
Journal of Applied Mathematics and Physics, 2017, 5, 939-952 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.54083  April 30, 2017 

 
 
 

Classical Fundamental Unique Solution for the 
Incompressible Navier-Stokes Equation in N 

Waleed S. Khedr 

Independent Researcher, Cairo, Egypt 

 
 
 

Abstract 
We present a class of non-convective classical solutions for the multidimen-
sional incompressible Navier-Stokes equation. We validate such class as a 
representative for solutions of the equation in bounded and unbounded do-
mains by investigating the compatibility condition on the boundary, the 
smoothness of the solution inside the domain and the boundedness of the 
energy. Eventually, we show that this solution is indeed the unique classical 
solution for the problem given some appropriate and convenient assumptions 
on the data. 
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1. Introduction 

In this article, a well known model is to be investigated that represents the flow 
of an incompressible fluid in both bounded and unbounded domains of N . 
This model is commonly called the Navier-Stokes equation following the French 
engineer Navier who was the first to propose this model. This model was inves-
tigated later by Poisson and de Saint Venant. However, Stokes was the one who 
justified the model based on the principles of continuum mechanics. By advent 
of 1930, the interest in this model increased significantly and outstanding results 
were obtained by Leray, Hopf, Ladyzhenskaya and Finn. 

This equation describes the flow of what is so called the Newtonian fluid. 
These are the fluids that exhibit shearing stress due to the presence of frictional 
forces. Frictional forces within fluids are consequences of its viscosity. Also, the 
gradient of the velocity represents a measure for the relative motion of the fluid’s 
particles. Moreover, deformation of fluids is commonly associated with internal 
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and external body forces; the internal force is what we refer to as the pressure of 
the fluid. The derivation of the Navier-Stokes equation is a natural application of 
Newton’s second law of motion, the balance of momentum and the mass con-
servation, which eventually leads to the definition of the Cauchy stress tensor. In 
Newtonian fluids, this stress tensor is a function in the pressure, the viscosity 
and the gradient of the velocity. For a convenient physical background about the 
basics of continuum mechanics and how we derive the Navier-Stokes equation 
we propose [1] [2]. Also a very interesting work from a physical point of view 
can be found in [3] [4]. In particular, the work of Kambe in [4] was the source of 
inspiration for the ideas in this article. 

This model poses a serious challenge when it comes to proving the existence 
and the smoothness of its solution. This problem was perfectly addressed by La-
dyzhenskaya in two dimensional spaces among many other issues in higher di-
mensional spaces [5]. However, a decisive answer in the three-dimensional space 
or higher remains unavailable. It is almost impossible to enlist all the results ob-
tained for this equation. Therefore, we suggest for the interested reader to review 
the monographs [5] [6] [7] and the references within for much more details. 

Recently, the interest in this equation is not fading at all. There are persistent 
efforts to clarify the properties of the solution, especially its smoothness. Among 
many respectful results, we mention the outstanding analysis by Tao in [8], the 
work of Constantin in [9] [10] [11]. A very interesting result for partial regulari-
ty of suitable weak solutions was obtained by Caffarelli in [12]. 

In this article the idea is simple. A class of possible solutions is proposed and 
then it is proved that it indeed represents the unique classical solution of the 
problem. Most of the results are obtained by considering standard theories of 
partial differential equations. Some of the results in the monograph [7] are also 
used repeatedly. In the next section a statement of the problem is introduced 
along with some definitions, notations and employed functional spaces. After- 
wards, the proofs of the main results are established. 

2. Statement of the Problem 

The spatial domain is Ω  which is either a bounded region in N  or the 
whole of N  and this point shall be specified explicitly. For the sake of con-
ciseness, the notation tΩ  is used to denote ( ) ( ){ }, : , 0,t t tΩ = ∈Ω ∈ ∞x x . 
Clearly, such notation should not be taken to imply a moving boundary. The 
main model equation is in the form 

( )

( ) ( ) ( ) ( )
( ) ( )

0 0 0

*
1

in ,
in ,

,0 and in ,

, , on ,

0 in

t t

t

N t

t

p

x x

t t

µ

−

 + ⋅∇ = ∆ −∇ + Ω


= ∇× Ω
 = = ∇× Ω


= ∂Ω
∇ ⋅ = ∇ ⋅ = Ω

v v v v f
v

v x v x v

v x v x

v

ω
ω

ω

          (1) 

where the last equation in the above model is what many authors commonly re-
fer to as the incompressibility condition or the solenoidal condition. The first 
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term in the first equation is the acceleration of the fluid’s flow in time, the 
second is the convective term that represents the acceleration of the flow in 
space, the third represents the diffusion scaled by the kinematic viscosity con-
stant µ , the fourth is the pressure, and the last one represents the total of the 
external body forces. The initial profile is denoted by 0v  and the boundary da-
tum is denoted by *v . The solution v  is the vector field representing the ve-
locity of the flow in each direction, and its rotation ω  is the vorticity. Note that 

0∇ ⋅ =ω  in tΩ  by compatibility. 
The well known Lebesgue spaces ( )qL Ω  will be used repeatedly to represent 

the functions with bounded mean of order q. The Sobolev space ( )mH Ω  is 
used to represent functions with bounded derivatives such that for a vector field 

{ }1, , Nv v=v   one has ( )2
iv Lα∂ ∈ Ω  for every 1, , mα =   and 1, ,i N=  . 

