
Circuits and Systems, 2017, 8, 134-147 
http://www.scirp.org/journal/cs 

ISSN Online: 2153-1293 
ISSN Print: 2153-1285 

DOI: 10.4236/cs.2017.85009  May 19, 2017 

 
 
 

A High Performance and Energy Efficient 
Microprocessor with a Novel Restricted 
Dynamically Reconfigurable Accelerator 

Itaru Hida, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Masato Motomura, Tetsuya Asai 

Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan 

           
 
 

Abstract 
In the era of Internet of Things, the battery life of edge devices must be ex-
tended for sensing connection to the Internet. We aim to reduce the power 
consumption of the microprocessor embedded in such devices by using a 
novel dynamically reconfigurable accelerator. Conventional microprocessors 
consume a large amount of power for memory access, in registers, and for the 
control of the processor itself rather than computation; this decreases the 
energy efficiency. Dynamically reconfigurable accelerators reduce such re-
dundant power by computing in parallel on reconfigurable switches and 
processing element arrays (often consisting of an arithmetic logic unit (ALU) 
and registers). We propose a novel dynamically reconfigurable accelerator 
“DYNaSTA” composed of a dynamically reconfigurable data path and static 
ALU arrays. The static ALU arrays process instructions in parallel without 
registers and improve energy efficiency. The dynamically reconfigurable data 
path includes registers and many switches dynamically reconfigured to resolve 
operand dependencies between instructions mapped on the static ALU array, 
and forwards appropriate operands to the static ALU array. Therefore, the 
DYNaSTA accelerator has more flexibility while improving the energy effi-
ciency compared with the conventional dynamically reconfigurable accelera-
tors. We simulated the power consumption of the proposed DYNaSTA acce-
lerator and measured the fabricated chip. As a result, the power consumption 
was reduced by 69% to 86%, and the energy efficiency improved 4.5 to 13 
times compared to a general RISC microprocessor. 
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1. Introduction 

The overwhelming trend toward Internet of Things explains why low-energy 
embedded microprocessors (EMPs) are becoming increasingly important. Sources 
of energy inefficiency in EMP architectures are fairly well understood: the need 
to 1) fetch/decode every instruction from memory; 2) write/read register files to 
acquire/store operands per every instruction, and 3) clock numerous numbers of 
F/Fs for pipelining multiple instructions on a data path. The power consumption 
generated by these factors is not directly involved in computation.  

Among the power consumption of general EMP, the proportion occupied by 
the ALU responsible for computation is approximately 10%, and the remaining 
90% is occupied by redundant power irrelevant to computation (Figure 1). That 
is, by reducing such redundant power, we can improve the power efficiency of 
the EMP without degrading the computing performance. Thus, we may choose 
to “statically” map those instructions in heavily executed “recursive codes” to an 
array of ALUs prior to their execution. By running the codes only as combina-
tory data paths with no registers, 1)-3) redundancies can be drastically reduced.  

Although this “reconfigurable accelerator” solution looks straightforward and 
attractive, there is an inherent drawback: it is hard to cope with complex control 
flows (i.e., lots of branches) typically in embedded applications, which explain 
why previous proposals have focused on simple code segments that do not have 
a branch. Green Droid [2] is a configurable processor for mobile devices with 
Android OS. The processor improves power efficiency by processing the hot 
path (most recursive code) of Android OS in hardware, but it has no versatility 
to other operating systems. ADRES [3] is a processor in which dynamically re-
configurable function units (FU) are coupled to a very long instruction word 
(VLIW) processor. The processor improves performance by complementarily 
computing the hot path with the VLIW processor and FU array. However, the 
FU array cannot handle hot paths including multiple branch instructions, caus-
ing a decrease in energy efficiency. CMA [4] is a reconfigurable processor with a 
processing element (PE) array consisting only of combinational circuits and it 
can be customized but cannot be dynamically reconfigured during execution. 
Therefore, although CMA is superior to conventional dynamically reconfigurable  
 

 
Figure 1. Example of EMP power consumption breakdown [1]. 
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processors such as MuCCRA [5] and DRP [6] in power consumption, it has low 
flexibility and requires an external controller in order to execute a large-scale 
program. 

As mentioned example above, the conventional reconfigurable processor is 
unable to combine power efficiency and flexibility. Based on this observation, we 
recently proposed an abstract architecture for achieving both energy efficiency 
and versatility in control-rich embedded applications [7]. The architecture we 
proposed consists of a static arithmetic logic unit (ALU) array without registers 
and data paths that contains dynamically reconfigurable switches and registers, 
where the ALU array improves power efficiency and dynamically reconfigurable 
data paths ensure versatility. The contribution of this paper is to materialize the 
concept into executable micro-architecture, design/verify it in a silicon chip, and 
evaluate its energy efficiency. 

