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Abstract 

“Consanguinity” is a gender-neutral term for “fraternity” or “sorority.” In-
itially a consanguinity includes M  male members and F  female members. 
Each week a member, chosen at random, selects a new member, always of the 
same gender as the member making the selection. This model for evolution is 
isomorphic to the classic Pólya’s urn. The male and female members play the 
same roles as the red and black balls in the urn, and the procedure for select-
ing a new member is equivalent to drawing a ball from the urn, then replacing 
it and adding a new ball of the same color. It is well known that for Pólya’s 
urn, the proportion of red balls in the urn is a martingale. It follows that for a 
consanguinity, the proportion of the membership that is male is a martingale. 
Furthermore, being bounded, this martingale converges to a limit. For a mar-
tingale that is the sum of independent random variables, such as a symmetric 
random walk, there is also a well-known second-degree martingale from 
which the variance of the limiting distribution can be deduced. What the au-
thor discovered, in the process of solving his own examination problem, is 
that a similar martingale exists also for Pólya’s urn, even though in this case 
the number of red balls is the sum of random variables that are not indepen-
dent. This new martingale can be used to calculate the variance of the limiting 
distribution. Traditionally, the probability that r  red balls will be drawn 
from Pólya’s urn in n  trials is derived by a rather tricky argument involving 
conditional probability. This article uses an obvious but overlooked simpler 
approach. Pólya’s formula for the probability that m  male members will be 
chosen in n  weeks is derived, without any mention of conditional probabil-
ity, by an elementary counting argument, and its limit is shown to be a beta 
distribution. 
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1. Genesis of the Problem  

There is a long tradition of setting unsolved problems on mathematics examina- 
tions. The most famous example is Stokes’s Theorem, a three-dimensional 
version of which appeared on the 1854 Smith’s Prize Exam at Cambridge Uni- 
versity [1], several years before a proof was published by Hankel. 

The following problem appeared on the final examination in the author’s 
course Mathematics 117, “Probability and Random Processes with Economic 
Applications,” in December 2016.  

“The initial membership of a newly founded MGSO (mixed gender social 
organization) is three women and one man. At the start of week n  (starting with 
week 0), there are 4n +  members, of whom nM  are male. A member is chosen at 
random, and he or she recruits a new member of the same gender as himself/herself. 

Show that the fraction of the membership that is male, the random variable  

,
4

n
n

M
n

µ =
+

 

is a martingale. State what property of this martingale guarantees that it 
converges almost surely, and describe the probability distribution for µ∞ .” 

An equivalent problem was stated and solved by Eggenberger and Pólya in 
1923 [2]. Instead of a consanguinity with male and female members, they 
considered an urn which initially, for the special case in the exam problem, 
contained 1R =  red balls and 3S =  ( S  for “Schwarz”) black balls. A ball 
was repeatedly chosen at random from the urn and then replaced, along with 
another ball of the same color. 

Since the students had done examples based on Pólya’s urn and had studied 
the martingale convergence theorem, everything was straightforward except for 
“describe the probability distribution for µ∞ ,” which the author of the exam 
question had not taken the trouble to work out! 

This variant of Pólya’s urn is of political interest at Harvard because of sanctions 
against single-gender social organizations that have been proposed for the 2017-18 
academic year [3]. An existing single-gender organization can presumably avoid the 
sanctions by adding a single member of the opposite gender, and the proposed 
model for expanding the membership is not unreasonable. 

The term “consanguinity” for an MGSO whose name consists of Greek capital 
letters was suggested to the author by Prof. Richard Thomas of the Harvard 
Classics Department. Instead of saying “X is my fraternity brother” or “Y is my 
sorority sister,” one can say “Z is my consanguinity sibling.” 

None of the nine students who took the exam correctly guessed the describe 
the probability distribution for µ∞ . Perhaps James Clerk Maxwell, who tied for 
first on the 1854 Smith’s Prize Exam, would have fared better. 

Pólya’s urn has developed since 1923 into an entire branch of mathematics. It 
is the subject of a recent book [4]. An excellent online resource that contains 
most of the key results is [5]. 