This motivates the usage of the space ( )mV Ω , which is a well known space of 
functions in the theory of incompressible fluids as a representative for diver-
gence free (solenoidal) bounded vector fields such that  

( ){ }( ) : 0 in m mV HΩ = ∈ Ω ∇⋅ = Ωv v . 
By laws of classical mechanics, the energy generated by a moving object is 

proportional to the square of its velocity. Hence, the energy ( )E t  generated by 
the flow v  is defined as follows 

( ) ( ) 2
, d .E t t

Ω
= ∫ v x x                         (2) 

Recall that the above integral represents the norm of v  in the Lebesgue 
space ( )2L Ω . The smoothness of ( )0v x  is such that 

( ) ( ) ( )2 2
0 .NV +∈ Ω Ωv x C                       (3) 

The smoothness of the boundary datum ( )*
1,N t−v x  is such that 

( ) ( ) ** * *
1, ( ) and , ~ for any 1.K

N tt t t K∞ −
− ∈ ∂Ω ⋅ >Cv x v  (4) 

Finally, the forcing term f  is smooth in space and time such that 

( ) [ ] ( ) ( )( ) ( )1 1 3, 0, ; and , ~ for any 0.Kt H t t K−∈ ∞ Ω Ω ⋅ >f x fC C  (5) 

Note that the intersections in the above conditions are not really required in 
the case of bounded domain since boundedness of the domain and continuity of 
the functions are enough to imply boundedness in the sense of the mean. How-
ever, these requirements are of significant importance in the case of unbounded 
domain as will be shown later. 

The target is to define a class of possible solutions to Model Equation (1) from 
which v , ω  and p  can be concluded. Once v  is obtained, then p  can 
easily be recovered from the main model. The validity of this solution as a mea-
ningful physical solution will be investigated when inserted in the main model. 
A meaningful solution is a unique and smooth solution that vanishes as t →∞ , 
and in the case of unbounded domain it vanishes as →∞x  as well. 

Remark. The curl operator or the rotation of a vector field has a physical 
meaning only in three dimensional space. However, it will be used in N  for 
the sake of generality. Most of the results depend on the curl operator in the sense 



W. S. Khedr 
 

942 

of a differential operator without direct exposure to its definition. Note that the 
main interest is to find the velocity, which means that any use of the rotation, in 
spite of its significance in this work, is nothing more than a transient step. It can 
always be assumed that the space is three dimensional when needed, and a genera-
lization becomes possible by reverting back to the results of the velocity. In partic-
ular, some of the vorticity ideas introduced in [7] are adopted in this study. 

3. Main Results 

In this section a class of possible solutions is proposed and the insertion of these 
solutions in the main model is investigated to check where they will lead to. This 
is initiated by the statement of the following claim. 

Claim 1. The unique solution of Model Equation (1) is in the form 
( ) ( ) ( ), ,t t tψ=v x x u  where : Nψ × →    is a scalar field and 

( ) ( )( )1 , , Nu t u t=u   is a vector field such that, at least, ( ) ( )2, ttψ ∈ ΩCx  
and ( )∈u C . 

An important question in the theory of Navier-Stokes equation is the ability to 
verify the compatibility condition on the boundary with minimum restrictions 
on the flux passing through the boundary especially if ∂Ω  is divided into sever-
al parts ([6], p. 4-8). This condition is a natural consequence of the incompressi-
bility of the flow. Hence, it takes the form 

( ) 1d 0,N−∂Ω
⋅ =∫ v n x

                      (6) 

where n  is the outward unit vector normal to ∂Ω . This motivates the intro-
duction of the following lemma. 

Lemma 1 (Tangential flow). Let Ω  be an arbitrary domain, 
( ), : Ntψ × →x     be any scalar field such that ( )1ψ ∈ ΩC  and let 
( ) ( ) ( )( )1 , , Nt u t u t=u   be any vector field independent of x . The 

Compatibility Condition (6) is satisfied for every divergence free vector field 
( ), : N Nt × →v x     in the form ( ) ( ), t tψ=v x u . In particular, on every part 

of ∂Ω , v  and its rotation ω  are tangents to ∂Ω  such that  
0⋅ = ⋅ =v n n 

ω . 
Proof. Given that ( ) ( ), t tψ=v x u  is divergence free such that 0∇ ⋅ =v  

leads to 

1
0.

