, I., Asai, T. and Motomura, M. (2013) A Restricted Dy-
namically Reconfigurable Architecture for Low Power Processors. Proceedings of
the 2013 International Conference on Reconfigurable Computing and FPGAs (Re-
ConFig), 9-11 December 2013, Cancun, 1-7.

[8] LatticeMico32 Open, Free 32-Bit Soft Processor.
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualPropert
y/IPCore/IPCores02/LatticeMico32.aspx

[9] Esmaeilzadeh, E., Blem, E., Amant, R.S.T., Sankaralingam, K. and Burger, D. (2012)
Dark Silicon and the End of Multicore Scaling. IEEE Micro, 32, 122-134.
https://doi.org/10.1109/MM.2012.17

https://doi.org/10.1109/MCOM.2011.5741155
https://doi.org/10.1109/FPL.2005.1515707
https://doi.org/10.1109/MM.2011.94
https://doi.org/10.1109/ASPDAC.2010.5419853
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
https://doi.org/10.1109/MM.2012.17

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact cs@scirp.org

http://papersubmission.scirp.org/
mailto:cs@scirp.org

	A High Performance and Energy Efficient Microprocessor with a Novel Restricted Dynamically Reconfigurable Accelerator
	Abstract
	Keywords
	1. Introduction
	2. Architecture
	2.1. Static ALU Array
	2.2. Dynamic Operand-Forwarding Matrix
	2.3. Context Controller
	2.4. Overall Architecture

	3. Evaluation
	3.1. Instruction-Level Parallelism
	3.2. Power Simulation
	3.3. Measurement of Fabricated Chip

	4. Conclusion
	References