The rest of the paper is organized as follows. The well-known proof that the 
proportion of the membership nµ  that is male is a convergent martingale is 
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reviewed in Section 2 and is supplemented by a second martingale that involves 
2
nM . In Section 3, the probability distribution for nM  is derived by an elemen- 

tary counting argument, and it is shown that for large n , the probability of 
adding m  male members is proportional to ( )21 m n− , consistent with the 
fact that a beta distribution with parameters 1 and 3 has the density function 
( )23 1 x− . In Section 4, it is shown that the expected number of weeks before a 

second male member is added is infinite. In Section 5, the general case of 
starting with M  male members and F  female members is analyzed. 

2. Martingale Analysis  

We first specify the sample space Ω  and probability measure for an experi- 
ment in which a consanguinity evolves for n  weeks. An element ω  of this 
sample space is a sequence ( )1 2, , , nω ω ω  where 1ω  specifies which of the 
four original members selects the member added in week 1, 2ω  specifies which 
of the five members present after week 1 selects the member added in week 2, 
and so forth. We specify not merely whether the new member added in week i  
is male or female, but also which existing member made the selection. Our 
probability model is then that each ω  is equally likely. 

Let the random variable nM  denote the number of males in the cons- 
anguinity after n  weeks. nM  is a function on the sample space, whose value 
for each element ω  can be determined by identifying the gender of each 
member who makes a selection. After n  weeks the total membership is 4n + . 
The ratio  

4
n

n
M

n
µ =

+
 

is also a random variable, the proportion of the membership that is male after 
n  members have been added. 

We next review briefly the fundamentals of conditional expectation and 
martingales, a simplification of sections 8.2, 9.1 and 9.2 of the textbook used in 
Math117. [6] 

Let Ω  be a sample space, which in the case at hand is finite. Let A  be an 
event (a subset of Ω ), which in our case might be “after four weeks there are 
three male members.” Then the conditional expectation X A    is computed 
by restricting the sample space to the subset A  and calculating expectation in 
the usual way for this restricted sample space. 

The random variable nM  generates a finite partition of the sample space into 
events of the form nM k= , i.e. “after n  weeks, the consanguinity includes k  
male members.” Since these are the only events of interest to us, we need make 
no mention of sigma-fields and can use the simplified notation  

( ).nX M ω    

Since the number of males nM  and the proportional of males nµ  both 
generate the same partition of the sample space, “conditioning on nM ” and 
“conditioning on nµ ” are equivalent. 
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This conditional expectation defines a new random variable as follows: given 
an element ω  of the sample space, we determine the value ( )nM ω , then 
compute the expectation of X  using only those elements ω  that lead to that 
value. 

We cite the three laws of conditional expectation, a simplified version of 
Proposition 8.8 from [6] 

1) Taking out what is known (TOWIK): 
If X  is constant on each level set of nµ , then  

n nX Y X Yµ µ ⋅  =                            (1) 

2) Independence drops out (IDO): 
If X  is independent of nµ , then  

[ ]nX Xµ  =                          (2) 

3) Tower Law: 
If m n< , then  

n m mX Xµ µ µ   =                          (3) 

The term “martingale” was in use by roulette players long before it found its 
way into mathematics. Imagine that you are playing roulette in a fair casino 
where there is no zero on the wheel. If after n  plays you have k  chips and bet 
one chip on red, you are equally likely to end up with 1k +  chips or 1k −  
chips, for an expectation of k  chips. If random variable nY  is the size of your 
stack of chips after n  plays, then the sequence nY  has the martingale property 

1n n nY Y Y+  =  . 
For a consanguinity, the number of male members nM , which can never 

decrease, is not a martingale. However, even someone who is unfamiliar with the 
term “martingale” is likely to guess correctly that the average number of male 
members is going to remain one-fourth, for the simple reason that the 
probability of choosing a new male member is equal to the probability that the 
new member is selected by a male, which in turn is equal to the proportion of 
the membership that is male. 

More formally, we need to prove that the sequence of random variables nµ  
has the martingale property: the expectation of 1nµ + , conditioned on nµ , is 
equal to nµ , or 

1 .n n nµ µ µ+  =   

First we consider the case 0n = . The random variable 0µ  has the constant 

value 1
4

. For 1µ  there are two possible values. With probability 1
4

, a new 

male member is selected, and the proportion of males rises to 2
5

. With 

probability 3
4

, a new female member is selected, and the proportion of males 

drops to 1
5

. The expectation of 1µ  is therefore  
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1 2 3 1 2 3 1 .
4 5 4 5 20 4

+     + = =     
     

 

The general proof is scarcely more difficult. Introduce a new random variable 

nX , the number of male members chosen in week n . This random variable has 
the value 1 with probability nµ , the value 0 with probability 1 nµ− . 