N

i
i i

u
x
ψ

=

∂
=

∂∑                          (7) 

Identity (7) can be used to deduce that ( ) ( )⋅∇ = ∇ =v v v v 0 . Upon dot 
product by v  one obtains 

( ) ( ) ( )2 2T 1 10 ,
2 2

= ∇ ⋅ = ∇ ⋅ = ⋅∇ = ∇ ⋅v v v v v v v v v v           (8) 

and when integrated over Ω  for any 0t >  provides 

( ) ( )2 2
10 d d ,N−Ω ∂Ω

= ∇ ⋅ = ⋅∫ ∫v v x v v n x                   (9) 

which is a true identity for every arbitrary Ω , ψ  and u  and for every 0t > . 
On the other hand, given that ( ) 0⋅∇ =v v , one can use the identity 



W. S. Khedr 
 

943 

( )21 ,
2
∇ = ⋅∇ + ×∇× = ×v v v v v v ω                  (10) 

where = ∇× vω , which upon dot product by ω  provides 

( )2 0,∇ ⋅ =v ω  

where we used also that 0∇ ⋅ =ω . Integrate over Ω  for any 0t >  to get 

( ) ( )2 2
10 d d ,N −Ω ∂Ω

= ∇ ⋅ = ⋅∫ ∫
v x v n xωω                (11) 

which is true for arbitrary Ω , ψ  and u . Now, since = 0∇⋅ v  one also has 

( ) ( ) 10 d d .N−Ω ∂Ω
= ∇ ⋅ = ⋅∫ ∫v x v n x

                (12) 

Identity (10) implies that 2∇ v  is orthogonal to the space spanned by v  
and ω . Combine Identities (9), (11) and (12), and exclude the cases 1=v  and 

0=v  by the arbitrariness of the choice to deduce that it is necessary that 
0⋅ =v n ; that is to say v  is tangential to every part of ∂Ω . It can also be de-

duced that either =v ω  on every part of ∂Ω  (this actually means 0= =v ω  
on ∂Ω ), or 0⋅ =nω  on every part of ∂Ω . Both cases imply that 0⋅ =nω  
on every part of ∂Ω . Hence, both v  and ω  are tangential to the boundary. 

Remark. As pointed out, the question of verifying the Compatibility Condi-
tion (6) on the boundary of Ω  is an important open question in the mathe-
matical theory of Navier-Stokes equation. Some results were obtained to justify 
the validity of such compatibility under certain restrictions on the flux of the 
flow in terms of the viscosity of the fluid, for details on this issue refer to [6]. In 
the present case, the compatibility is naturally achieved given, of course, that the 
solution of Model Equation (1) is indeed in the form proposed in Claim 1. This 
shall be verified by the statements of the following theorems. 

Theorem 2 (Bounded Domain). Let NΩ ⊂   be a bounded domain with 
sufficiently smooth boundaries ∂Ω  and let ( )0,tΩ = Ω× ∞ . Suppose ( )0v x , 

( )*
1,N t−v x  and ( ), tf x  satisfy Conditions (3), (4) and (5) respectively. If 

( ), tv x  is in the form proposed in Claim 1, then Model Equation (1) has a clas-
sical solution ( ), , pv ω  with bounded energy ( )E t  such that 
( ) ( ), tt ∞∈ Ωv x C , ( ) ( ), tt ∞∈ Ωx Cω  and ( ) [ ] ( )( )1 3, 0, ;p t C C∈ ∞ Ωx . In 

particular, the exact solution is given by solving the following system 

( ) ( )
( ) ( )
( ) ( ) ( )

*
1

*
1

0 0

in ,

, ,
on ,

, ,

, 0 in ,

0 in

t

t

N
t

N

t

p

t t

t t

x

µ

−

−

 = ∆ +∇× 
 ∆ = −∇× Ω

∆ = ∇ ⋅ 
 =  ∂Ω = ∇× 
 = = ∇× Ω
∇ ⋅ = ∇ ⋅ = Ω

f
v

f

v x v x

x v x

x x v

v

ω ω
ω

ω

ω ω

ω

             (13) 

where p∇  can be defined uniquely in terms of the values of v  and f  on 
the boundary. Moreover, if ( )t

∞∈ Ωf C  then ( )tp C∞∈ Ω . 
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Proof. The proof is quite simple and it depends mostly on classical results and 
the standard theory of linear parabolic and elliptic equations of second order. If 

( ) ( ), t tψ=v x u , then by virtue of Identity (7) one has ( ) 0⋅∇ =v v . Hence, the 
main equation takes the form 

.t pµ= ∆ −∇ +v v f                      (14) 

Apply the divergence operator to get 

,p∆ = ∇ ⋅ f                          (15) 

where the incompressibility condition 0∇ ⋅ =v  is used. By the standard theory 
of elliptic equations, if f  satisfies Condition (5), then [ ] ( )( )1 30, ;p C C∈ ∞ Ω . 
However, if ( )t

∞∈ Ωf C , then p  is actually ( )tC∞ Ω , for details on such 
equation see ([13], pp. 326-343). This concludes one part of System (13), how-
ever, a further discussion on a unique definition of p  will be introduced at the 
end of this proof. 

