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Abstract 
We first of all consider what if the initial inflaton was nearly zero instead of 
proportional to a Planck mass, in a SUSY type potential. Using the construc-
tion of Padmanabhan about general inflaton physics and the conditions of 
what are usual constituent slow roll requirements for inflation, and also of 
Kolb, Pi and Raby about a SUSY potential, we come up with the counter in-
tuitive formulation of how usual tests for slow roll give the standard answers 
even if the inflaton in the SUSY potential as given by Kolb, Pi, and Raby is in-
itially zero. The result gives support to a formulation of VEV conditions used 
right after a Planck instant of time. As it is, we will from first principles ex-
amine what adding acceleration does as to the HUP previously derived. In 
doing so we will be tying it in our discussion with the earlier work done on the 
HUP. The HUP results, so modified are appropriate for the Pre-Planckian re-
sults and may explain why the slow roll formulation as given by Padmanab-
han holds where there is the phenomenon of 2

SUSYVφ� �  for Pre-Planckian 
space-time. This leads to a very paradoxical result that in Pre-Planckian phys-
ics the traditional slow roll formulas are satisfied even if 2

SUSYVφ� � . But it 
also puts in extremely tight restrictions upon the formulation of the degree of 
freedom problem, as given in Equation (26) in this document.  
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1. Introduction to the Basic Problem, as Far as SUSY 
Potential Physics. Starting off with a Summary of Why 

Mφ ξ Planck~ �+  in V�φ 2
SUSY�  Situations, so the Square 

of H, Is >0 

In this introduction, we use the results of how we set the state for a modified 
Pre-Planckian physics HUP. This will be leading to initial conditions which will 
lead to, later 2

SUSYVφ� �  in Pre-Planckian space-time physics, which will in turn 
lead to our main analysis result that in the Pre-Planckian Space-time, that 

2
SUSYVφ� � , will still lead to space-time conditions for which we have, the slow 

roll conditions, as outlined by Padmanabhan [1], which merge seamlessly into 
the inflationary conditions, even if, in the Planckian space-time we have 

2
SUSYVφ� � . In the regime which we have 2

SUSYVφ� �  we have that 

Planck~ Mφ ξ + � , for times t �  Planck time interval. By the time we have 
2

SUSYVφ� �  we have that Planck~ Mφ  for Planck time. One of the findings will 
be that the square of the Hubble parameter, when Planck~ Mφ ξ + � , will be > 0 
only if 2

SUSYVφ� � , which occurs when the time is in the Pre-Planckian 
space-time regime and Planck~ Mφ  when time is Planck time in value, just be-
fore the advent of inflation. In doing so, if Planck~ Mφ , 2

SUSYVφ� �  no longer 
holds. But to get to this derivation, we will attempt to set up a modification of 
the HUP which will be part of how Planck~ Mφ ξ + �  in 2

SUSYVφ� �  situations, 
so the square of H, is >0. This will be linked to the modification of the HUP 
brought up, which is largely from [2]. This leads to the satisfaction of the slow 
roll hypothesis, usual formulation still holding in the Pre-Planckian regime, in 
spite that Planck~ Mφ ξ + � , will be > 0 only if 2

SUSYVφ� � . 

2. Re-Hash of Discussion Given in [2] about Modification of 
HUP 

As stated in [2] we will be examining a Friedmann equation for the evolution of 
the scale factor, using explicitly one case being when the acceleration of expan-
sion of the scale factor is kept in, and the intermediate cases of when the accele-
ration factor, and the scale factor is important but not dominant. In doing so we 
will be tying it in our discussion with the earlier work done on the HUP but 
from the context of how the acceleration term will affect the HUP, and making 
sense of [2] 

( ) ( ) ( ) ( )
2 22 22 2

2 2
Volume Volume

ˆ ˆ

& ~ ~ ~ 0  

uv uv tt ttuv tt

rr

g T g T
V V

g g gθθ φφ

δ δ

δ δ δ

→

+

≥ → ≥
� �

       (1) 

Namely we will be working with [2] 

( )
[ ]( ) ( ) [ ]( ) [ ]( )

2

3
initial initial initialwith without without

tt

tt tt tt tt

t E
g a t

S g g S g S g

δ
δ φ

δ δ δ δ−

∆ = ≡
⋅

⇔ =

� �
� �

�

 (2) 

i.e. the fluctuation 1ttgδ �  dramatically boost initial entropy. Not what it 
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would be if 1ttgδ ≈ . The next question to ask would be how could one actually 
have [2] 

( )2
~Very Large~ 1ttg a t φδ φ⋅ →                   (3) 