Clearly 1n n nM M X+ = + , and since expectation is linear, 

1n n n n n nM M Xµ µ µ+     = +         

For the first term, conditioning nM  on a function of itself changes nothing 
(TOWIK) (1). For the second term, the expectation of nX  is simply the 
probability that it equals 1 rather than 0, namely nµ , so 

( )1 4n n n n n nM M nµ µ µ µ+  = + = + +   

Dividing by 5n +  we find 

1 ,n n nµ µ µ+  =   

which is the martingale property. 
By the Tower Law(3), we can condition 1nµ +  first on nµ , then on 1nµ − , and 

eventually on 0µ  and conclude that  

1 0 0
1 ,
4nE µ µ µ+  = =                      (4) 

reaching a conclusion that requires half a page of computation in [2], page 
281. 

This analysis appears in almost every introduction to martingales; for example, 
as exercise 27 on page 258 of [7]. What appears not to be well known is that 
there is also a second-degree martingale that makes the computation of variance 
equally easy. 

The inspiration for this second martingale is a symmetric random walk, as 
described, for example, in Example 9.6 of [6]. 

Let iX  denote the i th step in the walk: it is a random variable that has 
values +1 and -1, each with probability 1/2. 

Let  

1
.

n

n i
i

Y X
=

= ∑  

Then  

( )1 1 1 .n n n n n n n n nY Y Y X Y Y Y X Y+ + +      = + = +           

By TOWIK (1),  

.n n nY Y Y  =   

By IDO (2),  

[ ]1 1 0,n n nX Y X+ +  = =    

and we conclude that  
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1 .n n nY Y Y+  =   

For a second-degree martingale, define a new random variable, 2
n nZ Y n= −  

Then  

( ) ( )22 2 2
1 1 1 11 2 1.n n n n n n nZ Y X n Y Y X X n+ + + += + − + = + + − −  

Again condition on nY .  
By TOWIK(1),  

2 2.n n nY Y Y  =   

By IDO (2),  

1 1 0.n n n n nX Y Y X Y+ +   = =      

Finally, 2
1nX +  is the constant random variable 1. 

So  
2

1 1 1 ,n n n nZ Y Y n Z+  = + − − =   

which is the martingale property. 
In the case of the consanguinity we can write  

0
1

,
n

n i
i

M M X
=

= +∑  

where iX  is the number of male members (0 or 1) added in week i . However, 
in this case 1nX +  is no longer independent of nM —indeed this lack of 
independence is precisely why Eggenberger and Pólya [2] found the urn 
problem interesting. 

It took a bit of experimentation for the author to discover a second degree 
martingale even for the simple special case that appeared on the examination. 

The martingale turns out to be  

( ) ( ) ( )21
4 5n n nZ M M

n n
= +

+ +
                  (5) 

roof: consider  

( ) ( ) ( )2
1 1 1

1
5 6n n nZ M M

n n+ + += +
+ +

 

Since  

1 1,n n nM M X+ += +  

( ) ( )
2 2

1 1 1 1
1 2 .

5 6n n n n n n nZ M M X X M X
n n+ + + + = + + + + + +

 

This time it will be more difficult to deal with the second term, because 1nX +  
is not independent of nM . 

Again we condition everything on nM . The key is that  

1 .
4

n
n n n

MX M
n

µ+  = =  +
  

By TOWIK (1),  
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2 2.n n nM M M  =   

By TOWIK (1),  
2

1 1 .
4

n
n n n n n n n n

MM X M M X M M
n

µ+ +   = = =    +
   

Since 1nX +  equals 0 or 1, its square is equal to itself, and  

2
1 1 .

4
n

n n n n n
MX M X M

n
µ+ +

   = = =   +
   

Combining all the terms we find 

( ) ( )
2

1
1 2 21 1

5 6 4 4n n n nZ M M M
n n n n+

      = + + +      + + + +    
  

or  

( ) ( ) ( )2
1

1 6 ,
5 6 4n n n n n

nZ M M M Z
n n n+

+
  = + =  + + +

  

which establishes the martingale property for the random variable nZ  (5). 
By the Tower Law (3), therefore,  

[ ] ( )0 0
1 11 1
20 10n nZ Z M Z = = = + =    

It follows that  

( ) ( ) [ ]( )21 1
4 5 10n nM M

n n
  + = + +

   

But we already know (4) that  

[ ] 4
4n

nM +
=  

and so  

( ) ( )2 4 5 4 .
10 4n

n n nM
+ + +  = −   

Thus the variance is  

[ ] ( )22 3 4
Var ,

80n n n
n n

M M M
+

 = − =               (6) 

in agreement with the value that Eggenberger and Pólya calculate from the 
probability mass function [2]. 

