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Abstract 
This paper is concerned with the discretization of the fractional-order diffe-
rentiator and integrator, which is the foundation of the digital realization of 
fractional order controller. Firstly, the parameterized Al-Alaoui transform is 
presented as a general generating function with one variable parameter, which 
can be adjusted to obtain the commonly used generating functions (e.g. Euler 
operator, Tustin operator and Al-Alaoui operator). However, the following 
simulation results show that the optimal variable parameters are different for 
different fractional orders. Then the weighted square integral index about the 
magtitude and phase is defined as the objective functions to achieve the op-
timal variable parameter for different fractional orders. Finally, the simulation 
results demonstrate that there are great differences on the optimal variable 
parameter for differential and integral operators with different fractional or-
ders, which should be attracting more attentions in the design of digital frac-
tional order controller. 
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1. Introduction 

Fractional order calculus has a history of more than 300 years, which extends the 
order of the classical calculus from integer number to arbitrary real number and 
even complex number. Compared with integral order calculus, the fractional 
order calculus could describe the dynamic characteristics of the actual system 
more accurately. Therefore, fractional order control is increasingly becoming 
one of the most important topics in control theory in recent years [1]. 

How to cite this paper: Zhang, Q., Song, 
B.Y., Zhao, H.D. and Zhang, J.S. (2017) Dis- 
cretization of Fractional Order Differentia-
tor and Integrator with Different Fractional 
Orders. Intelligent Control and Automation, 
8, 75-85. 
https://doi.org/10.4236/ica.2017.82006 
 
Received: March 4, 2017 
Accepted: May 7, 2017 
Published: May 10, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ica
https://doi.org/10.4236/ica.2017.82006
http://www.scirp.org
https://doi.org/10.4236/ica.2017.82006
http://creativecommons.org/licenses/by/4.0/


Q. Zhang et al. 
  

76 

The discretization of the fractional-order differentiator and integrator is the 
foundation of the digital realization of fractional order controller. Generally, 
there are two methods for the discretization of the fractional-order differentiator 
and integrator [2], i.e., direct discretization and indirect discretization, while the 
former is more practical in real applications [3]. Several algorithms have been 
proposed for the direct discretization method, e.g., the power series expansion 
(PSE) of the Euler operator, the continued fractional expansion (CFE) of the 
Tustin operator, etc. [4]. 

The discretization of the fractional-order differentiator is taken for example. 
The direct discretization method could be summarized as the following two 
steps. Firstly, some kind of generating function ( )1zω −  is used to discretize the 
differentiator s , i.e., ( )1r rs zω −= , where r  is the order of the fractional- 
order differentiator and ( )1zω −  is usually expressed as a function of the com- 
plex variable z  or the shift operator 1z− , and then some kind of expansion 
method is applied to generate the approximate digital filter of the differentiator. 
For example, Chen and Vinagre propose an IIR (infinite impulse response)-type 
digital fractional-order differentiator with weighted sum of Simpson integration 
rule and the trapezoidal integration rule [3]. Al-Alaoui operator and CFE are 
applied in the discretization of fractional-order operator for better discretization 
approximation [5]. Zhu and Zou propose an improved recursive algorithm for 
fractional-order system solution based on PSE and Tustin operator [6]. Mila- 
dinovic and his colleagues use genetic algorithm to minimize the deviation in 
magtitude and phase responses between the original fractional order element 
and the rationalized discrete time filter in IIR structure [7]. The discretization 
methods for fractional-order differentiator are compared based on Tustin ope- 
rator and three different expansion algorithms in [8]. A class of generating 
function called parameterized Al-Alaoui transform is presented and the simu- 
lation analysis indicates that the variable parameter could be adjusted to achieve 
certain optimal digital filter approximation for the fractional-order operator [9]. 
However, the variable parameter of the optimal digital filter is different for the 
fractional-order operator with different orders, this issue has not been inten- 
sively discussed in previous papers and will be studied in this paper. The main 
contributions of this paper are outlined as threefold. (1) The parameterized 
Al-Alaoui transform is analysed thoroughly to show the effect of the variable pa- 
rameter. (2) A weighted square integral index about the magtitude and phase is 
defined as the objective functions to obtain the optimal variable parameter for 
different fractional orders. (3) Some simulations are implemented to demon- 
strate the great differences on the optimal variable parameter for differential and 
integral operators with different fractional orders. 