In Section 2, we describe the architecture of the proposed DYNaSTA accele-
rator. The accelerator consists of a static data path, a dynamically reconfigurable 
data path, and circuits for controlling them. In Section 3, we show the simula-
tion results for the DYNaSTA accelerator and the measurement results of the 
fabricated chip. The processor with the DYNaSTA accelerator showed reduced 
power consumption by 69% to 86% compared to general processors. In Section 
4, we will summarize the study. 

2. Architecture 

The key innovation in our proposal, a DYNaSTA reconfigurable accelerator, 
shown in Figure 2, is to combine two distinctive array structures different in 
nature, namely, a dynamic operand forwarding matrix (DYN) and a static ALU 
array (STA). STA computes an instruction sequence in parallel and plays a key 
role in achieving high-energy efficiency, where DYN is dynamically reconfigured 
while the accelerator is running and plays a key role to achieve versatility. 

The DYNaSTA accelerator executes instructions by the method shown in 
Figure 3. When an instruction sequence to be executed by DYNaSTA is ex-
tracted, each instruction is mapped on the STA based on the data flow between  
 

 
Figure 2. The reconfigurable datapath in the proposed DYNaSTA accelerator consists of 
a dynamic operand-forwarding matrix and static ALU array. 
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Figure 3. Code mapping policy: (a) an example code, (b) extracted data flow, (c) ex-
tracted operand dependency, and (d) mapping on DYN and STA. 
 
the instructions, that is, the operand dependency, and the STA operates the in-
structions in parallel. If the data flow changes during operation because of the 
execution of a branch instruction, the switches of DYN are dynamically recon-
figured and an appropriate data flow is constructed. 

In the following subsection, we will describe in detail the architecture of each 
circuit included in the DYNaSTA accelerator. 

2.1. Static ALU Array 

STA features a non-fixed number of stages, where each stage has several ALUs 
sharing a set of source/destination lines (Figure 4). To reduce the number of 
switches, hence improving energy efficiency, only parallel instructions are mapped 
onto a same stage, where branch/jump and load/store instructions go to the first 
and last ALUs, respectively (Figure 3(b) and Figure 3(d)). The instructions de-
pendent on preceding ones are mapped onto the next stage. Conditional execu-
tion is supported for discarding short forward branches. An appropriate number 
of STA stages is dependent on the sizes of the target codes, whereas that of ALUs 
per stage will range from 2 to 8, as in superscalar/VLIW architectures. Note 
there are no registers and hence no clocks in STA. 

The difficulty in serving branches in a reconfigurable accelerator lies in that 
their outcome can never be known a priori: for example (Figure 3(c)), the “r4” 
operand in #2 may be produced by #3 instead of #1 when the #4 branch is taken. 
Efforts to accommodate this dynamic nature in ALU arrays such as STA un-
avoidably degrade its simplicity and regularity, hence incurring energy ineffi-
ciency. 
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Figure 4. Block diagram of static ALU array (STA). 

2.2. Dynamic Operand-Forwarding Matrix 

DYN is a multi-context, bidirectional operand-forwarding matrix for solving 
this difficulty: it is dynamically reconfigured only when operand dependencies 
among instructions are altered on a branch (Figure 3(c) and Figure 3(d)). DYN 
is composed of temporary registers for storing operand values of each instruc-
tion and a large number of switches, as shown in Figure 5. When the data flow 
of the program transits while the accelerator is running, the switches are dy-
namically switched and appropriate data flow is constructed.  

Figure 6 represents an example in which fibonacci, used as one of the bench-
mark programs in the evaluation, is mapped to DYNaSTA. In Figure 6, it is 
shown that the datapath on DYN changes according to each context, and the 
appropriate operands are forwarded to the STA. Keeping power-consuming dy-
namic reconfiguration away from the massive ALU array (and leaving it static) is 
a key for achieving energy efficiency in DYNaSTA architecture. 

2.3. Context Controller 

The context controller shown in Figure 7 controls the transition of the context 
during execution. As the base processor starts executing the program, functions 
or subroutines processed by DYNaSTA are loaded from the instruction memory, 
and information of each context contained in them is stored in the configuration 
memory and the context memory. The context information is embedded in the 
executable file by recompiling the original executable file with the dedicated 
compiler; the function to be accelerated is also decided. 