The Martingale Convergence Theorem, stated and proved, for example, in 
section 9.2 of [6], asserts that if a sequence of random variables like nµ  is 
uniformly integrable, it converges almost surely to a random variable µ∞ . Since 
each nµ  is bounded below by 0 and above by 1, the requirement of uniform 
integrability is trivially satisfied. 

Although we have still not determined the probability mass function, we now 
know enough to determine the expectation and variance of µ∞ . Since nµ  has  

an expectation of 1
4

 for all n , so does µ∞ . From the results that we have just  
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obtained, combined with the fact that 
4

n
n

M
n

µ =
+

, it follows that  

( )
3 3Var lim

80 4 80n

n
n

µ∞ →∞
= =

+
 

At this point we might conjecture an answer to the original exam question, 
“describe the probability distribution for µ∞ .” Perhaps the limit is a beta 
distribution with parameters 1α =  and 3β = , for which the density function 
is ( ) ( )23 1f x x= − . Any book on mathematical statistics, e.g. [8] has the 
formulas for the expectation and variance of the beta distribution. The expecta- 
tion is 

1
4

α
α β

=
+

 

while the variance is 

( ) ( )2
3 .

801
αβ

α β α β
=

+ + +
 

So the conjectured beta distribution has the right expectation and variance. 
Rather than attempt to compare higher moments, though, it will simpler just to 
work out the probability mass function and take its limit. 

3. The Probability Mass Function  

The following derivation is equivalent to that of Eggenberger and Pólya [2], but 
it is strictly an elementary counting argument, making no mention of the fact 
that the number of males nM  is the sum of a set of random variables which, 
although not independent, are nonetheless “exchangeable.” 

We have already identified a finite sample space whose elements all have equal 
probability. The number of elements in the sample space is the product of the 
number of equally likely choices that can be made in successive weeks: namely  

( ) ( )3 !
4 5 6 3 .

3!
n

n
+

× × + =  

Now we must count the number of elements of the sample space whose effect 
is to add m  males and f n m= −  females to the membership. 

For the first male added there is only one candidate for the member who did 
the choosing; for the second male added, there are two candidates, and so forth. 
Given a fixed set of m  weeks in which males are chosen, there are in all 
( )1 !m −  alternatives. Similarly, for the weeks in which females are chosen, there 
are ( )3 4 5 2 f× × +  alternatives for the female choosers. 

There are 
n
m
 
 
 

 ways to select the set of m  weeks in which a male is chosen. 

So the number of elements of the sample space that contribute to the event “ m  
males are added” is  

( ) ( )2 !
1 !

2!
n f

m
m

+ 
− 

 
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The probability of adding m  males is simply the proportion of elements in 
the sample space that contribute to this event: namely  

( ) ( ) ( )

( )
( ) ( )
( ) ( )

2 !! 11 ! 3 1 1! ! 2! 3 1
.

3 ! 1 21 2 1 1
3!

n mn m mm
m n m n m n m n n n

n n n n n
n n

− +   − − − −  − − − −   = =
+ + +   + +  

  

 (7) 

This formula agrees with Equation (6) of Eggenberger and Pólya [2], where 
the authors multiply conditional probabilities, then permute the numerators of 
the fractions that are multiplied. 

We now set m x
n
=  and take the limit as n →∞  by dropping all terms that 

approach 0, obtaining  

( ) ( )23 1x x
n

µ∞ = = −  

which corresponds to the density function for the beta distribution with 
parameters 1 and 3,  

( ) ( )23 1 .f x x= −                        (8) 

4. Waiting for the Second Male Member  

The probability that only females are added over a period of n  weeks is simply 
the ratio  

( )
( )

3 4 5 2 3 .
4 5 6 3 3

n
n n

× × +
=

× × + +




 

Suppose that the consanguinity agrees to pay a fine of 1 dollar for each week 
that its membership includes only one male. What is the expected amount of the 
fine? 