Now, revert to Equation (14) and apply the curl operator to get 

,t µ= ∆ +∇× fω ω                         (16) 

which is the first equation in System (13). Finally, given the incompressibility of 
v  and applying a simple vector identity lead to the third equation in System (13) 
that is 

.−∆ = ∇×v ω                            (17) 

The fundamental solution ω  to Equation (16) with initial profile 0ω  and 
force ∇× f  is given formally by 

( ) ( ) ( )

( )( ) ( ) ( )

2

2

42 0

42
0

, 4π e d

4π e , d d .

N
t

Nt t s

t t

t s s s

µ

µ

µ

µ

−
−−

Ω

−
−− −

Ω

= ∇×

+ − ∇×

∫

∫ ∫

x y

x y

x v y y

f y y

ω
  (18) 

As explained in ([14], Chapter 7), because of the smoothing property of the 
Gaussian kernel, it is enough to have a contentious data under the integral sign 
to guarantee that ( )t

∞∈ ΩCω , which is what has been already assumed. Given 
the assumptions on the growth of f  in time and the form of Formula (18), the 
solution 0→ω  as t →∞ . Moreover, the continuity of the data, the clear de-
cay in time and the assumed boundedness of Ω  imply that C<ω  in tΩ , 
which implies actually that ( )2L∈ Ωω  for every 0t > . Uniqueness of ω  as 
per Expression (18) is not clear unless we insert the boundary datum *∇× v  ex-
plicitly in Expression (18). This can be done by introducing the auxiliary variable 

* =  - ∇×w v ω  for which one obtains a homogeneous heat equation. Anyhow, 
the presence of any form of boundary conditions guarantees the uniqueness of 
ω.  Moreover, since ω  is actually a derivative of ,v  then it suffices to show 
that v  is unique, which is our main concern, to conclude the uniqueness of ω.  

Now, go back to Equation (17). By virtue of the results obtained above for ω  
and the standard theory of elliptic equations one directly concludes that  

( )t
∞∈ Ωv C , for more details see ([13], pp. 326-343). Such regularity, the boun-

dedness of Ω  and the global decay of ω  in time imply that v  is bounded in 
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( )2L Ω  for every 0t > , which in turn implies the boundedness of the energy of 
the flow ( )E t  as defined by Expression (2). Since ( )2L∈ Ωω , then ([7], Propo-
sition 2.16]) can be used to conclude that a formal solution for Equation (17) takes 
the form 

( ) ( )1, , d ,N
N

t t
ω Ω

−
= ×

−∫
x yv x y y

x y
ω                   (19) 

where Nω  is the area of the unit sphere in N . The solution v  can be en-
forced to take the values *v  on the boundary in a standard manner by intro-
ducing Dirichlet Green’s function. We refrain from discussing these details be-
ing highly dependent on the choice of the domain. The uniqueness of v  fol-
lows by the presence of the boundary condition *v , for details see [13] [14].  

Finally, go back to Equation (15) to solve for p . In this case one only needs 
to calculate p∇ ⋅n



 from the main model by knowing the values of ,tv  ∆v  
and f  on the boundary. This provides a form of boundary conditions for p  
which consequently guarantees its  uniqueness up to a constant, for details see 
[14]. The infinite differentiability of p  also follows from the main model and 
the fact that ( )t

∞∈ Ωv C  provided, of course, that ( )t
∞∈ Ωf C  as well. If 

0=f , then p  is certainly ( )tC∞ Ω . This completes the proof. 
Remark. As explained in the proof of Theorem 2, the uniqueness of ω  fol-

lows by the ability to define v  uniquely. The order of solving the equations in 
System (13) is not really important since none of the quantities ( , , )pωv  in-
duces the other; they act simultaneously. Another way of solvability can be in-
troduced by which one can obtain the same results. This can be a topic for a fu-
ture study.  

The problem of proving the existence of regular and smooth enough solutions 
for the Navier-Stokes equation in bounded domain was exhaustively investigated 
as pointed out in the introduction. The real problem was to prove the bounded-
ness of the solution in an unbounded domain, clearly because of the unboun-
dedness of the domain itself. This fact manifests the need to show that the solu-
tion’s support is bounded in N , or equivalently to show that the solution v  
decays rapidly as →∞x . 