The remainder of this paper is organized as follows. The preliminary of frac- 
tional calculus is briefly introduced in Section II. The discretization of fractional- 
order operator with different orders is discussed in Section III. Finally, the con- 
clusions are given in the last section. 
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2. Preliminary of Fractional Calculus 

A. Definition of Fractional Calculus 
Fractional order calculus is a natural generalization of the classical integral 

order calculus, which extends the order of the integration and differentiation to 
the non-integer or fractional order [10]. Two of the commonly used definitions 
of the fractional calculus are the Grünwald-Letnikov (GL for short) definition 
and the Riemann-Liouville (RL for short) definition. The GL definition is 
defined as  
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where r
a tD  is the fractional-order calculus operator, a  and t  are the limits 

of the operator respectively, r  is the order of the operator and [ ]⋅  means the 
integer part. The RL definition is defined as 
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where, 1n r n− < <  and ( )Γ ⋅  is the Gamma function. Actually, the afore- 
mentioned definitions are equivalent to each other in the real physical systems 
and engineering applications. 

The Laplace transform of fractional order calculus with zero initial conditions 
for order r  is  

( ){ } ( ) ,r r
a t f t s s=L D F                     (3) 

where {}⋅L  denotes the operation of Laplace transform, ( )sF  is the Laplace 
transform of function ( )f t  and rs  denotes the fractional-order operator [11]. 
The discretization of fractional-order operator is to design a digital filter to ap- 
proximate the operator rs , where r  could be positive or negative for differen- 
tiator and integrator, respectively. 

B. Parameterized Al-Alaoui Transform 
The discretization of the fractional-order differentiator and integrator is to 

design a digital filter for the fractional-order operator rs . Firstly, a generating 
function is used to realize the transform of the Laplace operator from the 
continuous complex frequency domain to the discrete complex frequency 
domain. According to the definition of Z  transform, the mapping relationship 
between the two domains is  

,sTz e=                           (4) 

where T  is the sampling period. Furthermore, the equivalent relation can be 
formulated  
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where [ ]0,1α ∈ . Take power series expansion to the numerator and denomi- 
nator of Equation (5) and neglect the high-order terms, Equation (5) can be 
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approximated as  
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and then the complex variable s  can be solved to yield  
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Equation (7) is defined as the α  transform from continuous complex 
frequency domain to the discrete complex frequency domain in [12] and [13]. 
The analyses presented in [5] and [14] prove that the so-called α  transform is 
actually equivalent to the Al-Alaoui transform [15] [16] with variable parameter 
a  when parameter α  is set to ( )1 2a+ , i.e.,  
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Specially, three commonly used generating functions, i.e., Tustin transform, 
Al-Alaoui transform and Euler transform can be formulated when a  is set to 0, 
3/4 and 1, respectively. 

A digital integrator with adjustable parameters, which is used in the discreti- 
zation of fractional-order operator [17], is presented in [18]. The expression of 
the generating function is  
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where β  and γ  are gain adjusting parameter and phase adjusting parameter, 
respectively. The fractional-order operator can be adjusted more accurately with 
the adjusting parameter according to different real applications. Specially, 
Equation (9) is equivalent to Equation (7) when parameter β  is set to 1. 
Additionally, if the parameter α  in Equation (7) is set to ( )1 1 δ+ , the 
generating function is formulated  
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which is used for the discretization of fractional-order operator in [19]. Table 1 
shows the relationship of the common generating functions and the variable 
parameters. 

From above analyses, the generating functions in Equations (7), (8), (9) and 
(10) are actually equivalent to each other when certain relations of the variable 
parameters are satisfied as shown in Figure 1. We call them parameterized 
Al-Alaoui transform in [9], a certain expression could be used in certain specific 
issues. 

C. Power Series Expansion of Generating Function 
Two main methods for the expansion of generating function are continued 

fractional expansion and power series expansion. Generally, CFE method could  
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Figure 1. Relations of parameterized Al-Alaoui transform. 
 
Table 1. Relationship of common generating functions and variable parameters. 
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obtain IIR-type digital filter which is easy for the digital filter design, while PSE 
method could obtain FIR (finite impulse response)-type digital filter and re- 
quires less computation cost in comparison with CFE under similar accuracy 
criterion [4]. 