Let 1n  be the indicator function of the event “in the first n  weeks, all new 
members are female.” The total fine is the random variable 

1 2 31 1 1 .F = + + +  

For example, if the first male is added in week 3, the first two of these 
indicator functions equal 1, all the others are 0, and the fine is 2 dollars. 

The expectation of the fine, by linearity of expectation, is 

[ ] [ ] [ ] [ ]1 2 31 1 1 .F = + + +     

But the expectation of 1n  is just the probability of the event that only females 
are added over a period of n  weeks, so 

[ ]
1

3
3n

F
n

∞

=

=
+∑  

This series is divergent, and the expected fine is infinite! 

5. Martingales for General Starting Conditions  

If the consanguinity begins with N  members, M  males and F  females, the 
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proportion of male members is still a martingale:  

n
n

M
n N

µ =
+

 

Furthermore, the second-degree martingale is the simplest imaginable 
generalization: 4 gets replaced by N .  

( ) ( ) ( )21
1n n nZ M M

n N n N
= +

+ + +
                (9) 

We repeat the proof, considering  

( ) ( ) ( )2
1 1 1

1
1 2n n nZ M M

n N n N+ + += +
+ + + +

 

Since  

1 1,n n nM M X+ += +  

( ) ( )
2 2

1 1 1 1
1 2 .

1 2n n n n n n nZ M M X X M X
n N n M+ + + + = + + + + + + + +

 

Again we condition everything on nM  and use  

1 .n
n n n

MX M
n N

µ+  = =  +
  

By TOWIK (1),  
2 2.n n nM M M  =   

By TOWIK (1),  
2

1 1 .n
n n n n n n n n

MM X M M X M M
n N

µ+ +   = = =    +
   

Since 1nX +  equals 0 or 1, its square is equal to itself, and  

2
1 1 .n

n n n n n
MX M X M

n N
µ+ +

   = = =   +
   

Combining all the terms we find  

( ) ( )
2

1
1 2 21 1

1 2n n n nZ M M M
n N n N n N n N+

      = + + +      + + + + + +    
  

or  

( ) ( ) ( )2
1

1 2 ,
1 2n n n n n

n NZ M M M Z
n N n N n N+

+ +
  = + =  + + + + +

  

which establishes the martingale property for nZ  (10). 
With more than one initial male member, the calculation of variance becomes 

slightly more complicated, since 0Z  depends on the number of initial male 
members. By the Tower Law (3),  

[ ] ( ) ( ) ( )
( )

2
0 0

11
1 1n n

M M
Z Z M Z M M

N N N N
+

 = = = + =  + +
   

It follows that  

( ) ( ) [ ]( ) ( )
( )

2 11
1 1n n

M M
M M

n N n N N N
+

  + = + + + +
   
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But we already know that  

[ ] ( )
n

n N M
M

N
+

=  

and so  

( ) ( ) ( )
( )

( )

( ) ( ) ( )

2 1 1
1

1 1
.

1

n
n N n N M M n N M

M
N N N

n N M n M M N
N N

+ + + + +
  = −  +

+ + + +
=

+


       (10) 

Thus the variance is  

[ ] ( ) ( )
( )

22
2Var .

1n n n
N M nM n N

M M M
N N

− +
 = − =  +

   

in agreement with the value that Eggenberger and Pólya [2] calculate from the 
probability mass function. Dividing by n N+  and taking the limit as the limit 
as n →∞ , we find  

( )
( )2Var ,

1
N M M
N N

µ∞

−
=

+
 

which is indeed the variance for a beta distribution with parameters  
,M F N Mα β= = = − . 

6. Conclusions 

The original examination question has been solved at last.  
• The proportion of male members, nµ , is a martingale whose expectation is 
( ) 1 4nµ =  (4) for all n . 
• Being bounded below by 0 and above by 1, this martingale has a limit as 

n →∞ . 
• Without working out the distribution function for nµ , a second martingale 

(5) can be used to show that the variance of the limiting distribution is Var 3 80µ∞ =  
(6), which is consistent with the conjecture that this limiting distribution is a 
beta distribution. 

• The distribution of the number of male members (7) can be determined by 
an elementary counting argument, and its limit is a beta distribution(8). 

• The newly found second-degree martingale generalizes easily (10) to 
arbitrary starting conditions. 
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