The solution obtained in Theorem 2 represents a perfect candidate as a solu-
tion for Model Equation (1) in unbounded domains also except for one issue. 
One needs to prove the boundedness of v  in ( )2 NL   for every 0t >  so 
that the boundedness of the energy ( )E t  can be claimed, and also to ensure 
that the solution does indeed vanish as →∞x . For v  to be bounded in 

( )2 NL  , it should attain a rate of decay, at least, ( ) ( ) 2
1

N
C

δ− +
≤ +v x  for any 

0δ > . One can argue that some of the results in the literature require a rate of 
decay higher than that for the surface integrals to vanish; these restrictions can 
be dropped because these integrals already vanish by virtue of Lemma 1, (see [7], 
Lemma 1.5]). However, this does not mean that rapid rates of decay are not 
achievable, they are achievable as demonstrated next. 

In order to derive such an estimate one goes back to Formula (19) that 
represents the fundamental solution for v . If C≤ω  then it is expected that 
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the outcome of this integral will provide nothing less than a linear rate of growth 
for v , which is a bad answer to the problem in hand. Therefore, Formula (18) 
shall be used to help us estimate some rates of decay for ω  and consequently 
for v  so that boundedness in 2 ( )L Ω  can be proved for every 0.t >   

Theorem 3 (The Domain N). Suppose all the conditions of Theorem 2 are 
satisfied for NΩ =  . Then there exists a classical solution ( ), , pv ω  for Model 
Equation (1) represented by the System (13) and defined as 

( ) ( ) ( ) ( ) ( ) ( )
22

44
0 0

, e d e , d d ,N N

t t stt h t h t s s sµµ

−− −−
−= + −∫ ∫ ∫

x yx y

x y y g y y
 

ω ω   (20) 

and 

( ) ( )1, , d ,N N
N

t y t y
ω

−
= ×

−∫
x yv x

x y
ω                (21) 

where ( ) ( ) 24π
N

h t tµ −= , = ∇×g f  and Nω  is the surface area of a unit  

sphere. The pressure p  can be defined from Model Equation (1) up to a con-
stant where np∇ ⋅



 can be specified uniquely in terms of the values of v  and 
f  on the boundary. Moreover, the energy of the flow ( )E t  is bounded for 

every 0t >  where v  grows at most as ( ) ( )6 2
~ 1

N− +
+v x . 

Proof. The proof of smoothness and uniqueness is identical to the one intro-
duced in the proof of Theorem 2 and it follows by the standard theory of linear 
second order elliptic and parabolic equations. The focus here will be on proving 
the boundedness in ( )2 NL   for both ω  and v , which necessarily entails an 
estimation of appropriate decay rates as pointed out in the preceding discussion. 
Since [ ] ( )( )1 30, ; NH∈ ∞f C , then [ ] ( )( )20, ; NH∈ ∞g C . By assumption, 

( )2
0

N NV +∈v   which implies that ( )1
0

N NV +∈ ω  and since 2N ≥  for 
meaningful physical interpretation, then at least ( )3

0
NV∈ ω . Hence, 

( ] ( )( )2 40, ; NL V∈ ∞ ω  as per the standard theory of linear second order pa-
rabolic equations, for details refer to ([13], Theorem 6, p. 386). Now, it is needed 
to show that v  is bounded in ( )2 NL   for every 0t > . There are two ways to 
show this; in one of them a rough estimate will be provided for the minimum 
rate of decay of v  given the assumptions on the data. 

The first direction depends on the results in ([7], Theorems 3.4 and 3.6). In 
these theorems a regularization technique by mollifiers along with energy esti-
mates were used to prove global in time existence. In particular, ([7], Theorem 
3.4) states that if 0

mV∈v  and [ ]2 2m N≥ + , then there exists a unique conti-
nuous solution locally in time such that this is true up to ( ) 1

mT C
−

≤ v , which 
coincides with the assumptions on 0v . The local existence of a unique continuous 
solution was extended to a global in time existence in ([7], Theorem 3.6) given that 

( ) ( )0
, d

t

T

L
x t t C∞ Ω

≤∫ ω  

and such that ( ] ( ) ( )( )1 20, ; mT V∈ Ω Ωv C C . Since 0ω  and g  are bounded 
in ( )2 NL   for every 0t > , then it follows that there exists a ball NB ⊂   
such that the supports of g  and 0ω  are entirely inside tB  where 

[ ]0,tB B= × ∞ . Hence, the integrals in Formula (20) can be restricted to the ball 
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B , apply Hölder’s inequality, maximize the exponential term which is bounded 
for every , B∈x y  and for every 0t > , and with some estimation procedures 
it becomes easy to find an estimate of the form ( ) ( ), t Ch t≤xω  in the whole of 

N  and for every 0t > . Since ( )h t  is a decreasing function in time then by 
assuming a simple scale of time one obtains 

( ) ( ) ( )
0 1

, d d .
tL

t t C h C∞

∞ ∞

Ω
≤ τ τ ≤∫ ∫xω  

It follows that all the conditions of ([7], Theorem 3.4, Theorem 3.6) are satisfied 
such that v  exists globally in time and such that ( )2N NV +∈v   for every 0t > , 
which implies the boundedness of the energy ( )E t  for every 0t >  as well. 