In this paper, Equation (10) is used as the generating function, and the power 
series expansion algorithm presented in [20] is applied to obtain an IIR-type 
digital filter. The general form of the discretization of fractional-order operator 
is  
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where, ( )1r z−D  is the digital filter of the discrete fractional-order operator, 
{}PSE ⋅  indicates the power series expansion, ( )1

pP z−  and ( )1
qQ z−  are the 
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numerator and denominator polynomials of the digital filter, and p  and q  
are their orders respectively. Without loss of generality, the approximate orders 
of the numerator and denominator polynomials are set to n  (see [20] for more 
details). 

3. Discretization of Fractional-Order Operator  
with Different Orders 

A. Objective Function 
Al-Alaoui transform has better properties in the discretization of fractional- 

order operator in comparison with other common generating functions, which 
have been reported in several papers (see e.g. [4] [7] [21]). In the parameterized 
Al-Alaoui transform, the parameter δ  could be adjusted to achieve certain 
optimal digital filter approximation of the fractional-order operator. An 
objective function is defined in [7], which is to obtain the optimal IIR-type 
digital filter realization by minimizing the weighted sum of the discrepancies 
between the responses of the continuous time fractional order filter and its 
approximate digital filter realization. 

However, the papers mentioned above usually consider certain specific 
fractional order (e.g. fractional order 0.5) and are not concerned with the 
discretization of fractional-order operator with different orders, which will 
influence the design of the digital filter. In this paper, we define the following 
objective functions  
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where ( )cM jω  and ( )dM jω  are the magtitude responses of the fractional- 
order differ-integrator and its discrete counterpart; ( )cA jω  and ( )dA jω  are 
the corresponding phase responses; bω  is the bandwidth betweeen the lower 
and upper limits lω  and uω  (i.e. ( )b u lω ω ω= − ) within a chosen frequency 
band, e.g. 110 , Nω ω− ∈    with Nyquist frequency Nω . The normalized magJ  
and argJ  depend on not only the parameter δ , but also the different orders r . 
The following simulation analyses are to find the optimal parameter δ  for 
different fractional orders r , which could achieve the minimal objective 
function J  with specific weight tw . 

B. Simulation Results 
In the simulation, the weight tw  is taken as 0.75 without loss of generality. 

The orders of the power series expansion are taken as 5 for simplicity, the 
sampling period is taken as 0.001, and the orders of the fractional-order operator 
are typically taken as 0.1, 0.5, 0.9 and −0.1, −0.5, −0.9 for differential and integral 
operators respectively. 

Figures 2-4 are the objective functions for differential operator with fractional 
order 0.1, 0.5 and 0.9, where the horizontal coordinate indicates the different  
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Figure 2. Objective functions for differential operator with fractional order 0.1. 

 

 
Figure 3. Objective functions for differential operator with fractional order 0.5. 

 

 
Figure 4. Objective functions for differential operator with fractional order 0.9. 
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variable parameter δ  and the longitudinal coordinates indicate the variation of 

magJ , argJ  and J  respectively. Figures 5-7 are the counterparts of the 
integral operator. All the figures demonstrate that the variation trends of the 
objective functions with variable parameter δ  seem consistent with each other, 
while the optimal variable parameters are totally different for fractional 
differential and integral operator with different fractional orders under the 
selected objective functions. Table 2 shows the optimal variable parameters δ  
for the specific orders of the differential and integral operators. 
 

 
Figure 5. Objective functions for differential operator with fractional order −0.1. 

 

 
Figure 6. Objective functions for differential operator with fractional order −0.5. 
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Figure 7. Objective functions for differential operator with fractional order −0.9. 
 
Table 2. Optimal variable parameter δ . 

Fractional Order Optimal δ  for Optimal δ  for 

 Differential Operator Integral Operator 

0.1 0.40 0.33 

0.5 0.52 0.28 

0.9 0.44 0.17 

4. Conclusions 

This paper is concerned with the discretization of the fractional-order differen- 
tiator and integrator with different fractional orders, which is seldom considered 
in previous literatures. The parameterized Al-Alaoui transform with one variable 
parameter is presented as a general generating function, and the objective 
functions are defined to achieve the optimal variable parameter for the discreti- 
zation. The simulation results demonstrate that there are great differences on the 
optimal variable parameters for the discretization of differentiator and integrator 
with different fractional orders. 

However, the weight in the simulation is set as 0.75 without loss of generality, 
and it is undoubtedly arbitrary to select the proper weight for specific discreti- 
zation purpose, e.g. select smaller weight for more accurate phase approximation. 
In the future, we will consider the optimal variable parameter into the practical 
digital fractional order controller design to acquire the optimal control perfor- 
mances. 
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