The context information includes DYN’s switch configuration information 
(configuration), the number of clock cycles required to execute the context (de-
lay), and a return address. When the next context is selected according to the  
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Figure 5. Block diagram of dynamic operand- 
forwarding matrix (DYN). 

 

 
Figure 6. Assembly code of fibonacci and its mapping on DYNaSTA. When the context of the program transitions, DYN is dy-
namically reconfigured. 
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Figure 7. Block diagrams for configuration loader and context controller. DYN is dynamically reconfigured by these circuits. 

 
results of the branch instruction and the delay of the previous context is equal to 
the value of the clock counter (meaning that the previous context has been 
properly executed), the next context configuration information is sent to DYN. 
After DYNaSTA finishes executing the function, the base processor resumes 
program execution from the address of the instruction memory specified by the 
return address. 

2.4. Overall Architecture 

We designed an EMP with this DYNaSTA accelerator into silicon (Figure 8). 
The base EMP is Mico32 [8], which is chosen because of its typical RISC archi-
tecture and open-source RTL code. By treating “recursive codes” that are mapped 
onto DYNaSTA as subroutines, the read/write path between Mico32’s RF and 
DYN only needs to cover its arguments portion (four registers, Figure 8). 

3. Evaluation 
3.1. Instruction-Level Parallelism 

Before simulating power consumption, we analyzed the optimal number of 
ALUs included in one stage of STA. If there are numerous unused ALUs, they 
generate unnecessary static power; in contrast, if there are only a few ALUs, in-
struction-level parallelism is reduced and computing performance is degraded. 
Therefore, we examined the relationship between the ALU occupancy and in-
struction-level parallelism through some programs containing many instructions 
from the benchmark set employed in the power-consumption simulation. 

Figure 9 represents the result, in which the solid line represents the ALU oc-
cupancy, the dashed line represents the instruction-level parallelism, and the 
x-axis represents the number of ALUs per stage. The ALU occupancy depends 
linearly on the number of ALUs, whereas the instruction-level parallelism for 
crc32 and sbox is constant regardless of the number of ALUs. However, the in-
struction-level parallelism for sepia filter decreases when the number of ALUs is 
four. Therefore, we set the number of ALUs per stage to be five. 
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Figure 8. Tight integration of Mico32 (base EMP) and the DYNaSTA accelerator. 

 

 
Figure 9. ALU utilization and instruction-level parallelism. 

3.2. Power Simulation 

Then, the number of stages of the STA is set to 10, the performance and power 
consumption of the DYNaSTA accelerator were evaluated using sample applica-
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tions (Table 1) based on the synthesized netlist. Figure 10 is a comparison of 
the power consumption when Mico32 and DYNaSTA execute the hot path of 
each application, that is, the most recursive code. As shown in the figure, the 
power consumption reduced by 69% to 86% due mainly to discarded instruction 
memory access. While Mico32 sequentially reads instructions from the instruc-
tion memory during program execution, DYNaSTA accesses the instruction 
memory only when generating configuration information (configuration phase) 
and does not access it during execution (running phase). Therefore, the power 
consumption to access the instruction memory has been greatly reduced. Logic 
power consumption is also reduced, as shown in Figure 10, whose detailed 
breakdown is shown in Figure 11 for the case of fibonacci.  

From Figure 10 and Figure 11, it is clear that the 1) to 3) redundancies men-
tioned earlier were successfully removed. Since instructions are executed in pa-
rallel in STA, the proposed architecture not only reduces the power but also en-
hances the performance (Figure 12) at the same frequency (100 MHz). As a re-
sult, the energy efficiency was improved 4.5 to 13 times from Mico32 for these 
sample codes. 

3.3. Measurement of Fabricated Chip 

We fabricated the proposed DYNaSTA using a UMC 0.18 µm process (see Fig-
ure 13 and Table 2). Because of the area constraint, four STA stages were  
 
Table 1. Summary of sample applications. 

Application # of instructions # of branches 
ALU utilization 

[%] 
# of contexts 

fibonacci 12 3 24 5 

sbox 25 2 50 5 

crc32 18 2 36 5 

sepia filter 22 1 44 3 

 

 
Figure 10. Mico32 vs. DYNaSTA: total power consumption of sample applications. 
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Figure 11. Mico32 vs. DYNaSTA: logic power consumption (fibonacci). 

 

 
Figure 12. DYNaSTA/Mico32 performance and energy efficiency improvement. 
 

 
Figure 13. Chip micrograph of proposed DYNaSTA (four stages). 



I. Hida et al. 
 

144 

Table 2. Chip specifications. 