The second way is trying to get an estimate for v  in terms of x  to con-
firm the boundedness in ( )2 NL  . Consider the following argument: fix t  in 
Expression (20), calculate ∇ω , which is in ( )2 NL   for every 0t >  because 

( )4V∈ Ωω . Take the absolute value of both sides, perform some manipulation 
to the integrands, use ⋅ ≤x y x y  and maximize the time integral (the inte-
grand is a decreasing function in time) so that one finally gets the term with the 
highest power for x  as follows 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( )

2
1

2 2
4

0

0

1 e , d

M ,

M ,

t

t

t
L B L BB

L BL B

H t t

H t C B

C

µ
∞ ∞

∞∞

−
− 

 ∇ ≤ + +
 
 

≤ +

≤

∫
x yy

x y g y y
x

x x g

x x

ω ω

ω  

where ( )M x  is the collection of every possible appearance of any power of 
x  after the integration. Since ∇ω  is in ( )2 NL   as pointed out, then to ob-

tain a decreasing integrand when calculating the 2L -norm of this derivative it is 
necessary that ( )M x  is decreasing in x  such that it is at least  

( ) ( )
2
2M ~ 1

N δ+ +
−

+x x  for some 0δ > . But ω  is in ( )2 NL   as well, and the 

integrands of the above estimate are the same except for the terms with positive 

powers of x . That is to say that ( ) ( )
2
2M ~ 1

N

C
δ+ +

−
≤ +x xω . Incorporate 

this estimate in Expression (21) of the solution v  and one can readily see that
 

( ) 2~ 1
N δ+

−
+v x  as desired, which in turn confirms the boundedness of the 

energy ( )E t  for every 0t >  and implies the decay of v  as →∞x . 

However, since ( )4 NV∈ ω , then we actually have ( )4 2 ND L∈ ω  for 
every 0t > . This means that we can differentiate Formula (20) four times and 
repeat the same argument as above to conclude that we actually have  

( ) ( )
8
2M ~ 1

N δ+ +
−

+x x  which in turn leads to ( )
6
2~ 1

N δ+ +
−

+v x  and this  

completes the proof. 
Remark. Better estimates for the decay of v  can be obtained by repeating 

the same procedure described above for higher order derivatives of ω  which, 
of course, entails higher assumptions on the data so that we can claim the boun-
dedness of the considered derivative apriori. On the other hand, the assumptions 
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on the smoothness of the forcing term f  can be relaxed. It is enough to as-
sume that [ ] ( ) ( )( )1 1 10, ; N NH∈ ∞f  C C  so that one obtains  

[ ] ( )( )20, ; NL∈ ∞g C , which is sufficient to conclude that 
( ] ( )( )2 20, ; NL V∈ ∞ ω . The boundedness of ∇ω  in ( )2 NL   is enough to 

deduce a sufficient decay estimate for v  as shown above. The introduced as-
sumptions were chosen for consistency with the standard theory and the Em-
bedding Theorem, and in the same time to illustrate the estimation procedure. 
For more information review ([13], pp. 382-386).  

We managed to prove that our solution is indeed a classical solution of Model 
Equation (1). Here come some important questions, what if there exists another 
solution in a more general form? Moreover, does the choice of the domain or the 
choice of the boundary data play a role in the uniqueness of the solution? The 
answer to these questions is addressed by the statement of the next theorem. 

Theorem 4 (Uniqueness). Let NΩ ⊆   be an arbitrary domain. Suppose 

0v , *v  and f  are satisfying Conditions (3), (4) and (5) respectively. Then 
Claim 1 is true and the unique classical solution of Model Equation (1) is in the 
form ( ) ( ) ( ), ,t t tψ=v x x u . This solution is defined as per Theorems 2 and 3. 

Proof. The proof here depends on our results in Theorems 2 and 3, and also 
on ([7], Theorems 3.4 and 3.6). By virtue of the assumptions on the data and our 
results in Theorems 2 and 3, it is clear that our solution v  satisfies all the con-
ditions in [7] for every ( ]0,t∈ ∞ . 