In short, we would require an enormous “inflaton” style φ  valued scalar 
function, and ( )2 110~ 10a t − . How could φ  be initially quite large? Within 
Planck time the following for mass holds, as a lower bound [2] [3] [4]  

( )
( )2

graviton 2 22

2

tttt P

E V
m

Tg lδ

−
≥ ⋅

∆
�

                   (4) 

Here, [2]  

( ) 2 6. . ~ ~K E E V aφ −− ∝�                     (5) 

3. What Is the Argument against the Usual Heisenberg 
Uncertainty Principle? 

We will be looking at the likelihood of recovery of the usual Heisenberg uncer-
tainty principle as would be seen if [2]  

( )2
~Very Large~ 1ttg a t φδ φ⋅ →                   (6) 

In short, we would require an enormous “inflaton” style φ  valued scalar func-
tion, and ( )2 110~ 10a t − , i.e. assuming a quantum bounce with ( )2 110~ 10a t − , 
but not zero, so as to have Equation (2) render the usual Heisenberg uncertainty 
principle, would require a scalar value φ  initially of almost infinite value, and 
there is no reason this would occur, i.e. what we will attempt to do is to model 
inputs from what can be deduced via deconstructing the super symmetric mod-
els, as so beloved by the physics community. 

4. The SUSY Potential Utilized. And Its Role for 
Mφ ξ Planck~ �+  in V�φ 2

SUSY�  Situations, So the Square 
of H, Is >0 

Going to Kolb, Pi, and Raby, [5] we outline certain problems with the usual 
SUSY models which in effect argues strongly against a scalar value φ  initially of 
almost infinite value. The target of what we are examining is an old but still re-
ferenced model of inflation in the case of a super symmetric potential of the 
form of a VEV, which is what we should be considering, namely, if we use a sca-
lar value φ  of a Higgs field, with 

( ) 4SUSY VeV 1 lnV b φ µµ
µ φ

    
− ≅ ⋅ − ⋅ +Ο    

    
�            (7) 

With [ ] a minimum value for Equation (23) according to the first derivative, 
φ , if µ  is the super symmetry breaking scale, and  

( )

2
Planck

ln

& 1

b b
m

b O

φµ 
= −  

 
=

�
                       (8) 
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Were this followed, we would also would have a defined mass, for the scalar 
field which is given in [ ] by the following  

4
2

2
Planckmφ
µµ ≅                          (9) 

With a minimization of a SUSY style Equation (7), and Equation (9) below if 

Planckmφ ≅ . The contention we have is that if one wanted to have Equation (9) 
satisfied, that with the scale factor ALMOST zero, but not zero, that there is no 
way to have Planckmφ ≅ , and to keep fidelity with the usual HUP relationships of 
change in energy times change in time as greater than or equal to h bar. Here is 
the [ ] provided SUSY potential for a vanishing VeV [5] 

( )
22

4 2

Planck Planck

ln 1V b
m m
φ φφ µ

       = ⋅ ⋅ + −           

          (10) 

i.e. this is still, with some tweaking a commonly accepted SUSY VeV model, 
with a minimum if Planckmφ ≅ , and due to Equation (10) we can argue pretty 
straight forwardly, that if Planckmφ ≅  no longer holds, that the variation in the 
Pre-Planckian metric as brought up in Equation (10) will NOT allow for the re-
sumption of the usual HUP  

So, E t∆ ∆ ≥ �  will in the Pre-Planckian regime, break down [2]. We will next 
then consider what to expect if there is a dynamical systems treatment for an 
emergent VeV and what this says physically. 

5. Examining What Happens to Equation (10) If in Pre 
Planckian Space Time V�φ 2

SUSY�  due to 
Mφ ξ Planck~ �+  

We will be looking at the value of Equation (10) if Planck~ Mφ ξ + � . In short, we 
have then that 

( )

( )
2

ij
ij

ij

ijij

g ll
g

p T t A

δ

δ

∆ = ⋅

∆ = ∆ ⋅ ⋅∆

                     (11) 

If we use the following, from the Roberson-Walker metric [2] [6] [7]. 