Technology UMC 0.18 µm 1P6M CMOS 

Package 48-pin DIL 

Die area 1.5 mm × 1.5 mm 

Gate count 86.5 K 

Supply voltage 1.8 V core/3.3 V IO 

Clock frequency 100 MHz 

# of stages 4 

Register file 32 bit × 4 word 

# of ALUs/stage 5 

# of contexts 6 

 
implemented. The register file is originally installed on Mico32, we implemented 
it on DYNaSTA because we only designed the accelerator in this study. Al-
though the size of DYNaSTA is very small, extending it is quite straightforward 
because of its regular array structure. 

We measured the power consumptions of the fabricated chip during the con-
figuration and the running phases of the DYNaSTA with fibonacci. The experi-
mental setup is shown in Figure 14 and Figure 15. We implemented Mico32 on 
the FPGA (field-programmable gate array) and sent the test vector and clock to 
the fabricated DYNaSTA chip. Since DYNaSTA require 3.3 V power supply for 
I/O and 1.8 V for core, we supplied each power to DYNaSTA using two power 
supply units. Then, we connected the power analyzer to the core power supply 
and measured the power consumption during running. Figure 16 shows the 
measured power consumption versus clock frequencies for both the configura-
tion and the running phases. Because of the limitation of our FPGA-based pow-
er-measurement workbench, the maximum frequency for the measurement was 
80 MHz. We then predicted the power consumption at 100 MHz by linear in-
terpolation of the measured data. 

Table 3 shows a comparison of the simulated and measured (and interpo-
lated) power consumption for both phases at 100 MHz. We observed a slight 
mismatch of approximately 2.6 mW for both phases between the simulated and 
measured data. This mismatch resulted from circuit elements of the fabricated 
chip that were not included in the power simulation model, such as the Mico32 
register file. Table 4 reveals the reasons for this energy efficiency: although DY-
NaSTA consumes ×18.5 more gates than Mico32, its average toggle rate is as low 
as ×0.06 of Mico32. Here, the average toggle rate represents the ratio of nodes 
that toggled synchronously with the rising (or falling) edge of the clock among 
all the nodes in the circuit per unit time. Specifically, gate-consuming STA fea-
tures only a 1.8% toggle rate, which accounts for its relatively low power occupa-
tion in Figure 11. 
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Figure 14. Experimental configuration. 

 

 
Figure 15. Photograph of our power-measurement workbench. 

 

 
Figure 16. Measured power consumption vs. clock frequency for configuration and run-
ning phase. 
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Table 3. Comparison between simulation results and measurement results at 100 MHz. 

 Configuration [mW] Run [mW] 

Simulation 4.03 8.57 

Measurement 
(interpolated) 

6.63 11.20 

 
Table 4. Mico32 vs. DYNaSTA: gate counts and average toggle rates (fibonacci). 

 Gate count [k gates] Average toggle rate [%] 

DYNaSTA 

DYN 43.6 20.0 

STA 322.9 1.8 

Others 80.2 9.1 

All 446.8 4.9 

Mico32 24.1 76.8 

Ratio (DYNaSTA/Mico32) 18.48 0.06 

 

 
Figure 17. DYNaSTA SoC concept toward “Dark 
Sillicon” era. 

4. Conclusion 

In this study, we proposed a novel dynamically reconfigurable accelerator “DY-
NaSTA”. The DYNaSTA accelerator is a restricted dynamically reconfigurable 
accelerator composed of dynamically reconfigurable data paths called DYN and 
a static ALU array called STA, and we processes the hot path of the program on 
behalf of the base processor. The STA computes the instructions in parallel, and 
DYN is dynamically reconfigured to solve the change in the operand dependen-
cy due to branch instructions. We designed the proposed DYNaSTA accelerator 
to operate at a clock frequency of 100 MHz using UMC 0.18 μm process, and 
simulated power consumption and measured the fabricated chip. Through the 
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experiment, we obtained the results that power consumption reduced from 69% 
to 86% and energy efficiency improved from 4.5 times to 13 times. Therefore, 
the proposed DYNaSTA accelerator was proved to be a reconfigurable accelera-
tor combining flexibility and high-energy efficiency. 

Filling a chip with simple, regular, and energy-efficient array like DYNaSTA 
can become an interesting solution in the “Dark Silicon” [9] era (Figure 17). 
Here, existing domain-oriented low-power-circuit techniques such as DVFS and 
power gating can augment the architecture quite nicely. For instance, since only 
a few active stages propagate like a “wave” on the array, remaining numerous 
“silent” stages can be powered-off systematically to minimize the leak current 
(Figure 17). Our next challenges include enhancing DYNaSTA with such low- 
power-circuit techniques as well as establishing code mapping SW. 
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