Assume that there exists a more general solution than the proposed one and 
denote it by gv . Such solution should definitely inherit the smoothness proved 
in [7] as well. That is to say that ( ]( )1 20, ;g mV∈ ∞v C C  and such that 
( ), ,g g gpv ω  is the triad solution of Model Equation (1) with boundary datum 

*v  and initial profile 0v . Let g= −w v v  and let gq p p= − . Hence, w  has 
zero boundary and initial data and it obeys the equation 

( ) .g g
t qµ− ∆ +∇ = ⋅∇w w v v                  (22) 

Dot product the above equation by gv  and integrate by parts over any arbi-
trary domain Ω  to get 

( )
2 2

1 1
1 1d d d 0,
2 2

g g g
t N Nqµ − −Ω ∂Ω ∂Ω

⋅ − ∆ +∇ = ⋅ = ⋅ =∫ ∫ ∫v w w x v v n x v v n x   (23) 

where we used the Divergence theorem in the right hand side, the facts that 
0g∇ ⋅ =v  and that *g = =v v v  on the boundary, and the results of Lemma 1. 

Now, recalling that 0g∇ ⋅ =ω  and using the vector identity 

( )2
2 2 ,g g g g g∇ = ⋅∇ + ×v v v v ω                  (24) 

one can dot product Equation (22) by gω  and integrate as above to get 

( )
2

1

2

1

2
1

1d d
2
1 d
2
1 d 0,
2

g g g
t N

N

N

qµ −Ω ∂Ω

∗ ∗
−∂Ω

−∂Ω

⋅ − ∆ +∇ = ⋅

= ∇× ⋅

= ⋅ =

∫ ∫

∫

∫

w w x v n x

v v n x

v n x







ω ω

ω

         (25) 
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where Lemma 1 is used again. Identities (23) and (25) imply one of three possi-
bilities. Either 0g g= =v ω  which is excluded for being trivial, or  

0t qµ− ∆ +∇ =w w  almost everywhere. The third possibility is t qµ− ∆ +∇w w  
being orthogonal to the space spanned by gv  and gω , which by Equation (22) 
implies that ( )g g⋅∇v v  is orthogonal to gω  and gv . 

Let us start with 0t qµ− ∆ +∇ =w w  almost everywhere. Multiply this equa-
tion by w , integrate by parts over Ω , employ the Divergence theorem and re-
call that 0=w  on ∂Ω  to get 

2 2
1

1 d d d d 0.
2 d Nq

t
µ −Ω Ω ∂Ω

+ ∇ = − ⋅ =∫ ∫ ∫w x w x w n x  

This readily implies that 0=w  almost everywhere. But by the results ob-
tained for v  and gv , one concludes that at least ( )2∈ Ωw C  which implies 
that w  is identically zero. Hence, the solution v  is the unique solution for 
Model Equation (1) in this case. 

Now, if gv  and gω  are orthogonal to ( )g g⋅∇v v , then by Identity (24) we 
deduce that 

2g∇ v  is orthogonal to the space spanned by gv  and gω  eve-
rywhere, which is equivalent to the nature of the solution v . This means that 

2∇ v  and 
2g∇ v  are parallel to each other on the boundary. Since both solu-

tions coincide at the boundary and both are extended continuously to the inte-
rior of the domain, then it is not hard to conclude that g =v v  everywhere, 
which is the aim of this proof. Assume not. Let g= −θ ω ω  so that the differ-
ence equation for ω  takes the form 

( ) ( ) .g g g g
t µ− ∆ = ⋅∇ − ⋅∇v vθ θ ω ω                (26) 

where ( ) ( ) ( )g g g g g g⋅∇ − ⋅∇ = −∇× ⋅∇v v v vω ω . Use the vector identity 

( ) ( ) ( )T T
,g g g g g g∇ ⋅ = ∇ + ∇v v vω ω ω  

and given the incompressibility of gv  one also has 

( )2 21 1 .
2 2

g g g g g g g g∇ = ∇ − × ∇× = ∇ + ×∆vω ω ω ω ω ω ω  

Use these two identities, bearing in mind the incompressibility, to find that 

( ) ( )

( ) ( )

( )

( )

( )

( )( )
( )

2T

T 2

2

2

2

2

1

1
2

1
2

1
2
1
2

1
2

, .

g g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g

g g g g g

g g g g g

g gG

⋅ ∇ −∇ = ∇ ⋅ − ∇ ⋅

= ∇ ⋅ ⋅ − ∇ ⋅ − ∇ ⋅

 = ∇ ⋅ ⋅ − −∇ ⋅ 
 
 = ∇ ⋅ ⋅ − 
 

− ∇ ⋅ + × ⋅

= ∇ ⋅ ⋅ −

= ∇ ⋅

v v v v v v

v v v v v

v v v v v

v v v

v v

v v v

v

ω ω ω ω

ω ω ω

ω ω ω

ω ω

ω ω ω

ω ω

ω

   (27) 
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Now recall that we are discussing the possibility in which 
2g∇ v  is ortho-

gonal to gv  and gω  such that ( )2g g gC∇ = ×vv ω . Following the same 
steps as above one can write 

( ) ( )( ) ( )

( )( ) ( )

( )( )
( )( )

( )

2

2

2 2

2 2

2 , .