( )

( )
( )

2

2

2 2

2 2 2

1

1

sin d

tt

rr

g

a t
g

k r
g a t r

g a t
θθ

φφ θ φ

=

−
=

− ⋅
= − ⋅

= − ⋅ ⋅

                    (12) 

Following Unruth [8] [9], write then, an uncertainty of metric tensor as, with 
the following inputs  

( )2 110 35~ 10 ,  ~ 10  metersPa t r l− −≡                (13) 

Then, the surviving version of Equation (7) and Equation (8) is, then, if 
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~ttT ρ∆ ∆  [2] [8] [9] 
( )

( )

4

42 2tt tt tt tt

V t A r
rg T t A g T

V

δ

δ δ δ

= ⋅∆ ⋅

⋅∆ ⋅ ⋅∆ ⋅ ≥ ⇔ ⋅∆ ≥
� �             (14) 

This Equation (14) is such that we can extract, up to a point the HUP prin-
ciple for uncertainty in time and energy, with one very large caveat added, 
namely if we use the fluid approximation of space-time [10] 

( )diag , , ,iiT p p pρ= − − −                     (15) 

Then [2] 

( )3
~ ~tt

ET
V

ρ ∆
∆ ∆                        (16) 

Then, 

( )  Unless ~ 1
2 tt

tt

t E g O
g

δ δ
δ

∆ ≥ ≠
� �                (17) 

How likely is ( )~ 1ttg Oδ ? Not going to happen.  

6. How We Can Justifying Writing rrg g gθθ φφδ δ δ~ ~ ~ 0+  
Values. And Other Inequalities 

To begin this process, we will break it down into the following co ordinates. In 
the rr, θθ , and φφ  coordinates, we will use the Fluid approximation, 

( )diag , , ,iiT p p pρ= − − −  [2] with 

( )
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            (18) 

If as an example, we have negative pressure, with rrT , Tθθ , and 0Tφφ < , and 
p ρ= − , then the only choice we have, then is to set ~ ~ ~ 0rrg g gθθ φφδ δ δ + , 

since there is no way that p ρ= −  is zero valued. If so, then we will go to the 
behavior of Equation (10) and 2

SUSYVφ� �  due to Planck~ Mφ ξ + � . 
1) Working with Equation (10) as a link to 2

SUSYVφ� �  due to 

Planck~ Mφ ξ + �  
The key equation is to look at the following expression for the Hubble para-

meter, which is [1]  
2

2
SUSY2

1
23 P

H V
M

φ 
= ⋅ + 

 

�
                   (19) 

Here, we will be having 2
SUSYVφ� �  due to Planck~ Mφ ξ + �  because, then 

The key equation is to look at the following expression for the Hubble parame-
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ter, which is leading to  

( )

( )
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2) Working with Slow Roll If we are using Equation (20) if 

Planck~ Mφ ξ + �  
From using Padmanabhan [1], we have the following which we write as for 

slow roll parameters 

( )

( )
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                   (21) 

Then, if Planck~ Mφ ξ + �  
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Note that this is commensurate with this K.E. as proportional to have the left 
side of Equation (22) almost infinite in value and in turn that also relates to  
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( )2

initial

~ 1,

if ~
ttg a tδ φ

φ ξ +

⋅ �
                      (23) 

Which due to [11] becomes similar to using Equation (24) in  
( )3 1 w

w aρ − −∝                         (24) 

Then by Equation (23) and Equation (24)  

( )
( )2

~ ~ volume
~tt

E V
t g a t

ρ
δ δ φ

∆ ⋅
 ⋅ ⋅ 

�
            (25) 

If we are in a very small Pre-Planckian regime of space-time, we could, then 
write Equation (24) as then proportional to 4g T∗  [11], with g∗  initial degrees 
of freedom, leading to 1 3w = , and initial degrees of freedom as  

( ) ( )
*

2 4
initial initial initial initial

~
initial volume

g
t a t T Vδ φ ⋅ ⋅ ⋅ ⋅ − 

�
      (26) 

As given by Kolb and Turner, the projected degrees of freedom max out about 
110, while unorthodox treatment of the same problem lead to an upper bound of 
about 1000. Needless to say though, the given Equation (26) only works if there 
is an extremely small, almost zero inflaton value, as given by the following: 

Planck~ Mφ ξ + � . This is to counteract the enormity of the initial temperature. 
We will say more about this topic later in subsequent publications. 

7. Conclusion 

We think the only explanation is that even if Equation (21) and Equation (22) 
are not satisfied with an almost zero inflaton magnitude, the only explanation we 
have is of a causal discontinuity which would effectively wipe out a good deal of 
the information and structure from Pre-Plankian to Planckian space time, even 
if the behavior of Equation (21) and Equation (22) is commensurate with the 
Planckian slow roll conditions. We will write more of this in a subsequent pub-
lication. This will complete our full development of an extension of [12] as well 
as issues raised in [13], and [14] where Corda calculated the magnitude of the 
inflaton, which has results which we will try to reconcile as to our present theo-
retical developments. 
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