g g g g g g g g g g g g g

g g g g g g g g

g g g g g g g

g g g g g g g

g g

C

C

G

⋅ ∇ −∇ = ∇ ⋅ − ⋅ − ×∆ ⋅

= ∇ ⋅ − ⋅ − × ⋅∆

= ∇ ⋅ − ⋅ − ∇ ⋅∆

= ∇ ⋅ − ⋅ − ∆

= ∇ ⋅

v v v v v v

v v v v

v v v v

v v v v

v

ω ω ω ω ω ω ω

ω ω ω ω

ω ω ω

ω ω ω

ω

    (28) 

Now, dot product Equation (26) by gv , use Identity (27), integrate over Ω  
and use the Divergence theorem to reach 

( ) ( ) ( )1 1 1 1d , d , d .g g g
t N NG Gµ − −Ω ∂Ω ∂Ω

⋅ − ∆ = ⋅ = ⋅∫ ∫ ∫
 v x v n x v n xθ θ ω ω    (29) 

Also dot product Equation (26) by gω , use Identity (28), integrate over Ω  
and use the Divergence theorem to get 

( ) ( ) ( )2 1 2 1d , d , d .g g g
t N NG Gµ − −Ω ∂Ω ∂Ω

⋅ − ∆ = ⋅ = ⋅∫ ∫ ∫x v n x v n x 

ω θ θ ω ω  (30) 

Now, reverse the Divergence theorem in the surface integrals that include 
values of v  and ω  and reverse all the steps made to conclude 1G  and 2G  
to obtain identities in the form 

( ) ( )( )d d 0,g
t µ

Ω Ω
⋅ − ∆ = ⋅∇× ⋅∇ =∫ ∫v x v v v xθ θ          (31) 

and similarly 

( ) ( )( )d d 0.g
t µ

Ω Ω
⋅ − ∆ = ⋅∇× ⋅∇ =∫ ∫x v v xω θ θ ω         (32) 

Now, there are three other possibilities. The trivial solution; that is 
0g g= =v ω  and it is excluded. Another one is 0t µ− ∆ =θ θ  and this one is 

equivalent to 0t qµ− ∆ +∇ =w w  because the uniqueness of v  implies the 
uniqueness of ω  and vice versa. It remains that ( )( )g g∇× ⋅∇v v  is orthogon-
al to the space spanned by gv  and gω . But we already have ( )g g⋅∇v v  or-
thogonal to gv  and gω , which implies that ( )g g⋅∇v v  and its rotation (curl) 
are parallel to each other. By definition, the curl operator is the unique vector 
field for which ( ) ( )T∇ −∇ = ∇× ×s s a s a  for every vector field a  ([1], p. 32). 
If ( )λ= ∇×s s , then let λ= = ∇×a s s  to get T∇ = ∇s s  which in turn im-
plies that 0∇× =s  then 0=s  as well. Hence, it is necessary that 

( ) 0g g⋅∇ =v v  which implies that g =v v . This completes the proof. 
Remark. In the proof of uniqueness one can argue that the statement of the 

proof was given in the sense of classical solutions, and such that there still exists 
another solution in a weaker form. While this may sound true, but in fact it is 
not. The basic idea of the proof is based on using the coincidence on the boun-
dary and then moving back to the interior. Assuming the existence of a weaker 
solution does not change the fact that it is going to coincide with the proposed 
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one on the boundary. However, further investigation on this specific point will 
be introduced in a future study. 

4. Conclusions and Suggestions 

A class of possible solutions for the incompressible Navier-Stokes equation in 
bounded and unbounded regions of N  is proposed. It was demonstrated that 
for such class of vector fields, the flux of the energy of the flow is orthogonal to 
the space spanned by v  and its associated rotation ω . It was also proved that 
v  and ω  are tangential to the boundary such that 0⋅ = ⋅ =v n n 

ω . 
An investigation of the validity of this class of vector fields as a candidate for a 

solution to the incompressible Navier-Stokes equation was carried out in both 
bounded and unbounded domains. Given plausible assumptions on the data and 
a forcing term in the case of unbounded domains, it turned out that this class of 
solutions represents perfectly a classical solution of the problem. Verification 
was established for the infinite differentiability, the uniqueness and the boun-
dedness of the energy in appropriate spaces in light of well known and standard 
theories. An appropriate estimate was also given for the minimum rate of decay 
of the solution v  as →∞x . Moreover, global existence in time and the cor-
responding rate of decay were quite obvious in the deduced formulas. 

Finally, it was proved that this class of solutions represents actually the unique 
classical solution of the incompressible Navier-Stokes equation. In light of the 
non-convective nature of the proposed solution and the uniqueness argument 
under arbitrary settings, the incompressible Navier-Stokes equation can safely be 
reduced to a linear equation. This point is quite interesting and it motivates fur-
ther investigations on a possible relation between incompressibility and convec-
tion in fluid mechanics. 
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